Problem solving seminar VI

21. Let $U \subseteq \mathbb{R}^n$ be an open set. Suppose that the map $h: U \to \mathbb{R}^n$ is a homeomorphism from U onto \mathbb{R}^n , which is uniformly continuous. Prove that $U = \mathbb{R}^n$.

22. Suppose that f maps the compact interval I into itself and that

$$|f(x) - f(y)| < |x - y|$$

for all $x, y \in I, x \neq y$. Can one conclude that there is some constant M < 1 such that

$$|f(x) - f(y)| < M|x - y|?$$

23. Let V be a finite dimensional vector space and A and B two linear transformations of V into itself such that $A^2 = B^2 = 0$ and AB + BA = id.

(a) Prove that ker $A = A(\ker B)$, ker $B = B(\ker A)$ and $V = \ker A \oplus \ker B$.

(b) Prove that the dimension of V is even.

24. Prove that the group $G = \mathbb{Q}/\mathbb{Z}$ has no proper subgroup of finite index.

Homework VI.

(a) Let M be a compact metric space and let $f: M \to \mathbb{R}$ be an upper semicontinuous function. Prove that f is bounded from above and that it takes its maximum in a point of M.

(b) Let I and J be two metric spaces and let $g: I \times J \to \mathbb{R}$ be continuous and bounded from below. Prove that the function $f: I \to \mathbb{R}$ defined

$$f(x) = \inf\{g(x,y); y \in J\}$$

is upper semicontinuous.