Problem solving seminar VII

25. Let $f:[0, \infty) \rightarrow \mathbb{R}$ be a function satisfying $f(1)=1$ and

$$
f^{\prime}(x)=\frac{1}{x^{2}+f(x)}
$$

Prove that

$$
\lim _{x \rightarrow \infty} f(x)
$$

exists and is less than $1+\frac{\pi}{4}$.
26. Let G be the abelian group defined by generators x, y and z, and relations

$$
\begin{array}{r}
15 x+3 y=0 \\
3 x+7 y+4 z=0 \\
18 x+14 y+8 z=0
\end{array}
$$

(1) Express G as a direct product of two cyclic groups. (A direct product is the same as a direct sum.)
(2) Express G as a direct product of cyclic groups of prime power.
(3) How many elements of G have order two?
27. Let X be a metric space and let V be a finite-dimensional subspace of the vector space of continuous real valued functions on X. Prove that there is a basis $\left\{f_{1}, f_{2}, \ldots, f_{n}\right\}$ for V and points $x_{1}, x_{2}, \ldots, x_{n}$ in X such that

$$
f_{i}\left(x_{j}\right)= \begin{cases}1 & \text { for } i=j \\ 0 & \text { for } i \neq j\end{cases}
$$

