Problem solving seminars IX and X

31. Let $f, g:[0,1] \rightarrow[0, \infty)$ be continuous functions safisfying

$$
\sup \{f(x) ; x \in[0,1]\}=\sup \{g(x) ; x \in[0,1]\}
$$

Prove that there exists $t \in[0,1]$ with

$$
f^{2}(t)+3 f(t)=g^{2}(t)+3 g(t) .
$$

32. Let R be the ring of matrices of the form

$$
\left(\begin{array}{ll}
a & b \\
0 & c
\end{array}\right) .
$$

What are all 2-sided ideals in R ?
33. Let A be the 3×3 matrix

$$
\left(\begin{array}{ccc}
1 & -1 & 0 \\
-1 & 2 & -1 \\
0 & -1 & 1
\end{array}\right)
$$

Determine all real numbers a for which

$$
\lim _{n \rightarrow \infty} a^{n} A^{n}
$$

exists and is nonzero as a matrix.
34. Let E be the set of all continuous functions $u:[0,1] \rightarrow \mathbb{R}$ satisfying

$$
|u(x)-u(y)| \leq|x-y| \text { for } x, y \in[0,1], \quad u(0)=0
$$

Let $\varphi: E \rightarrow \mathbb{R}$ be defined by

$$
\varphi(u)=\int_{0}^{1}\left(u(x)^{2}-u(x)\right) d x .
$$

Show that φ achieves its maximum value on some element of E.
35. Let $M_{n \times n}(\mathbb{F})$ be the ring of $n \times n$ matrices over a field \mathbb{F}. Prove that it has no 2 -sided ideals except $M_{n \times n}(\mathbb{F})$ and $\{0\}$.
36. Find all left ideals of the ring $M_{n \times n}(\mathbb{F})$.

