Problem solving seminars IX and X

31. Let $f, g: [0, 1] \rightarrow [0, \infty)$ be continuous functions satisfying $\sup\{f(x); x \in [0, 1]\} = \sup\{g(x); x \in [0, 1]\}.$

Prove that there exists $t \in [0, 1]$ with

$$f^{2}(t) + 3f(t) = g^{2}(t) + 3g(t)$$

32. Let R be the ring of matrices of the form

$$\begin{pmatrix} a & b \\ 0 & c \end{pmatrix}.$$

What are all 2-sided ideals in R?

33. Let A be the 3×3 matrix

$$\begin{pmatrix} 1 & -1 & 0 \\ -1 & 2 & -1 \\ 0 & -1 & 1 \end{pmatrix}.$$

Determine all real numbers a for which

$$\lim_{n \to \infty} a^n A^n$$

exists and is nonzero as a matrix.

34. Let *E* be the set of all continuous functions $u : [0, 1] \to \mathbb{R}$ satisfying $|u(x) - u(y)| \le |x - y|$ for $x, y \in [0, 1], \quad u(0) = 0.$

Let $\varphi: E \to \mathbb{R}$ be defined by

$$\varphi(u) = \int_0^1 (u(x)^2 - u(x)) dx.$$

Show that φ achieves its maximum value on some element of E.

35. Let $M_{n \times n}(\mathbb{F})$ be the ring of $n \times n$ matrices over a field \mathbb{F} . Prove that it has no 2-sided ideals except $M_{n \times n}(\mathbb{F})$ and $\{0\}$.

36. Find all left ideals of the ring $M_{n \times n}(\mathbb{F})$.