# 8.7 n <- 25 c <- 0.08^2 s <- 0.1 alpha <- 0.05 #• Testovani kritickym oborem (t0 <- (n-1)*s^2/c) qchisq(alpha/2, n-1) qchisq(1-alpha/2, n-1) # Testovani intervalem spolehlivosti (dh <- (n-1)*s^2/qchisq(1-alpha/2, n-1)) (hh <- (n-1)*s^2/qchisq(alpha/2, n-1)) # Testovani p-hodnotou p1 <- pchisq(t0, n-1) p2 <- 1-pchisq(t0, n-1) 2*min(p1, p2) # 8.9 X <- c(1.8, 1.0, 2.2, 0.9, 1.5, 1.6) # leva pneumatika Y <- c(1.5, 1.1, 2.0, 1.1, 1.4, 1.4) # prava pneumatika Z <- X-Y # rozdily # Test normality shapiro.test(Z) #------------------ m <- mean(Z) s <- sd(Z) n <- length(Z) c <- 0 # Testovani kritickym oborem (t0 <- (m-c)/(s/sqrt(n))) qt(alpha/2, n-1) #-qt(1-alpha/2, n-1) qt(1-alpha/2, n-1) # IS dopocitat doma # Tetsovani p-hodnotou p1 <- pt(t0, n-1) p2 <- 1-pt(t0, n-1) 2*min(p1, p2) # 9.2 X <- c(62, 54, 55, 60, 53, 58) # prirustky prasatek krmenych dietou c.1 Y <- c(52, 56, 49, 50, 51) # prirustky prasatek krmenych dietou c.1 # Testy normality shapiro.test(X) shapiro.test(Y) s1 <- sd(X) s2 <- sd(Y) n1 <- length(X) n2 <- length(Y) alpha <- 0.05 # Testovani kritickym oborem (t0 <- s1^2/s2^2) qf(1-alpha/2, n1-1, n2-1) qf(alpha/2, n1-1, n2-1) # Tetsovani pomoci IS (dh <- (s1^2/s2^2)/qf(1-alpha/2, n1-1,n2-1)) (hh <- (s1^2/s2^2)/qf(alpha/2, n1-1, n2-1)) # Testovani p-hodnotou p1 <- pf(t0, n1-1, n2-1) p2 <- 1-pf(t0, n1-1, n2-1) 2*min(p1,p2)