logo-IBA
Vytvořil Institut biostatistiky a analýz, Masarykova univerzita
J. Hřebíček, J. Kalina
Nejistota
3. Nejistota
Bi3101 Úvod do matematického modelování

logo-IBA logomuni
—Nejistotou při zobrazení systému pomocí matematického modelu rozumíme situaci, kdy nemáme k
disposici všechnu potřebnou informaci nebo kdy některé z informací jsou nespolehlivé.
—Modelování při riziku předpokládá, že některé informace jsou náhodné veličiny, nebo že některé
procesy jsou popsány náhodnými funkcemi.
¡V případě modelů s rizikem můžeme velikost rizika při přijetí řešení popsat pomocí
pravděpodobnostních charakteristik.
¡Analogicky můžeme považovat modelování za rizika i v případě použití fuzzy veličin, nebo fuzzy
funkcí. Velikost rizika lze potom vyjádřit buď pomocí vhodné fuzzy míry nebo tuto fuzzy míru
transformovat na subjektivní pravděpodobnost.
•Modelování nejistoty (neurčitosti) a rizika

logo-IBA logomuni
•Inverzní problém
—Určení vstupních parametrů modelu, které neznáme, při znalosti výstupních hodnot (naměřených dat).
—Nazývá se inverzní, protože známe výsledek modelovaného procesu, ale neznáme počáteční stav.
—Opakem je dopředný problém, kdy známe vstupy (parametry) a chceme zjistit výstupy (data).
—Data bývají zatížená chybami, které mohou ztěžovat určení parametrů modelu.
—Inverzní problémy jsou typicky špatně postulované (ill-posed).
•
•

logo-IBA logomuni
•Dobře/špatně postulovaný problém
—Well posed × Ill posed problems.
—Říkáme, že problém je dobře postulovaný pokud splňuje Hadamardovu definici (3 podmínky):
¡existuje řešení problému;
¡toto řešení je jednoznačné;
¡vlastnosti řešení se mění spojitě se vstupními parametry.
—Inverzní problémy jsou typicky špatně postulované, mohou trpět numerickou nestabilitou díky
diskretizaci, nepřesnosti v datech apod.
—I když je problém dobře postulovaný, může být stále špatně podmíněný.
•

logo-IBA logomuni
•Dobře/špatně podmíněný problém
—Well conditioned × Ill conditioned problems.
—Za dobře podmíněný problém považujeme problém s nízkou podmíněností (číslem podmíněnosti), za
špatně podmíněný problém považujeme problém s vysokou podmíněností.
—Podmíněnost udává, jak moc závisí změny modelových výstupů na (malých) změnách modelových vstupů.
—Podmíněnost je mírou citlivosti modelu na chyby ve vstupních hodnotách.
—Podmíněnost (číslo podmíněnosti) je definována jako maximální poměr relativní chyby výstupů a
vstupů modelu.

logo-IBA logomuni
•Dopředná a zpětná stabilita


logo-IBA logomuni
•Dopředná a zpětná stabilita
f
y
x*
y*
Δx
Δy
f
f*
x
vstupní data modelu
řešení modelu
řešení s chybou
dopředná chyba
zpětná chyba
optimální model
numerický model

logo-IBA logomuni
•Číslo podmíněnosti


logo-IBA logomuni
•Příklad
—Nalezněte pevný bod funkce f(x) = 11  x – 2.
—Řešte iterativně s počátečním (správným) řešením x = 0,2 v Maple a v R:
—
—
—
—
—
—Porovnejte výsledky (chybu), charakterizujte stabilitu obou modelů a pokuste se odhadnout číslo
podmíněnosti.