

BIOMARKERS AND TOXICITY MECHANISMS 11 - BIOMARKERS Introduction

Luděk Bláha, PřF MU, RECETOX www.recetox.cz

Tento projekt je spolufinancován Evropským sociálním fondem a státním rozpočtem České republiky.

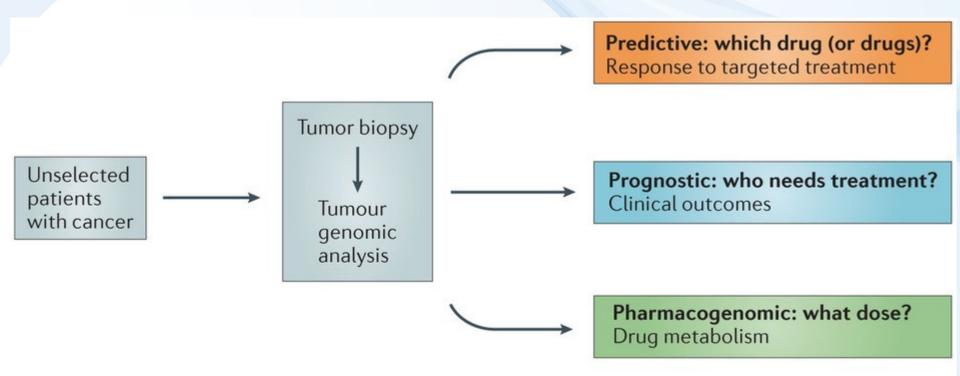
Definition and applications

 markers in biological systems with a sufficently long half-life which allow location where in the biological system change occur and to quantify the change.

Various definitions and applications of "biomarkers"

- Ecology / Geology
- Human health and diseases
- Toxicology (special focus in this class)

Biomarkers in ECOLOGY / GEOLOGY


Molecular Biomarker	Known or postulated source	Application
Alkenones	Haptophyte Algae	UK ₃₇ ' → Sea surface and lake temperatures δ¹³C → Paleo-pCO ₂ . δD → Hydrography, salinity
Isoprenoidal GDGTs	Thaumarchaeota	
المستطيبية		TEX ₈₆ → Sea surface and lake temperatures MI → Anaerobic oxidation of methane
Long chain Diols	Eustigmatophytes	DIX → Sea surface temperatures
······		
Branched GDGTs	Anaerobic soil and peat	BIT → Relative inputs of terrestrial material
J	bacteria	MBT → Terrestrial Temperature (MAT) CBT → pH
Plant Waxes	Higher Land Plants	Land plant organic matter inputs.
***************************************	-	δ¹³C → Changes in carbon cycle/ reservoirs δD → P/E, hydrography, paleotopography
Hopanes	Soil bacteria	δ¹3C → Changes in methanogen populations

Biomarkers in HUMAN HEALTH

Examples of biomarker applications in human health:

Nature Reviews | Drug Discovery

Biomarkers in TOXICOLOGY

- Identification of markers of long-term risks

- Human: health, toxicology and carcinogenesis
- Ecotoxicology: early markers of toxic effects

BIOMARKER

 Change which occurs as response to "stressors" (xenobiotics, disease, temperature...) extending the adaptive response beyond the normal range

In vivo biomarkers:

- changes measured in stressed organisms ("classical biomarkers")

In vitro biomarkers

- in vitro testing characterizing potencies of xenobiotic to induce specific biological activity (or toxicity mechanism)
 - = biological potencies (markers of potential hazards)

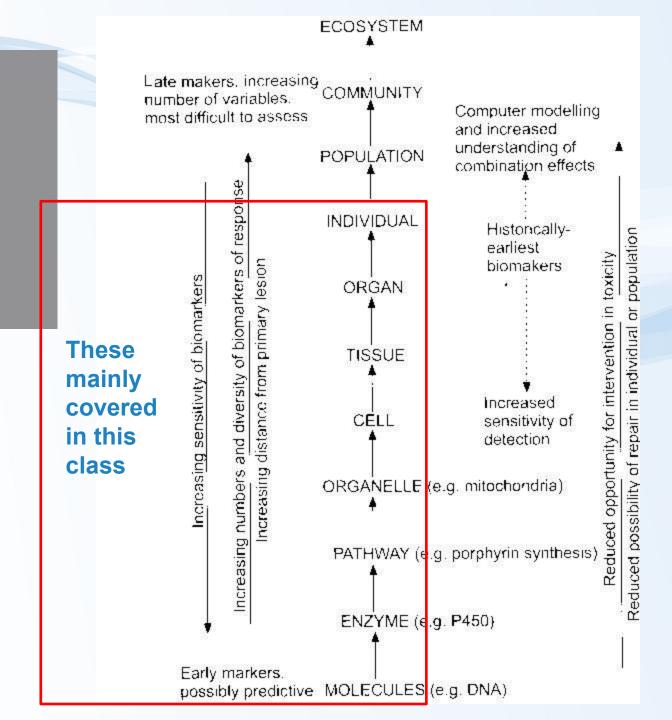
Biomarkers - classification

Categorization by US National Academy of Sciences

- Biomarkers of exposure
- Biomarkers of response or effect
- Biomarkers of susceptibility

Continuum exists among biomarkers

example: adducts of toxicant to DNA
? biomarker of exposure / ? response



Various biomarker types

- Specific (selective) in vivo biomarkers
 - ➤ Biomarkers selectively reflecting specific types (mechanisms) of toxicity
 - E.g. inhibition of AcCholE : exposure = organophosphates; effect = neurotoxicity
 - + provides specific information
 - multiple biomarkers must be measured in parallel
- Non-specific (non-selective) in vivo biomarkers
 - Biomarkers of general stress
 - E.g. induction of Heat Shock Proteins (hsp)
 - + general information about stress
 - sensitive to many "stressors" (temperature, salinity ...)

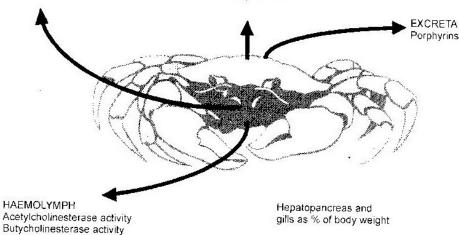
Biomarkers at different levels of biological organisation

Sampling biological materials for biomarker analyses

Non-destructive (non-invasive)

- blood / haemolymph collection & analyses
- skin, feather, hair ...(life of the organism not affected)

Destructive (invasive)


- whole animal
 - → 3R principles: maximum use of the material
- multiple biomarker evaluation

GILLS
Benzopyrene mono-oxygenase
activity
NADH ferricyanide reductase
activity
Micronuclei (mutagenicity)
total proteins

Micronuclei

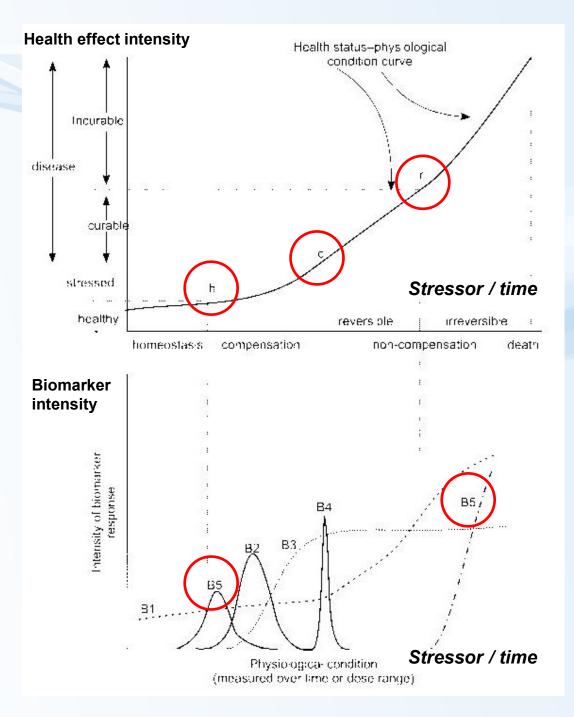
Total proteins

HEPATOPANCREAS
Benzopyrene mono-oxygenase activity
Ethoxyresorufin-O-deethylase
NADPH cytochrome c reductase
NADH cytochrome c reductase
SDS-PAGE for P450
Alkaline unwinding assay (DNA damage)
Porphyrins
Total proteins

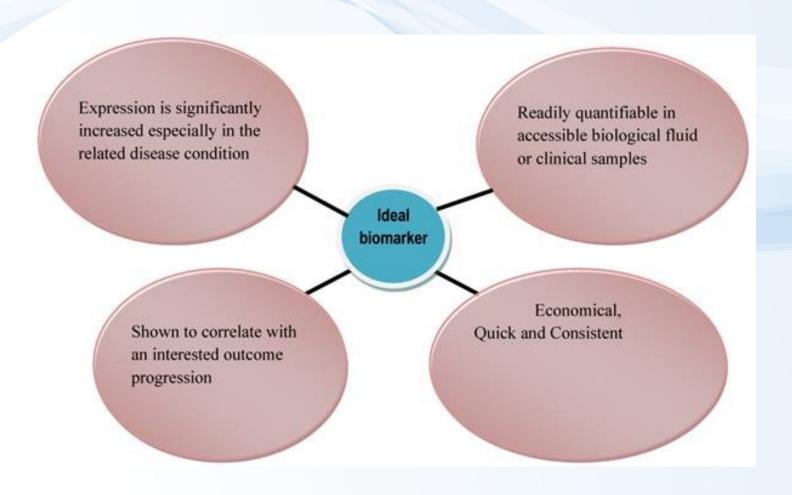
Biomarkers & Exposure

h: homeostatic conditions

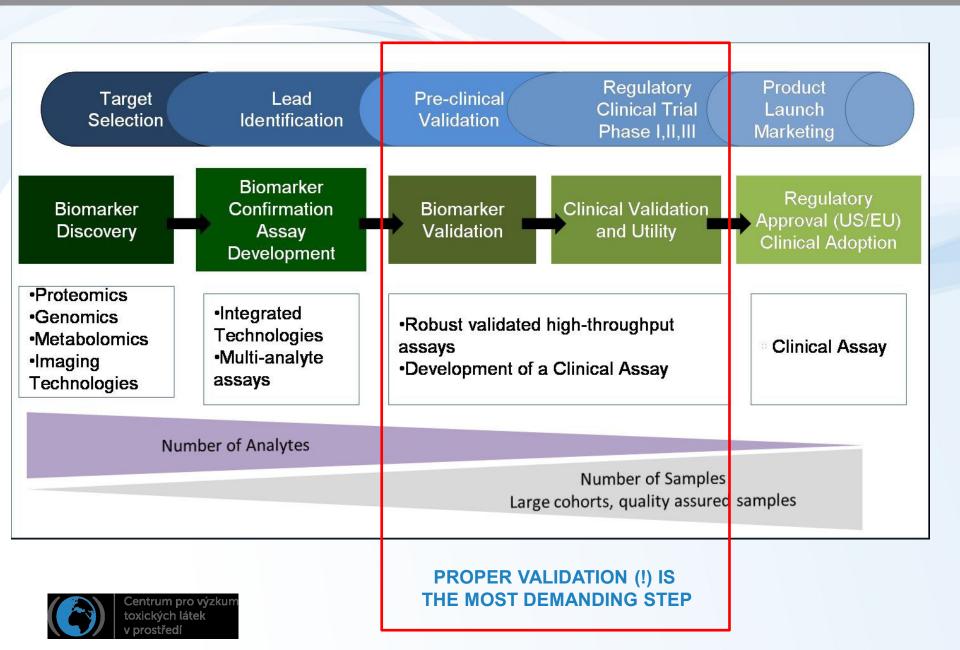
c: reversible stage

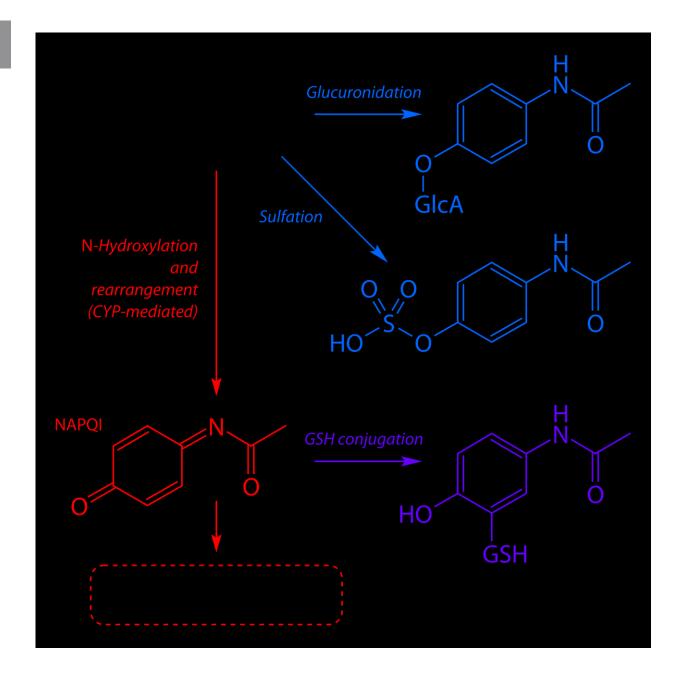

r: irreversible effects of pollutants

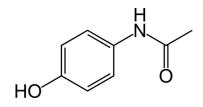
Various biomarker profiles

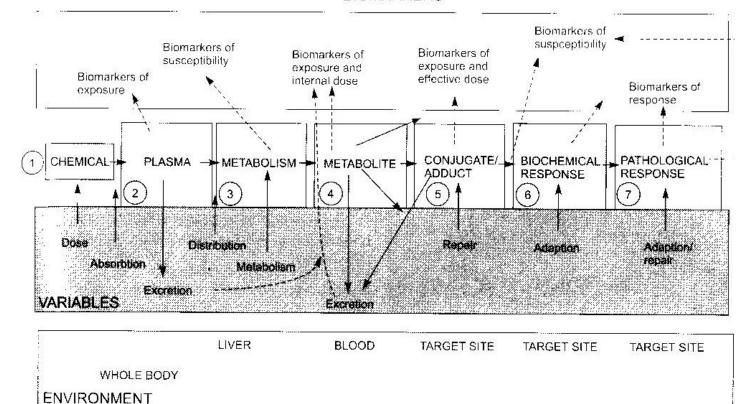

- temporal changes-B2; B4
- repeated occurrence (B5)
- continuous increase (B1)
- increase with maximum (B3)

: B1 + B3 are candidate biomarkers!




Ideal biomarker


Towards the **practicla use of biomarkers** ... a lot of work



BIOMARKERS

EXAMPLE - Paracetamol

- (1) paracetamol
- (2) parent compound measurement biomarker of exposure
- (3) activation to reactive metabolite (N-ac-p-benzoquinone, NAPQI) by CYP

 → reaction with GSH / measurement levels of CYPs; levels of GSH susceptibility
- (4) GSH-NAPQI conjugate exposure, susceptibility
- (5) NAPQI-protein adducts → toxicity: **exposure**, **effective dose**
- (6) adaptations: GSH depletion, inhibition of protein synthesis **biomarkers of response**
- (7) protein alkylation → degeneration of hepatocytes: necrosis
 → increase concentrations of bilirubin in plasma + inflammation response / effect

Toxicity biomarkers – examples

Table 1 Examples of different biomarkers illustrated with specific examples and examples of the stressor which may result in the biomarker changes

Type of biomarker	Biomarker	Specific example	Stressor
Exposure	DNA adducts Protein adduct DNA fragments	Styrene oxide- O^6 guanine N^7 -Guanyl-aflatoxin B_1 7,8-Dihydro-8-oxoguanine	Styrene exposure Dietary aflatoxin Reactive oxygen species
Exposure and effect (response)	Protein adducts Enzyme inhibition Urinary metabolites	Carboxyhaemoglobin Acetylcholinesterase inhibition Mercapturic acids	CO inhalation Organophosphates Buta-1,3 diene, allyl chloride
Effect (response)	Serum/plasma enzymes	AST (aspartate aminotransferase) LDH (lactate dehydrogenase) ALT (alanine aminotransferase) ALP (alkaline phosphatase) CK or CPK (creatine kinase)	Xenobiotics causing necrosis Xenobiotics causing necrosis Hepatotoxic compounds Bile duct toxins Heart/muscle toxins
	Serum/plasma biochemistry	Urea (changes) Protein (reduced, e.g. albumin) Bilirubin	Hepatotoxic and nephrotoxic compounds Hepatotoxic compounds Liver injury
	Clotting time Urinary metabolites Raised antioxidant levels Enzyme induction Stress proteins Protective proteins Allergic response Histology Clinical observations Population studies	Prothrombin Glucose, raised creatinine, GSH conjugates Liver glutathione P450 induction hsp 60, hsp 70, hsp90 Metallothionein Antibodies, e.g. IgG Dermatitis Chromosomal aberrations, micronuclei Heart rate, temperature, steeping time Breeding patterns, migrations	Warfarin (rodenticide) Pancreatic abnormalities, kidney damage Reactive oxygen species Polycyclic aromatic hydrocarbons Cadmium, heat Heavy metals, e.g. cadmium Antigens Nickel Genotoxic agents Barbiturates Climate change
Susceptibility	Phenotype Oncogenes	Acetylator phenotype (<i>NAT 2</i>) Dominant oncogenes (<i>ras. mic</i>) Recessive suppressor gene (<i>p52</i>)	다 다 다
	'Cancer' genes	Breast-ovary cancer gene (BRCA 1)	

