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Method First, determine the rate law for the destruction of ozone, i.e., an
expression for —d[O]/dz. Then use the steady-state approximation
to solve for the concentration of the intermediate, O. Finally,
substitute the O atom concentration into the ozone rate law and

simplify.
Solution The rate law for the destruction of ozone is

—d[O;]

—dt_S_ = k1[03][M] — k_4[0,])[O][M] + ka[O5][O].
The steady-state equation for [O] is

dfo]

d =0 = ky[Os][M] — k-l[oz][o][M] — k[ 0][O].

Some algebra can be avoided by subtracting these two to obtain

—d[03]
——= = 2k[04][O].
Solution of the steady-state equation gives

ki[O5][M]
(01 = 3105] + k[0 IM]'

Substitution of this equation into the simplified ozone destruction
equation gives the final answer:

_‘d[03] _ Zkzkl[M] [03]2
dt ko[ 03] + ky[0,])[M]
Comment Note that at high values of the pressure, [M] will be large enough so
that the second term in the denominator will be large compared to

the first. The result will then simplify to —d[O,)/dt = (2k:k/k_y) -
[0,1%/[0,].

2.4.4 Unimolecular Decomposition: The Lindemann Mechanism

As an example of the use of the steady-state approximation, we consider in detail
the mechanism of unimolecular decomposition. The overall reaction is A — prod-
ucts, and under high-pressure conditions the rate law is —d[A)/dt = kap[A], where

k,p is the apparent rate constant. A question that begs an answer is how the A mol-

ecules obtain enough energy to decompose. The matter was debated vigorously in
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the early 1900s. It was F. A. Lindemann who first suggested in 1922* that the reac-
tants obtained the necessary energy from collisions. In its simplest form, the mech-
anism he proposed is shown below:
ky
A+Ms== A"+ M,
R (2.68)

¥

Iy
A —P.

In these equations P stands for the products and M represents any molecule that can
energize A by collision; M might be A itself, or it might be a nonreactive molecule

in which the reactant is mixed.
The overall rate of the reaction is —d[A]/dz, or equivalently by d[P]/dz:

dfa] _d[P] _ .
Ta  a k[AT]. (2.69)

Since A* is an intermediate in the mechanism, it will be useful to apply the steady-
state approximation:
d[A"]
de

Here, the time dependence of A" is equal to a production term, k;[A][M], and two
destruction terms, k_,[A*][M] and ky[A"]. We can then solve this last equation for
the steady-state concentration of A" to obtain

k[A]M]

= I[A][M] — k_,[A"][M] — K[A"] = 0. (2.70)

] = 2.71
[ k_(M] + k, &L
Substitution of this last equation into equation 2.69 yields the solution
d[P koki[A][M
[P] _ kkAJM] o)

dt k[M] + k)

Recall that use of the steady-state approximation assumes that the concentra-
tion of the intermediate is small compared to the concentration of the starting mate-
rial. This assumption is almost always valid for the system under consideration.
Rearrangement of equation 2.71 shows that [A*)/[A] is much smaller than unity
when &, [M]/(k_[M] + k;,) << 1. However, even if k, were zero, this last expres-
sion would still be satisfied since k,/k_ is simply the equilibrium constant for the
first reaction, and this equilibrium constant must be smaller than unity because A*
has much more energy than A. In addition, for A" of sufficiently high energy, k; is
usually very rapid, so that the inequality k;[M]/(k_ M + k) << 1is ensured.

Having convinced ourselves that the steady-state approximation is valid for the
Lindemann mechanism, equation 2.68, it is instructive to examine the solution,
equation 2.72, under two limiting conditions. Let us first consider the “high-pressure

iFor an interesting discussion of the history of this problem, see J. I. Steinfeld, J. S. Francisco, and
William L. Hase, Chemical Kinetics and Dynamics, 2nd ed. (Prentice-Hall, Englewood Cliffs, NJ, 1999),
Section 11.3.

F, A. Lindemann, Trans. Faraday Soc. 17, 598 (1922).
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limit,” for which k._,[M] >>> k,. In this limit, the denominator of equation 2.72 can
be approximated by its first term, and division of numerator and denominator by
[M] gives d[P]/dt = (k,k,/k_,)[A]. Thus, in this limit the [M] cancels and the reac-
tion is first order. Physically, in the high-pressure limit A" is rapidly being created
and destroyed, and only a small fraction goes on to form products.

In the “low-pressure” limit, when k_;[M] << k,, the second term in the
denominator of equation 2.72 dominates, and d[P)/d¢ = k,[A][M]. In this limit the
reaction is second order. Physically, in this limit most of the A" that is formed lasts
long enough to react to form P, and very little gets deactivated.

This behavior is shown in Figure 2.13, which plots a theoretical curve on a log-
log plot for the apparent first-order rate constant, defined by kyp, = (1/[A]) d[P/ds,
as a function of [M] for the isomerization of cis-but-3-ene to trans-but-2-ene. The
log-log plot is necessary to show both extremes in pressure. In the high-pressure
limit, we have seen that d[P]/dr = (k,k,/k_,)[A] so that log(kap) should be a con-
stant. At high pressures, the apparent rate constant is, indeed, found to be constant,
but below about 10° torr the apparent rate constant is linearly proportional to pres-
sure. This is because, in the low-pressure limit d[P]/dt = k,[A][M] so that log(kap)
should be equal to log(k;[M]); i.e., it should vary linearly with log[M], as observed
in the plot. An important practical application of the Lindemann mechanism is
given in Example 2.5.

The high-pressure result for the Lindemann mechanism also illustrates an impor-
tant point about the temperature dependence of the overall rate constant in complex
reactions. In the high-pressure limit d[P]/dt = kﬂp[A] = (kyk,/k_,)[A]. Thus, the tem-
perature dependence of the overall rate constant k,, depends on how k;, k_;, and k,
depend on temperature. Suppose that each of the rate constants for the elementary

processes can be expressed in Arrhenius form: k; = A; exp(—E/kT). Simple multi- -

plication and division of exponentials shows that
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Theoretical dependence of the Lindemann apparent rate constant with pressure for the isomer-
ization of cis-but-2-ene.
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_ kel

P k—l
_ A
A
= A, eXp(_Eap/kT)’

ke

exp[—(E, + E; — E_,)/kT) 2.73)

where A,, = AA/A_ and E,, = E, + E; — E_,. The general form of this result
holds for very complicated reactions, even, as described in Problem 2.26, for reac-
tions as complicated as those that control the rate of firefly flashing!

Like most good experimental or theoretical advances, the Lindemann mecha-
nism raised more questions than it answered. For example, how do the rate con-
stants k, and k, depend on how much energy the A™ molecule has? And what kind
of energy is important in energizing A? We will defer these questions until Chapter
7; they form the basis for much of the current research in physical chemistry.

2.5 HOMOGENEOUS CATALYSIS

A catalyst, by definition, is a substance that is neither created nor consumed in the
reaction but that increases the rate of the reaction. In most catalytic mechanisms, the
catalyst transforms the reactants through a series of intermediates to products, but
the catalyst is regenerated in the process of making the product. Since the interme-
diates are usually of much lower concentration than the starting material, catalytic
mechanisms can usually be analyzed using the steady-state approximation. As an
example, we will study in detail below the use of the steady-state approximation to
analyze enzyme reactions. We will concentrate here on forms of homogeneous catal-
ysis, while leaving the important area of heterogeneous catalysis until Chapter 6.

2.5.1 Acid-Base Catalysis

One prevalent form of catalysis is acid or base catalyzed hydrolysis. For example,
an ester might be hydrolyzed by the following mechanism in the presence of an acid:
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The same reaction can be base catalyzed:

R—C—O T
j \ ‘ —_— R C O\
R o R'
0~ 7
d ;
“0O=—H
H
I/
R—C O
l \RI
/O
H

Since neither H;O* nor OH™ is consumed in these processes, the overall rate
law for this mechanism would be first order in each of the two reactants, the ester
and water. However, because these reactions are always carried out in aqueous solu-
tion, the concentration of water can be taken as constant and 1ncorporated into the
rate constant; i.e., the system follows pseudo-first-order kinetics. The species H,0*
or OH™ is a catalyst in the reaction; it is neither created nor consumed but provided
another, more favorable, mechanism for the react1on '

252 Enzyme Catalysis

Enzymes are macromolecules (MW = 10* — 10°) that are remarkable in their effi- -

ciency and specificity in catalyzing reactions of biological significance. For exam-
ple, the enzyme invertase (B-fructofuranidase), a component of yeast, catalyzes the
conversion of sucrose to fructose and glucose by the hydrolysis reaction:

HOCH,
HOCH, OH 0 0-OH
—0
CH,0H + H,0 —>
HO
OH .
OH
Sucrose
HOCH, OH OH HOCH;
b M 0-OH
\ CH,OH
OH : HO
Glucose - + Fructose

Section 2.5 Homogeneous Catalysis

While the reaction can be catalyzed simply by H* ions, it proceeds much faster if
the yeast enzyme is present. The name for the enzyme comes from the fact that the
conversion produces an inversion in the direction of rotation of plane polarized
light by the sugar solution, noted in 1832 by Persoz. Michaelis and Menten used
the yeast enzyme responsible for this conversion in their classic 1914 studies that
resulted in the following proposed mechanism for enzymatic action, known, not
surprisingly, as the Michaelis-Menten mechanism.!
Consider the following reaction sequence:

-
E+S kﬁ X,

b - (2.74)
X—P + E.

In this mechanism, the enzyme E can reversibly bind to a substrate S to yield the
intermediate X. Once bound, the enzyme can also convert the substrate to products
P, which it releases while returning to its original state. The enzyme is thus avail-
able to convert more substrate. How does the rate of the reaction depend on the
amount of substrate and the amount of enzyme?

We analyze the sequence using the steady-state approximation for the interme-
diate complex X:

——= = ky[B][S] — ky[X] — ko[X] = 0. (273)

Let the original concentration of enzyme be E;. Then by mass balance E, = [E] +
[X]. In a similar manner, if the initial concentration of substrate is Sg, then by mass
balance S, = [S] + [X] + [P]. Substituting these into equation 2.75, we obtain

ax)

% = By — [XD)(S — [X] ~ [P) ~ koiX] ~ k[X] = 0. @76)

We now suppose, as is generally the case, that the initial concentration of enzyme
is much smaller than the initial concentration of substrate, E; << S. Since [X] can
never be larger than E, it follows that [X] << S, so that we may safely ignore it
in the term S, —[X] — [P]. We now consider the initial rate of the reaction, vy =
d[P)/dt as t — 0, where [P] = 0. Solving equation 2.76 for [X] gives

kiEqSo

X] = —50 2.77
[ kS + k_y + Ky @77

Jean-Francois Persoz (1805-1868) was a professor at the Sorbonne; Leonor Michaelis (1875-1949)
was a German-born physician and biochemist who did research at the Rockefeller Foundation later in life. In
addition to developing with Menten his famous equation, he is responsible for finding that keratin, the chief
ingredient of hair, is soluble in glycolic acid, a discovery that made possible the development of the perma-
nent. Maude Menten received her B.A. in 1904 and her M.D. in 1911 from the University of Toronto but had
to leave Canada to pursue a career as a research scientist, because in those days women were not allowed to
do research in Canadian universities. After study at the Rockefeller Institute and the Western Reserve Uni-
versity, she went to Berlin to study with Michaelis, where the two developed the Michaelis-Menten equation.
Ultimately, she received a Ph.D. in biochemistry from the University of Chicago and became a professor at
the University of Pittsburgh School of Medicine.
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Finally, the initial rate of the reaction is

d[P]
Uy = dr ,_)O*kz[x]
" kik:Eq
2 k_, + k
RN (2.78)
Sy
PV
5 KI“,
I
Sy

where V,, = k,E, and K, = (k_; + ky)/k;. Note that the rate is proportional to the
initial concentration of enzyme and to the rate constant k), sometimes called the
turnover number of the enzyme. At very high initial substrate concentrations, the
initial rate approaches d[P)/dt = V,, = k,E,, or d([P}/E)/dt = k,. The turnover
number, k,, is thus the number of molecules of product per molecule of enzyme that
can be created per unit time. Typical values are 10%-103 per second, but values as
large as 106 per second have been observed.

A plot of equation 2.78 is shown in Figure 2.14, in which reduced units have
been used. The rate at first increases linearly with S, and then levels off to an
asymptote equal to V,,. While Figure 2.14 is useful in showing the behavior of the
initial rate, it is not very useful for determining the rate constants. An alternate
method of analysis is to take the reciprocal of both sides of equation 2.78 to obtain
the Lineweaver-Burk form

(2.79)
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A plot of the initial rate, in units of V,,, as a function of the initial substrate concentration, in
units of K, for the Michaelis-Menten mechanism.
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Slope = Km/Vm
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B Figure 2.15

Lineweaver-Burk plot for and enzyme reaction obeying the Michaelis-Menten mechanism.

This form shows that a plot of the reciprocal of the initial rate as a function of Sy
should yield a straight line whose intercept is V! and whose slope is K, /Vy,, as
shown in Figure 2.15.

An example of an enzyme whose kinetics obey the Michaelis-Menten mecha-
nism is lactase, the enzyme responsible for catalyzing the hydrolysis of lactose to
p-glucose and D-galactose. Most adults of northern European background have suf-
ficient enzyme to digest the milk that they consume, but many of other backgrounds
do not possess this enzyme, the lack of which leads to breakdown of lactose by
microbial action in the large intestine rather than by the enzyme in the small intes-
tine. The resulting fermentation in the large intestine leads to diarrhea. One strat-
egy to make milk more digestible for those who might otherwise suffer is to add
Lactobacillus acidophilus to the milk. Example 2.6 examines the enzyme kinetics
of lactase in the hydrolysis of a synthetic substrate similar to lactose.™

67

Determination of the Michaelis-Menten Constant for the Lactase
Catalyzed Hydrolysis of a Synthetic Substrate, o-nitrophenyl-g3-p-
galactopyranoside

Objective Calculate the Michaelis-Menten constant, K, given the following
data pairs for 1/, in arbitrary units, and 1/S,, in units of 10 ML
(2.8,0.7), (3.2,0.9), (4.2,1.3), (6.2,2.2), and (9.0,3.3).

Method Plot 1/v, as a function of 1/S, and determine the slope (= K,,/Vy,)
and the intercept (= 1/V,,). The value of K, is given by the ratio
of the former to the latter.

Solution A least squares fit of the data to a line gives a slope of 0.24 X 1072
and an intercept of 1.08. The ratio is 2.2 X 1073 M.

example 2.6

mS, F. Russo and L. Moothart, J. Chem. Ed. 63, 242 (1986).
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An important mediator in the catalytic action of enzymes is the phenomenon of
enzyme inhibition. An inhibitor is a compound that decreases the enzyme-catalyzed
reaction by reacting with the enzyme itself or the enzyme substrate complex.

Competitive inhibition occurs when the inhibitor competes with the substrate
for binding at the active site of the enzyme. The mechanism can be represented by

ky
E+S?X,

ky
X—-P+E (2.80)

E +1+=—EI,

where it is assumed that the last reaction is always at equilibrium and that the com-
plex EI cannot catalyze the reaction. Application of the steady-state approximation
yields (Problem 2.20) ;

Vin

Km[ [IJ}’
1+ 21+ =
So K,

vy = (2.81)

where K; = [E][I]J/[EI] is the equilibrium constant for the reverse of the last reac-
tion in equation 2.80. The Lineweaver-Burk equation then becomes

R ALY -
Vo Vg K; 1 ViaSo’ ’

so that a plot of the inverse of the initial rate as a function of the inverse of the initial

substrate concentration gives the same intercept as in the absence of inhibitor, but a:

different slope, as shown in Figure 2.16A. An example of a competitive inhibitor is
malonic acid, CH,(COOH),, which resembles succinic acid, (COOH)CH,CH,
(COOH) closely enough to bind to the enzyme succinic dehydrogenase and inhibit
it from converting succinic acid to fumaric acid, (COOH)CH=CH(COOH).

Noncompetitive inhibition occurs when the inhibitor does not bind to the active
site of the enzyme but still inhibits product formation: '

ki
E+Sk:X,

ky
X—P+E (2.83)

E+I+=—EI
X+1I+—=X],

where the last two reactions are assumed to be in equilibrium with the same equi-
librium constant for their reverse: K; = [E][I]/[EI] = [X][I)/[XI]. The initial rate of
reaction is (Problem 2.21) '

VmSO

s+ 0] R

1
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M Figure 2.16

Effect of (A) competitive inhibition and (B) noncompetitive inhibition on the initial reaction rate.

and the Lineweaver-Burk equation is

i—[aﬁﬂuﬂ] (285
Vo [V, V.So K, | @:83)

Note that the presence of the inhibitor affects both the slope and intercept of the
Lineweaver-Burk plot for noncompetitive inhibition, as shown in Figure 2.16B.

Methemoglobin reductase is an example of an enzyme that uses NADH to
maintain hemoglobin in the active oxygen-carrying form. The salicylate ion is a
noncompetitive inhibitor with respect to the substrate NADH."

(o) COO~
HO
l ‘ NH,
R
NADH Salicylate Ion

(nicotinamide adenine dinucleotide)

"A. G. Splittgerber, K. Mitchell, G. Dahle, M. Puffer, and K. Blomquist, J. Chem. Ed. 52, 680 (1975).
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2.5.3 Autocatalysis

Not all reactions obey the simple behavior illustrated in Figure 2.1, in which the
reactants decrease and products increase monotonically in time. Increasing atten-
tion has recently been paid to reactions in which species concentrations oscillate.
Indeed, discontinuities in the rate of oscillation for such reactions as the concen-
trations change have helped to open a new area of science sometimes called chaos
theory.® All oscillating reactions have some element of “autocatalysis,” catalysis in
which a product of one reaction appears as a catalyst in the same or another cou-
pled reaction. It is interesting, and appropriate, to examine briefly such reactions
here since they illustrate an interesting form of catalysis, provide another example
for use of the steady-state approximation, and are fascinating in their own right.
Although the “Lotka” mechanism does not, so far as anyone knows, corre-
spond to any observed chemical system, its simple mechanism illustrates the basic

principles in more complex oscillatory systems. This mechanism has three steps:

k
A+ X —2X,
ky
X + Y—2Y, (2.86)

ky
Y —>7Z.

Suppose that reactant is continually supplied to the system so that the concentration
of A does not change from its initial value [A(0)]. Then the concentrations of the
intermediates X and Y will reach a steady state, while the concentration of product
7 will increase with time. The steady-state equations for X and Y are

diX]
g el e k[X][A(0)] — K[X][Y],
(2.87)
dfY]
S = 0= XY - BlY)
The steady-state values for [X] and [Y] are thus given by
kY = ki[A0)],
2 1[A(0)] 2.88)

k2Xss = k3 .

We now consider perturbing the system in some way SO that the concentrations of
the intermediates change. Let the new concentrations X and Y be different from
their steady-state values by time-dependent differences x and y:

[X] = x + X
[Y]=y+ Y

(2.89)

We wish to determine how x and y vary with time. Substitution of equation 2.89
into equation 2.87 leads to :

°See, for example, the interesting book Chaos: Making a New Science, by James Gleick (Viking, New
York, 1987). :

Section 2.5 Homogeneous Catalysis

i . .
E = kl[A(O)][x + Xss] - k2[x + XSS][y + YSS]’

, (2.90)
E = kz[x o Xés][y + Yss] - kB[y + YsS]’
or

dx
- = ThIAO)] kY] + [XJ[A©)] ~ bX,Y.]

_kZXssy - k2xy P

d (2.91)
—d—t— = y[kZXss - k3] + [kQXssYss - kSYss]
+ kY x + kyxy.

Note 'that equations 2.87 and 2.88 can be used to show that the terms of equation
2.91 in square brackets are zero. If x and y are small displacements, then terms like
xy can be neglected with respect to terms like xY or yX_, so that

Y x

y ke X5y,

dy (2.92)
d[ = szssx .

If we take the derivative of both sides of the first equation in equation 2.92 and
then use the sefcond equation to substitute for the derivative of y, we obtain the
second-order differential equation

d%x 5
5*2‘ + k53X Yx = 0. (2.93)
A specific solution to this equation that allows x = x,andy = 0 at # = 0 is

X = X,CO0S wt, (2.94)
where
0? =X Y, = kiks[ A(0)]. (2.95)

A s1milar. solution can be obtained for y. We thus see that, rather than decaying
exponentlally, the concentration displacements will oscillate indefinitely. The oscil-
lation frequency will depend on the concentration to which A is maintained.

Mgny actual chemical reactions have been observed to oscillate. An often-cited
but quite complex example is called the Belousov-Zhabotinsky reaction; a variant
called the Briggs-Rauscher reaction exhibits an oscillating color chan,ge and is
often used as a class demonstration.P

100 ;];éR.Belousoy, Ref. Radiats. Med. 145, 1958 (1959); A. M. Zhabotinsky, Dokl. Akad. Nauk SSSR 157,
3 ( . 4?,, T. S. Briggs and W. C. Rauscher, J. Chem. Educ. 50, 496 (1973); see also “Oscillating Chemical
eactions,” by E. S. Scott, R. Schreiner, L. R. Sharpe, B. Z. Shakhashiri, and G. E. Dirreen, in Chemical

Demonstrations, A Handbook for Teachers of Chemistry, B. Z. Sh iri
. : ; , B. Z. Shakhashiri, Vol. 2, iversi
o i L bR T, ashiri, Vol. 2, Chapter 7 (University of

71




72

Chapter 2 The Rates of Chemical Reactions

2.6 FREE RADICAL REACTIONS:
CHAINS AND BRANCHED CHAINS

Many gas-phase reactions take place by so-called “chain” mechanisms involving
free radical carriers, molecules, or atoms with one or more unpaired electrons. These
mechanisms always consist of at least three steps: an initiation step creates the rad-
icals that carry the chain; one or more chain steps convert reactants to products using
the radical(s) in the role of a catalyst; and a termination step stops the chain by con-
suming the chain carrying radicals. Since the radical species are usually in small
concentration and are intermediates, the steady-state approximation can be used to
determine the overall rate law, which sometimes takes a complex form. An example
is the H, + Br, —'2 HBr reaction, which we have already noted has the overall rate
law § d[HBr)/ds = k[H,][Br,]"2. We now consider this reaction in detail. '

2.61 H,+ Br,

A chain mechanism is consistent with the overall rate law for this reaction. The ini-
tiation step is the collisional production of Br atoms:

ky
Br, + M—2Br + M. (2.96)

There are two chain steps:

ky
Br + H, —HBr + Hy
(2.97)

k
H,+ Br, — HBr + Br.
Note that the net result of the chain is to convert one molecule of Br, and one of H,

into two of HBr while regenerating the radicals so that the chain can continue. The
termination step in this case is simply the reverse of the initiation step:

k-,
2Br+ M—Br, + M. T (2.98)

The key point to realize is that the chain steps can occur many times for every ini-
tiation or termination and that these steps are principally responsible for conversion

of reactants into products. We would thus expect that
1d[HBr] 1
g = 3 UalBrl[Hs] + k[H]|[Br.)). (2.99)

We use the steady-state approximation to solve for the concentration of Br and H
radicals:

. d[Br]. 3
T
= 2k[Br,][M] — 2k_4[Br]*[M] — ky[Br][H,] + k;[H][Br,], (2.100)
A o - + b[Br][H] - kH][Br.]

Section 2.6 Free Radical Reactions£ Chains and Branched Chains

Addition of these two equations and theﬁ solution for [Br] gives

kl 1/2
[Br] = (k—> [Br,]"2. (2.101)

=]

We also note that the second of these equations implies that the two bracketed ferms
on the right-hand side of equation 2.99 are equal, so that

1 d[HBr] 1
S = 5 ChlBH])
(2.102)
1/2
= k2<7€k—_11> [H,)[Br, ]2

Note that this expression is consistent with the overall rate law provided that k =
ky(ky/k_ )M, In actuality, this reaction is somewhat more complicated, as discussed
in Problem 2.23.

2.6.2 Rice-Herzfeld Mechanism

Many organic reactions also occur by free radical processes. For example, in 1934
F. O. Rice and K. F. Herzfeld showed that the decomposition of ethane to ethylene
and hydrogen, while following first-order kinetics, actually has a rather more com-
plicated mechanism. There are two initiation steps:

ky
C,H; —2 CH;, (2.103)
and
3
CH; + C,H, —CH, + C,H.. (2.104)

There are then two propagation steps:

ks
C2H5 -—)C2H4 + H,

" (2.105)
H+ C,H¢—C,Hs + H,.
Termination typically takes place by
ks
H + C,Hs— C,Hy. (2.106)

The steady-state approximation can be made on the radicals CH,, C2H5, and H, and,
after some straightforward but rather tedious algebra (Problem 2.24), we obtain

d[C,He] [3 K kikgky \/2
4 Sk <4 % ks ) }[CZHﬁ]. (2.107)

Note that this agrees with the observation that:the overall reaction is first order in C,Hg.

A point of confusion often arises when considering radical reactions of this
type. While the H, + Br, reaction mechanism gave no products other than the
expected HBr, the ethane decomposition mechanism produces CH, in addition to
the expected H, and C,H,. However, since the main chain is carried by the C,H
radical in steps 3 and 4, the amount of CH, produced per molecule of H, or C,H,
is negligibly small. Example 2.7 provides another illustration of a Rice-Herzfeld
mechanism, in this case for the decomposition of acetaldehyde.
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Chapter 2 The Rates of Chemical Reactions. |

2.6.3 Br,an"ched'Chain Reactions: Explosions

Explosions are simply reactions whose rates become more and more rapid as time
proceeds. There are normally two causes for a rapid increase in rate, giving rise to
two types of explosions. A thermal explosion takes place when the rate of heat con-
duction out of a vessel surrounding an exothermic series of reactions is too small
to prevent a significant temperature rise in the vessel. According to the Arrhenius
expression, most rates increase with increasing temperature, so that as the temper-
ature rises, more reactants are consumed per unit time, creating more heat from the
exothermic process, and causing the temperature to rise further. For a spherical ves-
sel, the rate of heat loss due to thermal conductivity is proportional to the surface
area of the vessel, while the rate of heat production is proportional to the amount
of reactants, i.e., to the volume of the vessel, assuming the reactant concentrations
are the same in both size vessels. Since the volume increases with the cube of radius
while the surface area increases as the square, heat production will overcome heat
loss in a large enough vessel. Explosions can thus occur unexpectedly if an exother-
mic reaction that ran smoothly in a small vessel is scaled up to obtain more prod-
uct without proper attention to the thermal consequences.

The Rice-Herzfeld Mechanism for the Decomposition
of Acetaldehyde

Objective - Show that the Rice-Herzfeld mechanism for the decomposition of
acetaldehyde, listed below, is consistent with the observation that
the overall rate of decomposition is (3/2)-order in acetaldehyde,
and determine how the overall rate constant is related to those for
the individual steps. The overall reaction is CH;CHO — CH, +
CO, while the Rice-Herzfeld mechanism is

ky
Initiation: CH;CHO — CH; + CHO,
ky B
Chain: CH; + CH;CHO — CH, + CO + CH;, (2.108)

-
Termination: CH; + CH; — C,Hs.

Method Determine the production rate of CH, and then use the steady-
state approximation for the CH; intermediate.
Solution The production rate of CH, is
‘d[CH,] ,
T k,[ CH;3][CH3CHO]. (2.109)
The concentration of [CH,] can be found from the steady stgte
approximation: :
d[CH,]

—— = 0= k[CH,CHO] — 2/;[CH, " (2.110)

Section 2.6 Free Radical Reactions: Chains and Branched Chains

Note that there is no net contribution to [CH;] from the second
step, since for every mole consumed one mole is produced.
Rearrangement of the steady-state equation yields

k 1/2

[CH,] = (j) [CH;CHO]'?, (2.111)
3

and substitution of this into equation 2.109 yields

d[CH,] ( i )1/2
=k, — ) [CH,CHOJ2 2.112
o=l ) [CHsCHO) 2112)
Consequently, the overall rate constant is k,(k;/2k;)"2, and the
mechanism is consistent with an overall order of 3/2.

The second type of explosion is caused by a branched chain reaction. The
mechanism for the oxygen-hydrogen reaction provides a good example. The over-
all reaction is, of course, 2 H, + O, — 2 H,0. The mechanism is complicated, but
the following steps are the most important:

Initiation:
H, + O,—-HO, + H,
0,—20, - (2.113)
_ H,—2H.
' Chain Branching:
H+ 0,—0H + O,
(2.114)
O+ H,—OH + H.
Chain Propagation:
OH + H, —»H,0 + H. (2.115)
Termination:
H + wall - 1 1,
2
1
O + wall —)502, . (2.116)

H+ 0, + M—HO, + M.

Like other chain reactions, this mechanism has initiation, propagation, and ter-
mination steps. Initiation of the reaction might be caused, for example, by the brief
exposure of the reactant mixture to rapid heating from a spark or flame, in short,

_ any reaction that creates free oxygen or hydregen atoms. For example, the initia-

tion of the hydrogen-oxygen explosion on the space shuttle Challenger was the heat-

ing of the external oxygen tank by flames from the propulsion rocket that escaped

through the o-ring seals. Termination is caused either by collision of radicals with
the wall, where they stick and recombine, or by recombination assisted by a third
body, here called M. (While technically a radical, HO, is unreactive relative to O, H,
and OH,; it is treated here as a stable compound.) The propagation step is a normal
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one, where one radical is consumed and another produced. But there are also chain

branching steps, steps in which the net number of radicals increases. For example,

in the first reaction of equation 2.114 an H atom is consumed but an O atom and
an OH radical are produced. If reactions such as those in equation 2.114 are preva-
lent, the rate of the overall reaction can increase rapidly.

The overall reaction rate for a stoichiometric mixture of 2 H, + O, is a com-
plicated function of temperature, pressure, vessel size, and material. The rates for
each step depend on temperature. The rate of termination due to diffusion of O and
H to the walls depends on pressure and vessel size. The sticking probability for these
radicals when they reach the wall depends on the vessel material. Finally, the rate of
H + O, recombination depends on pressure. The bottom panel of Figure 2.17 shows
the dividing line in the T-p plane between the explosion and steady reaction regimes
for a typical system, while the top panel schematically indicates the rate of the reac-
tion as a function of total pressure for a temperature of 800 K. It is constructive to
consider the dominant processes at 800 K as the pressure is increased.

For low pressures, the mean free path of the radicals O and H is large enough
so that they reach the walls of the reaction vessel with high probability. Under these
conditions, the termination steps dominate and the reaction proceeds in a controlled
fashion. As the pressure increases, however, the chain branching steps start to dom-
inate, and a branched chain explosion occurs. It is interesting to note, however, that
a reaction mixture at higher total pressure would produce a steady reaction, a so-
called hydrogen-oxygen flame. In this region, the pressure is sufficiently high that
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Explosion limits for a stoichiometric mixture of H, and O,.

Section 2.7 Determining Mechanisms from Rate Laws

the termination step, H + O, + M — HO, + M, occurs with good probability. In
this region, then, the high rate of chain termination prevents an explosion. At higher
pressures still, the heat due to the exothermic reaction cannot be carried away as
fast as it is produced, so that a thermal explosion occurs.

2.7 DETERMINING MECHANISMS FROM RATE LAWS

Most of the examples we have used so far indicate how to determine whether a
mechanism consisting of several elementary steps is consistent with an overall rate
law. A much more difficult problem is how to figure out a reasonable mechanism
of elementary steps given the rate law. In general, since several mechanisms are
usually consistent with an overall rate law, it is not possible to obtain a single
answer to this question. Nor is it really possible to obtain any answer without what
amounts to an educated guess. In this section, we examine ways to make our
guesses educated.

There are two basic concepts that we can use as a guide. The first is the realiza-
tion that, in many reactions, there is one step in the mechanism whose rate is much
smaller than any other step. In such a case, the overall rate of the reaction is usually
controlled by this rate-limiting step. The rate law then contains in its numerator the
rate of this rate-limiting step.

The second concept is one that we have already encountered. When the rates
of steps in the mechanism are comparable, it is still usually possible to assume that
the concentration of reaction intermediates is low and varies slowly. This is just the
steady-state hypothesis of Section 2.4.3.

Even with a few principles in hand, it is ultimately experience that provides the
best guide to guessing mechanisms from overall rate laws. Fortunately, we already
have some experience. Let us look back at the systems we have studied to see if we
can determine how we might apply the two basic concepts to obtain clues for deter-
mining a plausible mechanism from the overall rate law.

We start our excursion with the rate-law result of the Lindemann mechanism
for the overall reaction A — products:

d[P] _ kk[A][M]

= : 2.117
dt k_y[M] + k, 2.117)

One obvious clue to this reaction is that the rate law depends on something other
than the reactants or products, namely, the overall pressure of the gas mixture and
not just the partial pressure of the reactant. Another clue comes in the complex form
of the denominator. Recall that a mechanism that leads to this rate law is

K ®
A+Me=—A"+M,

) (2.118)
A* =P,

The complex form of the denominator comes from the fact that the intermediate
in this reaction can disappear in two possible ways. Thus, we have already devel-
oped two clues: (1) complex denominators likely indicate that an intermediate in
steady-state can disappear in more than one way and (2) the presence of some-
thing other than a reactant or product in the numerator (or, as it also turns out, in the
denominator) likely indicates that an equilibrium step appears in the mechanism.
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