

rotein as ampholyte	Table 5-2. Isoelectric Poin Common Proteins	ts of Severa
	Protein	pI
	Pepsin	<1.0
	Ovalbumin (hen)	4.6
	Serum albumin (human)	4.9
A Real as as a real drags	Tropomyosin	5.1
Contraction of the second	Insulin (bovine)	5.4
	Fibrinogen (human)	5.8
	γ-Globulin (human)	6.6
	Collagen	6.6
For Son	Myoglobin (horse)	7.0
	Hemoglobin (human)	7.1
Fig. 24: Follows restored and the dependence of the test charge on the plit value. A preterm with this set charge has two pesilive charges at pli 6 and one neurobic charges and 0.	Ribonuclease A (bovine)	9.4
	Cytochrome c (horse)	10.6
	Histone (bovine)	10.8
	Lysozyme (hen)	11.0
	Salmine (salmon)	12.1

<section-header><figure><figure><figure><figure><figure>

<section-header>

yellow markers			Pardubice 2005	5
Mass spectrometric c color pl markers and value of proteins	haracterization of low-mole their use for direct determin	cular-mass ation of pl	EWILEY-VCH ANALO JUN HUL POINT AUX POINT CONTACT CONTA	
Mazanec, K, Slais, K., Chmel	k, J.		M -	
J. Mass Spectrom. 41 2006	1570-1577		and the second s	
			and the second second	
				_
Mass spe	ctra of nitro-substituted pl markers	Cytochro Myoglobi pI markers	me C in	
pl Shindar Shindar Ophisted Faunds		10.1		
20 CALOR 200 1000	T	0.1		
N CAUSE THE THEM STOCK	TETT TITE	8.4		
A CRANT THE NEW COOP	T T T	7.5		55
1 5500 00 000 0000	A A COLOR MAN	6.4		- 22
- case an and 00000	1	5.1 L		
a contra an ante a alterna	ا لمعدد مي المحد عد ا	3.3 		
a cont an ana Q1 c		3.9	β – amylase	
In case on and C CO			2րl 4րl	
10/3/2017			18/7	9

2D Gel electrophoresis - Software

IEF in Granulated Sephadex Gels

Aethods in Molecular Biology, vol. 424: Volume 1: Sample Preparation and Preractionation, Edited by: A. Posch, Topter/22, Sample Prefractionation in Granulated Sephadex IEF Gels ingelika Gorg, Carsten Lück, and Water Wests, p 277, tumana Press Inc. 2007, Toolwa, NJ

Use of coloured **pI** - **markers** to determine the slope of the pH gradient and the position where to .cut' and remove the individual Sephadex fractions in order to fit to the corresponding narrow pH range IPGs

Courtesy of Carsten Lück

Micropreparative sIEF in nonwoven strip

Harvest and extraction of fractions

0

from three mea	te plant pathogens included in this study, comparison of their isoel surement of the migration times, t. for each from the strains.	ectric points, pl, and RSDs
Abbreviation in Figs.	Strain	p <i>I</i>
C. michiganensis	Clavibacter michiganensis subsp. michiganensis CCM 1635	4.6
	Clavibacter michiganensis subsp. michiganensis VURV C254	4.6
	Clavibacter michiganensis subsp. michiganensis VURV 2/4/99	4.7
	Clavibacter michiganensis subsp. michiganensis VURV 5090	4.6
	Clavibacter michiganensis subsp. michiganensis VURV 5059	4.7
	Clavibacter michiganensis subsp. michiganensis VURV 7008	4.7
	Clavibacter michiganensis subsp. michiganensis VURV 7018	4.6
	Clavibacter michiganensis subsp. michiganensis VURV 7030	4.7
	C. michiganensis	p/=4.7, RSD = 1.9 %
X. vesicatoria	Xanthomonas vesicatoria CCM 2101	4.0
	Xanthomonas vesicatoria CCM 2102	4.1
	Xanthomonas vesicatoria VURV P-1-1	4.0
	Xanthomonas vesicatoria VURV P-6-1	4.1
	Xanthomonas vesicatoria LMG 2804	4.1
	Xanthomonas vesicatoria LMG 667	4.1
	X. vesicatoria	p/ = 4.1, RSD = 0.7 %
P. syringae	Pseudomonas syringae pv. tomato CFBP 5422	4.0
	Pseudomonas syringae pv. tomato CFBP 2212	4.0
	Pseudomonas syringae pv. tomato TVIA 1733.3	4.0
	P. syringae	pJ = 4.0, RSD = 1.9 %
P. corrugata	Pseudomonas corrugata CFBP 4901	2.4
	Pseudomonas corrugata CFBP 5465	2.4
	Pseudomonas corrugata CFBP 6663	2.4
	Pseudomonas corrugata IVIA 614.5.3	2.4
	P. corrugata	p/=2.4. RSD=0.9%

Dependence the local internal diameter of etched fused silica capillary on the capillary length. The cutout of the segment used as the tapered capillary in cIEF

and the detection window are indicated.

Resolution of several *Dickeya* bacterium species with similar isoelectric points by capillary isoelectric focusing employing

<section-header><image><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><image>

<text><list-item><list-item><list-item>

Fluidics – divergent flow IEF – electricity control by electrolyte cnductivity **k** Simple device: Membranes eliminated

Membranes eliminated by porous layer bed

Separation area, flow inputs and outputs made from non-woven fabric

Electrode contacts made from non-woven fabric Flow generated by hydrostatics

s 57

Dynamics of divergent flow IEF

Šlais K. Electrophoresis 29 2008 2451-245

witched on at 11 hod 40 min

Flow inputs: Anolyte: $0.05~M~H_{\rm 3}PO_4$, 5.2~mS/cm,1~mL/h Catholyte: 0.05~M~NaOH,~11mS/cm,~1~mL/h Carriers and pl markers: 0.75~mS/cm,~4~mL/h,~

oldup volume: 1 ml

Streamlines of red pl markers from left pl = 3.3, 4.7, 6.2, 7.6, 11.0

60/79

<section-header><section-header><figure><text><text>

<section-header>

Mazanec K., Bobalova J., Slais K. Anal Bhanal Chem 2009, 393, 1769-1778 10/3/2017 IEF 62/73

Electrolyte system for fast preparative focusing in wide pH range based on bidirectional isotachophoresis (BITP)

The composition of LB, LA and spacer electrolytes used for simulation and in the experiment verification												
catholyte		= x10* [m ² V ¹ x ²]		simulated conc [mM]	conc [mgL]				$= x10^{+}$ [m ² V ³ x ²]			
					1023.3						simulated conc [mM]	conc [mgL]
ACA	10.80	-28.8	131.20	10	1312.0							
GABA	10.55	-29.0	103.10	10	1031.0							
β-abrire			89.10		891.0		spacers					
							MOPS	7.20	-26.9	209.30	3	627.9
asparagine		-31.6	130.00	5	650.0		ACES	6.70	-31.3	182.20	3	546.6
TAIS		-25.0	243.28	5	1216.4		MES	6.09	-28.0	213.25		639.8
TAISO		-26.0	259.28	5	1296.4		picolinic acid	5.30	-29.6	123.11	3	349.3
NeOH					2400.0		ammonium acetate	4.76				231.3
												354.3
anolyte							phosphoric acid	2.16,7.21,12.67	34.6,61.4,71.5	192.12	3	576.4
gluturnic acid	2.16, 4.32	+27.4,+27.6	147.13	5	735.7		imidazol	7.15	+52.0	68.10	3	204.3
β-abnine	3.55	+38.5	89.10	10	891.0		EtMorf					345.6
GABA	4.03	+28.8	103.10	10	1031.0							343.3
	4.37	+29.8		10	1312.0		morpholine					255.0
creatizine	4.83, 9.20	+37.0, 37.2		5	565.5		ammediol	8.70	+33.5	105.10	3	315.3
IDIN	5.29	+30.0	123.20	5	616.0		aminomethylpropuno		10			
BioTris	6.40	+26.0	209.20	5	1046.0		1	9.60	+30.0	89.14	1	267.4
HEMoel	6.80	+30.2	131.20	5	655.0		etytaminoethanol	10.00	+30.0	89.14	3	267.4
H,\$0,		-82.9	98.00	25	2450.0		piperidin	110	+39.8	85.10	3	255.3
							EF)					

The animation of the experiment with colored indicators subjected to BITP electrofocusing in newly suggested electrolyte system and carried out on nonwoven strip in V-shape trough during 30 min.

The examples of representative images displaying bidirectional ITP electrofocusing process in nonwoven strip in V-shape trough with colored pH indicators taken at 0, 12 and 30 minutes.

The images of bidirectional ITP electrofocusing with continuous flow in rectangular (a) and trapezoidal (b) separation beds under the same experimental conditions

The example of bidirectional ITP separation and electrofocusing in continuous flow of cytochrome C (cytC) and myoglobin (myo)

The separation of colored indicators in instrumentation with a larger void closed channel.

Conclusions

Divergent flow isoelectric focusing (DF IEF)

- combines
 speed and low demand of electricity typical for micro fluidic channels
 sample loadability and separation efficiency of preparative devices
 bes activitie
- has a potential
 for further shape and material optimization

- for further shape and material optimization for scaling up and down Single input design (SI DF IEF) simplifies miniature devices Carriers based on mixtures of simple buffers are cheap and advantageous for further processing of collected fractions Stability of streamlines is promising for the designs with more collected fractions Thickness of separation layer can conveniently be adjusted by sandwiching of non woven fabric or glas plate distance

	(
5th CECE	

C