

Rigid monoliths

□ The 1990s - macroporous rigid monolithic materials based on methacrylate and polystyrene-divinylbenzene copolymers suitable for separation of proteins (F. Švec, J. M. J. Fréchet); silicagel-based monolithic materials suitable for separation of small molecules (K. Nakanishi, N. Soga, N. Tanaka).

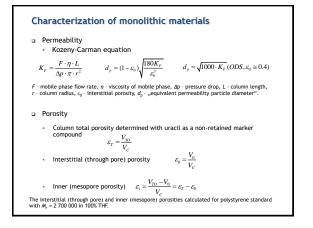
Nowadavs

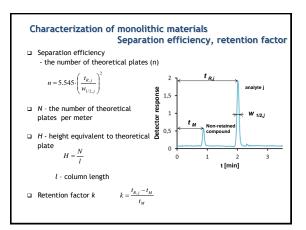
- Monolith = a rigid material with appropriate chemical, physical, and mechanical properties (stability in a wide pH range, permanent porosity).
 - Characteristic well-organized and highly porous structure □ Variable surface area, pore texture, surface chemistry

Delymer-, inorganic-, and hybrid-monoliths

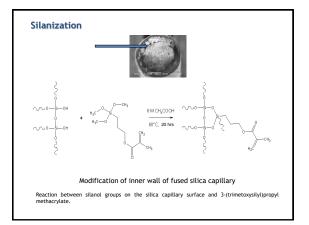
Alkoxysilanes

Monolithic stationary phases

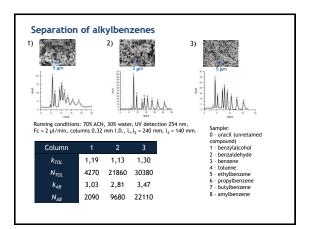

- □ The desired monolithic stationary phases can be prepared utilizing onestep or multiple-modification preparation procedure.
- One-step preparation procedure methacrylate monolithic capillary columns
 - butylmethacrylate BMA + ethylenedimethacrylate EDMA
- □ Multiple-modification preparation procedure silicagel monolithic capillary columns
 - C18-stationary phases
 - Sulfobetaine stationary phase
 - Phosphonium ionic liquid stationary phase
 - Liposome stationary phases


Characterization of monolithic materials Monolith - porous material

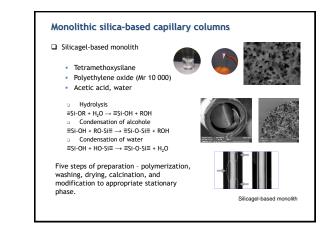
- Macropores > 50 nm, flow-through pores

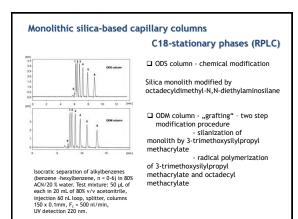

- Mesopores 2-50 nm, surface area
- Micropores < 2 nm
- Material engineering
 - Pore volume mercury intrusion porosimetry

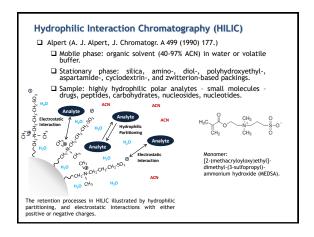
 - Specific surface area gas adsorption (BET) Infrared spectroscopy presence of functional groups
 - Elemental analysis
 - Electron microscopy (SEM)
- Chromatography
 - Permeability, porosity
 - Separation efficiency
 - Separation selectivity
- Inverse size-exclusion chromatography (ISEC)

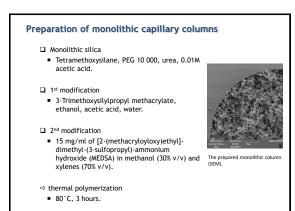


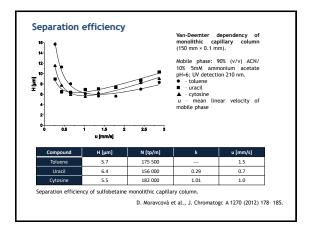
Monolithic methacrylate-b	ased capilla	ry col	umns	
Monomers				
 butylmethacrylate BMA ethylenedimethacrylate EDMA 	Column	1	2	3
	Porogen	60	60	60
 Pore forming solvents 1,4-butanediol BUT 1-propanol PROP 	Monomer	40	40	40
	BMA	44.5	44.5	44.5
– water	EDMA	54.5	54.5	54.5
	PrOH	60	62	64
 Initiator azobisisobutyronitrile AIBN 	BuOH	30	28	26
- azobisisobutyfollitrite Albh	Water	10	10	10
 Thermal polymerization 60°C, 24 hours 0.32 mm I.D. silanized capillaries 	D. Moravcová et	al., J. Sep.	Sci. 2004, 2	% wt. 27, 789-800.

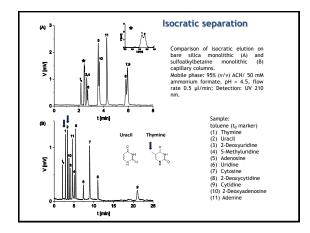


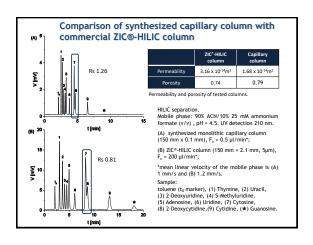

Column		2		А	В	С
ετ	0.710	0.680	0.650	0.590	0.650	0.847
ε	0.490	0.470	0.410	0.310	0.290	0.680
ε_i	0.220	0.210	0.240	0.280	0.360	0.167
 Perme Column 	ability 1	2	3	А	В	C
K _F [cm ²]	7.79E-10	2.38E-10	3.52E-11	2.25E-10	1.47E-10	8.66E-10
_{perm} [μm]	7.6	3.8	1.9	7.2	5.6	5.1

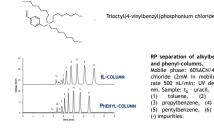



Conclusion

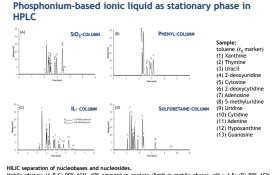

- The methacrylete-based monolithic columns showed comparable chromatographic performance as packed octadecylsilica capillary columns.
- $\hfill\square$ The results illustrate the importance of selection of appropriate composition of the porogen solvent mixture.
- □ Column with 64% w/w of propanol in the porogen part showed better chromatographic performance than the columns prepared using lower propanol concentrations.





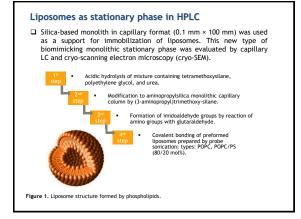


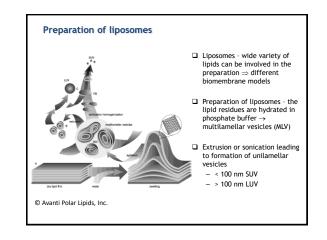
Conclusion

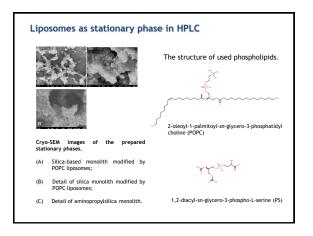

- The simple two-step modification of silica-based monolithic capillary columns provides stable sulfoalkylbetaine stationary phase suitable for separation of polar analytes.
- □ The high separation efficiency of original silica monolithic columns is preserved even after modification by MEDSA.
- The synthesized column shows a long-term stability under the separation conditions when the relative standard deviations for the retention times of tested solutes were lower than 2% under the isocratic conditions and lower than 3.5% under the gradient conditions.
- The ability of synthesized columns to separate modified nucleobases and nucleosides such as thymine and uracil or 5-methyluridine and uridine extends the application range of these columns to the field of proteomics where separation of similar compounds with different levels of methylation is required.

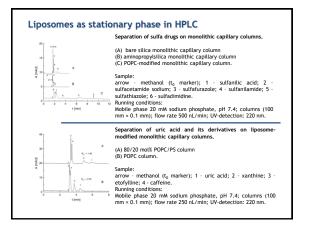
Phosphonium-based ionic liquid as stationary phase in HPLC

Silicagel-based monolith modified by trioctyl(4-vinylbenzyl)phosphonium chloride via 3-trimethoxysilylpropyl methacrylate




RP separation of alkylbenzenes on IL-and phenyl-columns. Mobile phase: 60%ACN/40% ammonium chioride (2mM in mobile phase); flow rate 500 nL/min; UV detection at 210 m. Sample: cp. uracil, (0) benzene, (1) toluene, (2) ethylbenzene, (3) proylbenzene, (4) butylbenzene, (5) pentylbenzene, (6) hexylbenzene, (1) impurities. (·) impurities.




Conclusion

- The synthesized IL-columns possess distinct separation selectivity compared to bare monolithic silica and phenyl-type as well as zwitterionic stationary phase.
- □ The high separation efficiency of original silica monolithic columns is preserved even after modification by phosphonium-based ionic liquid.
- These columns show mixed interactions and are suitable for multimodal chromatography.

Conclusion

- The cryo-SEM images confirmed that individual lipid vesicles persist in their fully hydrated form as spherical vesicles even after bonding to the monolithic silica back bone.
- □ The drug retention on the liposome-modified columns is caused by their interactions with the immobilized liposomes, where electrostatic interactions play a crucial role.
- □ The composition of the liposome mixture used for column preparation significantly affects the retention of solute.