20.11.2017 1 Brno, 23. 11. 2017 Mgr. Jana Krenkova, Ph.D. Nanoparticle modified monolithic materials Control of surface chemistry • Preparation from functional monomers • polymerization • grafting F. Svec, J. Chromatogr. A 2010, 1217, 902–924 Control of surface chemistry • Modification of reactive monoliths F. Svec, J. Chromatogr. A 2010, 1217, 902–924 • Attachment of nanomaterials Control of surface chemistry Why nanomaterials? selectivity – chromatography, sample preparation surface area ligands for immobilization of bioactive molecules Nanomaterials materials of which a single unit is sized (in at least one dimension) between 1 and 100 nanometers Modification of monoliths with nanoparticles simple and straightforward approach distribution of NPs throughout the monolithic matrix limited accessibility of NPs for desired interactions • embedding (encapsulation) of NPs in the monolithic matrix • attachment of nanoparticles to the surface of preformed monoliths multistep approach independent optimization of individual steps improved accessibility of NPs for desired interactions Latex nanoparticles monolith: poly(BMA-co-EDMA-co-AMPS) Hilder et al. J. Chrom. A 2004 1053, 101 Ion exchange chromatography - carbohydrates BMA – butyl methacrylate, EDMA – ethylene dimethacrylate, AMPS - 2-acrylamido-2-methyl-1-propanesulfonic acid latex particles (60 nm diameter) with tertiary amine functionality Peaks: d(+)galactose (1), d(+)glucose (2), d(+)xylose (3), d(+)mannose (4), maltose (5), d(−)fructose (6), sucrose (7). 20.11.2017 2 Gold nanoparticles Colors of various sized monodispersed gold nanoparticles HAuCl4 + trisodium citrate dihydrate Au+3 ions are reduced to neutral gold atoms, where citrate ions act as both a reducing agent and a capping agent. Citrate synthesis Gold nanoparticles cystamine TCEP gold nanoparticles attachment Y. Lv et al. J. Chromatogr. A 2015, 1261, 121 1 mm Gold nanoparticles Cys-GMA monolith functionalized with 15 nm gold nanoparticles Gold nanoparticles Cao et al. Anal. Chem. 2010, 82, 7416-7421 Thiol-containing peptide enrichment Ligand exchange - various chromatographic modes ion exchange reversed-phase Peaks: myoglobin (1) ribonuclease A (2) cytochrome c (3) Gold nanoparticles Lectin immobilization Erythrina cristagalli lectin - galactose-selective lectin (ECL) H. Alwael et al. Analyst 2011, 136, 2619 Gold nanoparticles Lectin immobilization Erythrina cristagalli lectin - galactose-selective lectin (ECL) Peaks: (1) ribonuclease B (2) insulin chain B (3) insulin (4) cytochrome C (5) desialylated transferrin (6) BSA (7) carbonic anhydrase (8) enolase (9) desialylated thyroglobulin before extraction after extraction after a galactose wash step RP-LC/UV separation of protein mixture H. Alwael et al. Analyst 2011, 136, 2619 20.11.2017 3 Fullerenes [6,6]-phenyl-C61-butyric acid 2-hydroxyethylmethacrylate ester molecule of carbon in the form of a hollow sphere, ellipsoid, tube, and many other shapes C60 in solution spherical fullerenes - buckyballs cylindrical fullerenes - carbon nanotubes or buckytubes Fullerenes Conditions: column 53 mm x 100 μm i.d., flow rate 0.15 μL/min, UV detection at 254 nm; (A) mobile phase 50:50 vol % acetonitrile-water; (B) mobile phase 50:50 vol % acetonitrilewater; (C) mobile phase 47.5:2.5:50 vol % acetonitrile-tetrahydrofuranwater; peaks in order of elution: uracil, benzene, toluene, ethylbenzene, propylbenzene, butylbenzene, and amylbenzene Reversed-phase chromatography Separation of alkylbenzenes 110 000 plates/m for the retained benzene S.D. Chambers et al. Anal. Chem. 2011, 83, 9478 poly(GMA-co-EDMA) poly(GMA-co-EDMA) containing 1 wt% PCB-HEM Carbon nanotubes Reversed-phase chromatography Conditions: column, 180mm × 100 mm ID, mobile phase 45% acetonitrile–5% THF–50% water, flow rate 1mL/min, UV detection at 254 nm; peaks: uracil (1), benzene (2), toluene (3), ethylbenzene (4), propylbenzene (5), butylbenzene (6), and amylbenzene (7). Separation of alkylbenzenes poly(GMA-co-EDMA) poly(GMA-co-EDMA) containing 0.25 wt% entrapped MWNT Multi-wall nanotubes S.D. Chambers et al. J. Chromatogr. A 2011, 1218, 2546 Metal-organic frameworks (MOF) compounds consisting of metal ions or clusters coordinated to organic molecules to form one-, two-, or three-dimensional structures MOFs in monolithic materials • preparation in situ • admixing preformed MOFs properties superlative porosity wide chemical tunability high stability applications gas storage gas separation catalysis Metal-organic frameworks (MOF) monolith containing carboxylic acid functionalities Preparation in situ synthesis of MIL-100 inorganic metal ions - FeCl3 organic ligand - 1,3,5-benzenetricarboxylic acid (BTC) A. Saeed et al. Adv. Funct. Mater. 2014, 24, 5790 high specific micropore surface area of 389 m2/g (original polymer monolith – surface area of 106 m2/g) Metal-organic frameworks (MOF) A. Saeed et al. Adv. Funct. Mater. 2014, 24, 5790 layer-by-layer growth (30 cycles) 20.11.2017 4 after enrichment before enrichment Phosphopeptide enrichment (IMAC) - MALDI/MS Metal-organic frameworks (MOF) A. Saeed et al. Adv. Funct. Mater. 2014, 24, 5790 analysis of nonfat milk Titanium and zirconium oxide nanoparticles Metal oxide affinity chromatography (MOAC) MALDI mass spectrum obtained from in vitro phosphorylated ERK1 digest before (A) and after enrichment with poly(DVB)-TiO2/ZrO2 microcolumns (B) M. Rainer et al. Proteomics 2008, 8, 4593 Iron oxide nanoparticles before attachment of NPs after attachment of NPs • 200 mL polypropylene pipette tips • modification of the inner wall by methyl methacrylate/ethylene dimethacrylate • poly(2-hydroxyethyl methacrylate-co-ethylene dimethacrylate) 5 mL monolithic bed prepared by UV-initiated polymerization • UV-photografting of [3-(methacroylamino)propyl]trimethylammonium chloride on the pore surface of the monolith • attachment of 20 nm citrate stabilized iron oxide NPs on the quaternary amine functionalized monolith Fe3+ + Fe2+ + OH- Fe3O4 + H2O g-Fe2O3 oxidation n(Fe2+)/n(Fe3+)=1/2 pH>10 Krenkova J., Foret F. Anal. Bioanal. Chem. 2013, 405, 2175 Hydroxyapatite nanoparticles • 200 mL polypropylene pipette tips • modification of the inner wall by methyl methacrylate/ethylene dimethacrylate • poly(2-hydroxyethyl methacrylate-co-ethylene dimethacrylate) with embedded hydroxyapatite NPs (nanorods – 50 x 150 nm) 5 mL monolithic bed prepared by UV-initiated polymerization Krenkova J., Foret F. Anal. Bioanal. Chem. 2013, 405, 2175 hydroxyapatite nanoparticles morphology: rods - 50 x 150 nm surface area: 115 m2/g Phosphopeptide enrichment – MALDI/MS analysis b-casein: 224 amino acid residues 5 phosphorylation sites after enrichment using the hydroxyapatite NP modified tipbefore enrichment after enrichment using the titanium dioxide tip after enrichment using the iron oxide NP modified tip m/z m/z m/z m/z *-phosphopeptides Krenkova J., Foret F. Anal. Bioanal. Chem. 2013, 405, 2175 Institute of Analytical Chemistry of the CAS Veveří 967/97 602 00 Brno www.iach.cz Dana Moravcova – moravcova@iach.cz Jana Krenkova – krenkova@iach.cz