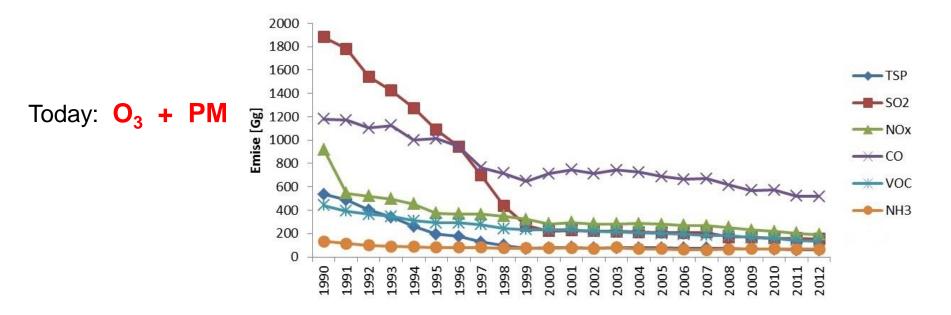
Atmospheric aerosols

Pavel Mikuška

Institute of analytical chemistry AS CR, Brno

mikuska@iach.cz

30.11.2017

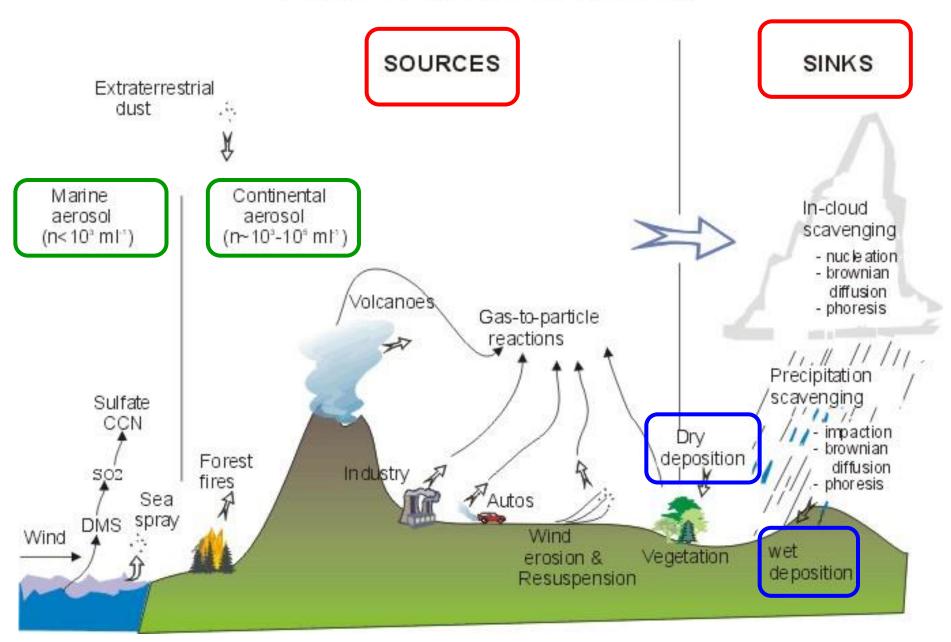


Program:

- 1. Atmospheric aerosol definition, sources, deposition
- 2. Effect on human health and environment
- 3. Characterization of aerosols (size, shape, diameters, size distribution)
- 4. Specific types of aerosolů (nano-, bio-, indoor-aerosol)
- 5. Measurement of basic parameters (shape, size, concentration, ...)
- 6. Chemical composition of aerosols (organics, metals, ions)
- 7. Air pollution by PM in the CR, limits
- 8. Positive application of aerosols
- 9. Literature

Main air pollutants:

- **SO**₂: 60.-80. of last century, power stations (brown coal)
- NO_x: 60.-80. of last century, power stations (brown coal) today transportation (gasoline cars)
- **PM**: 60.-80. of last century, power stations+ industry today transportation (diesel car) + residential combustion
- O_3 : secondary pollutant, O_3 + PAN main components of photochemical smog

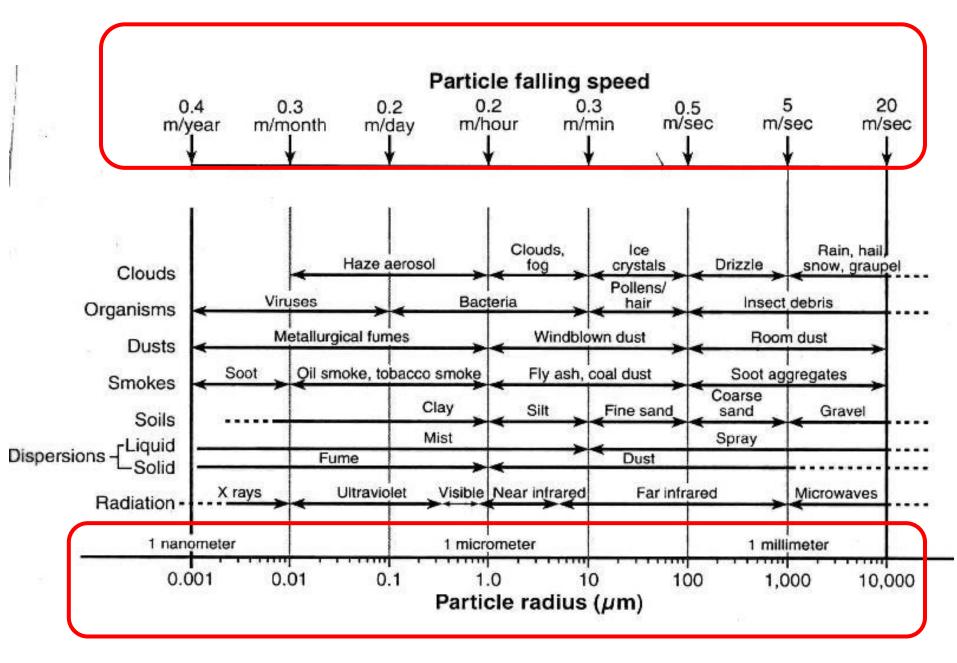

Atmospheric AEROSOL

- "aerosol" first used in 1920: "aero-" "air" + solution
- Def.: dispersed system consisting of solid and liquid particles suspended in a gas (air)
- size range: 1 nm 100 μm
- characterization: diameter (nm, µm)
 mass concentration (µg/m³, ng/m³)
 number concentration (P/cm³)

– names of aerosols in specific size range:

total suspended particles:	Σ all particles	(TSP)
coarse particles:	Da > 2.5 µm	
fine particles:	Da < 2.5 µm	(PM2.5)
submicrometer particles:	Da < 1 µm	(PM1)
ultrafine particles:	Da < 100 nm	(UFP)
nanoparticles:	Da < 50 / 100 nm	(NPs)

ATMOSPHERIC AEROSOL

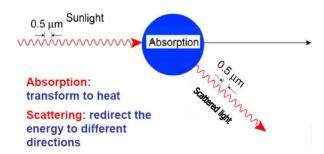

Formation and sources of aerosols:

- 1) primary sources: direct emission from natural or anthropogenic sources
 - secondary sources: formation in air by secondary reactions of gas precursors (gas-to-particle conversion, secondary oxidation)
- natural sources: volcanic activity, sea aerosol, forest fires, mineral sources (soil erosion, desert dust), plant products (pollen, leaf detritus), bioaerosol
 - anthropogenic sources:
 - combustion proceses: biomass, fossil fuels (coal, oil, ...), traffic, ...
 - industry activity: cement production, metallurgy (smelting ores and metals), power stations, steelworks, ...
 - transport particles by wind from building areas, fields, ...
 - agricultural activity
 - mining activity (quarry, ...)
- 3) fine aerosol: reaction of gaseous precursors, nucleation, condensation reaction, combustion products (coal, biomass, traffic)
 - coarse aerosol: earth crust material (particles of soil, weathered rock and minerals, resuspension, bioaerosol, emission of dust from industry and construction (cement, conveyor, ...), volcanic activity, sea salt aerosol, desert dust

Specific aerosol types:

- Bioaerosol: aerosols of biological origin (viruses, bacteria, fungi, pollen, …)
- Cloud: visible aerosol with defined boundaries
- Dust: solid particle aerosol (> 0.5 µm) formed by mechanical disintegration of parent material (crushing, grinding)
- Fume: solid particle aerosol produced by the condensation of vapors or gaseous combustion products. Often clusters or chains of primary particles (< 0.05 µm)</p>
- Haze: atmospheric aerosol that affects visibility
- Mist + Fog: liquid particle aerosol formed by condensation or atomization (1-200 μm)
- Spray: droplet aerosol formed by mechanical breakup of a liquid
- Smoke: visible aerosol formed by incomplete combustion; solid / liquid particles, mostly < 1 μm</p>
- Smog: 1. general term for visible atmospheric pollution in certain areas. Term derived from words *smoke* and *fog*
 - 2. London smog: winter, low temperature, fog, inversion, emissions from industry and coal combustion (SO₂, PM, ...)
 - 3. photochemical smog: aerosol containig photochemical reaction products formed in atmosphere by action of sunlight on CHx and NOx (< 1 µm)
- Droplets liquid particles
 - Particulate Matter (PM) solid particles or liquid droplets

Dry deposition:

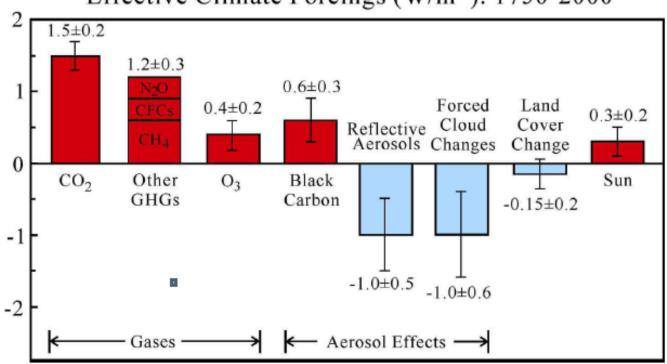


Effect of aerosols on environment:

- global climate \Rightarrow change in radiation balance of atmosphere
- visibility decrease
- · acidification and eutrophication of soil and water resources
- surface for chemical reaction in atmosphere
- destruction of stratospheric ozone
- smog production

Effect of aerosols on the Earth's climate:

\Rightarrow change in the radiation balance of atmosphere



Scattering, absorption = ∫ particle size, concentration, chemical composition

1) Direct Aerosol Effect: aerosol particles scatter radiation back to space or absorb sunlight, altering the amount of the sun's energy that enters the Earth's climate system, which has a cooling effect on the Earth's energy balance (chemical composition vs size, larger particles scatter more light than smaller aerosol particles)

2) Indirect Aerosol Effect: aerosols acting as cloud droplet seeds influences both reflectivity of cloud (albedo) and its ability to produce precipitation

direct + indirect effect ⇒ Earth cooling ("**whitehouse effect**")

Effective Climate Forcings (W/m²): 1750-2000

Climate forcing agents in the industrial era. "Effective" forcing accounts for "efficacy" of the forcing mechanism

Source: Hansen et al., JGR, 110, D18104, 2005.

Contribution to total atmospheric absorption by aerosols (warming effect):

- brown carbon 19%
- black carbon 72%

Visibility reduction:

- visibility = ability of eye to distinguish the subject from surrounding background
- Imited by dispersion of sun light on aerosol particles and molecules of air
- ➤ theoretically (PM ≈ 0 µg/m³) ⇒ 340 km (→ dispersion of light by molecules of air)
- \blacktriangleright PM \approx 10 µg/m³ \Rightarrow visibility 30 40 km

Effect of aerosols on human health:

- > wide range of health effects: increased mortality, cardiovascular, respiratory (astma), cancer, ...
- harmfulness of aerosols: deposition in organism (lung)
- health effect = j aerosol properties (size, shape, concentration, composition,)
- > "All particles are equal but some particles are more equal" (Brunekreef, EAC, Zurich 2017)

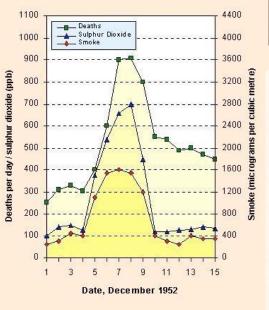
- ➢ size: toxicity increases with decreasing size, ... → UFP the most toxic
- shape: sphere, fibre, irregular, amorphous
- concentration: mass × number

Cd, Pb, Ni, Tl, Hg, Ba, .., As

- composition: BC, organic compounds (carcinogens), SOA, heavy metals
- bioavailibility
 PAHs, N-PAHs, PCBs, dioxines, ...
- > 2 different approaches:
 - epidemiological: exposure level (= delivered concentration), large populations
 - toxicological: mechanism of reaction, dose (delivered concentration retained in the tissue), mass conc. not useful, surface drives particle toxicity
- > Europe in 2000: \approx 370 000 inhabitants died due to air pollution by aerosols

(= about 10times more than deaths due to traffic accidents)

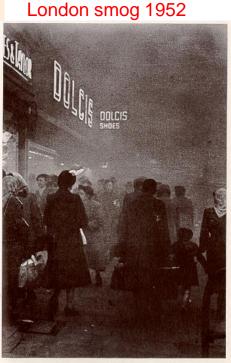
1) Meuse valley: 1.-5.12.1930


- 5-day fog, T-inversion
- high conc. SO₂ (coal combustion)
- high conc. PM (H_2SO_4 , ...)
- 63 deads, 6 000 patients


2) Donora (Pennsylvania): 26.-31.10.1948

- fog, T-inversion
- high conc SO₂ and HF (steelworks, ceramic industry) \Rightarrow high conc. PM (H₂SO₄, F⁻, ...)
- 20 deads, 7 000 patients

3) London: December 1952

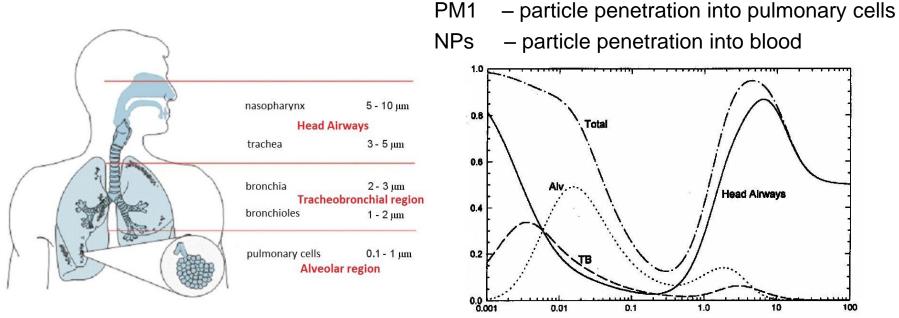

- fog, low temperature (cca 0°C)
- T-inversion (from 5.11.)
 - ⇒ PM accumulation (coal combustion industry, households)
- 7 December: visibility < 0.5 m !
- > 12 000 deads !
- Los Angeles, 50- 60s of 20th century
 photochemical smog
- Today: Peking, Delhi, Indonesia Athens, Po Valley, Ostrava + South Silesia

cathedral St. Paul, 1903

Particle deposition in respiratory tract:

• Human respiratory tract is divided into 3 main regions:

head airways, tracheobronchial region and alveolar region (pulmonary; gas-exchange)

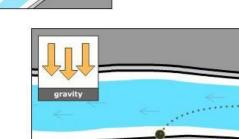

- Particles must generally become deposited in respiratory tract to exert biological effects
- Particle separated according to penetration into respiratory regions:
 - Inhalable fraction: mass fraction of total airborne particles that enters body through nose and/or mouth during breathing
 - > Thoracic fraction: mass fraction of inhaled particles penetrating beyond larynx

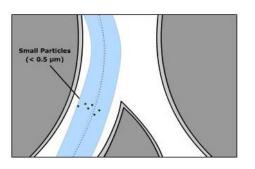
(Da < 10 µm, PM10)

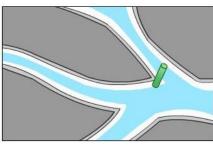
Respirable fraction: mass fraction of inhaled particles penetrating into alveolar region of lungs

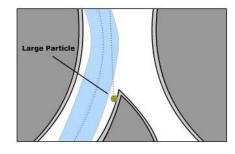
(Da < 4 μ m, PM4): PM2.5 – particle penetration into bronchi

Particle diameter, µm


Particle deposition mechanisms in respiratory tract:

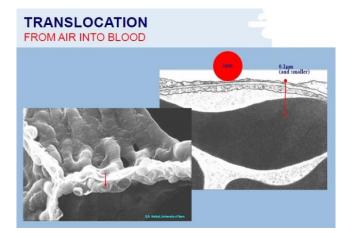

Impaction: large particles at large velocity in curved pathway (bronchial region)


• Interception: long fibers in narrow airways


Gravitational settling: large particles at low flow velocity
 and small airway dimension

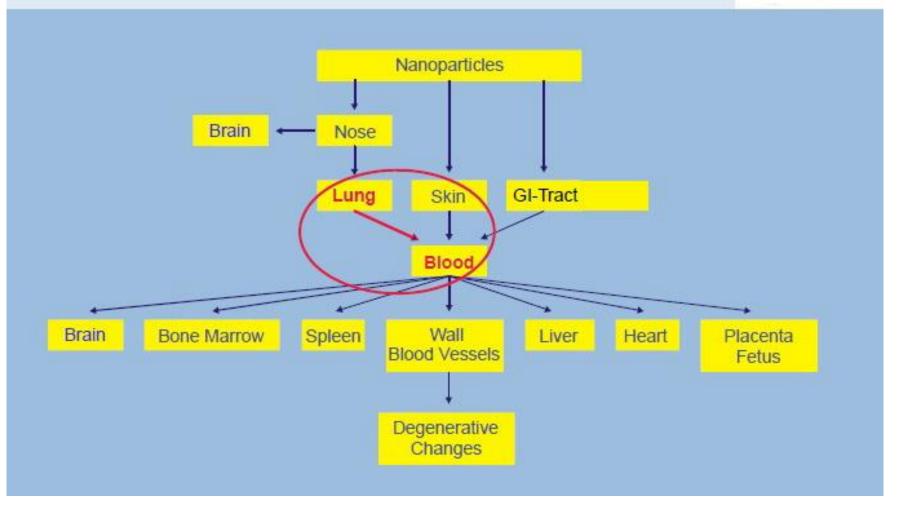
 Diffusion (Brown): small particles (< 0.5 µm) in small airways and long residence time (alveolar region)

Nanoparticles (NPs): Da < 50 / 100 nm


- > nanomaterials at least 1 external dimension smaller than 100 nm
- nanoparticles objects with all 3 external dimensions at the nanoscale (< 100 nm)</p>
- nanoclusters at least one external dimension smaller than 10 nm

• NPs sources:

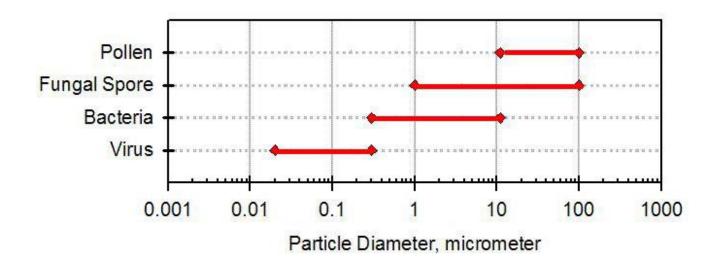
- \circ natural (volcanic dusta, forest fires, ...)
- \circ incidental byproducts of combustion processes (e.g., welding, diesel engines)
- engineered nanoparticles: intentionally produced and designed with very specific properties


(shape, size, surface properties and chemistry)

- different properties in comparison with the same material of large diameter (surface)
- surface area biologically most relevant dose metric for NPs
- pathways of NPs entry into the body:
 - inhalation (mouth/nose → lungs, main route)
 - o along olfactory nerv (directly to brain)
 - \circ ingestion
 - \circ skin (damaged)
 - o food (gastrointestinal tract)
- serious health effects:

- penetration through intercellular space into body → blood transport → accumulation in organs (brain, kidney, liver, ...)
- $\ensuremath{\circ}$ cardiovascular, neurodegenerative and carcinogenic effects
- o chronic breathing problems

TRANSLOCATION WITH BLOOD TO OTHER ORGANS



Gehr, BB workshop, Praha 2013

Bioaerosols: = aerosol of biological origin

viruses

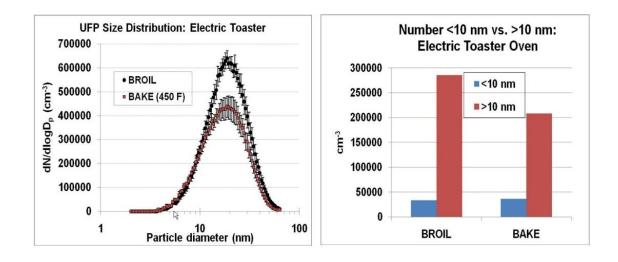
- viable organisms (they are reproduced): bacteria, fungi, mold, algae, yeast, …
- non-viable organisms (no reproduction): product of organisms (fungal spores, pollen), body parts of animals (hairs, skin, feathers), insects and plants
- size: 0.02 100 µm
- characteristic properties: size, viability, infectivity, allergenicity, toxicity, pharmacological activity
- importance: adverse health effects (allergy, illnesses, ..., deaths) adverse social impacts (harvest damage, damage to cattle)

Radioaerosols:

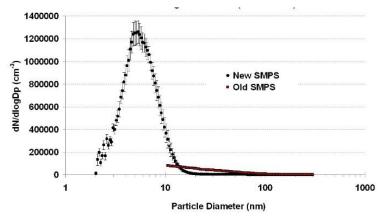
- measurement of natural radioactivity: radiation protection mechanism of transport distribution of radionuclides in environment
- natural radioactivity: mainly Rn (220 Rn, 222 Rn) gas (α)

short-term products of Rn transformation bound to PM

• collection of air at filter, measurement of activity:


• different half-lives of individual transformation products

Indoor aerosols:


- 68 % time spent in indoor space

□ Indoor sources of aerosols:

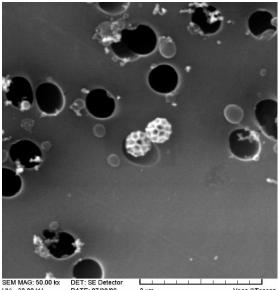
- cooking (main): 90% particles < 10 nm
- combustion: gas stove, fireplace, candles, aromatic sticks, ...
- electrical equipments: stoves, tools, kitchen appliances, hair dryer
- smoking: cigarettes, pipes
- Laser / 3D printers
- home animal, plants
- building material: asbestos
- kitchen degreaser + cleaners (MEA, limonen, ...)

□ Outdoor sources : inward infiltration (penetration through window, door)

Gas stove

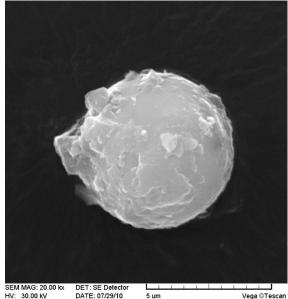
Characterization of atmospheric aerosols:

- size (diameter) \Rightarrow determines behaviour and properties
- shape
- density
- concentration: mass × number


integral \times size-resolved

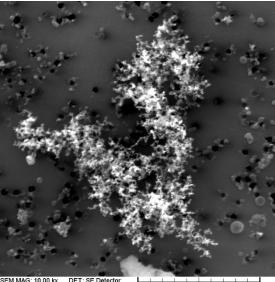
- chemical composition
- toxicology analysis
- refractive index
- surface

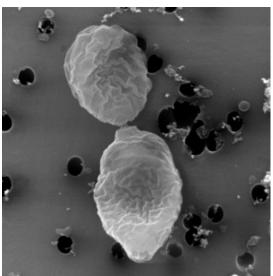
evaluation / estimation of health risk / effects


Particle shape:

- spherical, fibrous, irregular, ...
- collection PM on filters (polycarbonate filter)
- analysis individual particles with electron microscope • simultaneously size, shape, chemical composition
- use: identification of emission sources • estimation of health risk (fibres)

HV: 30.00 kV DATE: 07/30/09 2 um Vega ©Tesca Device: VG2730582CZ VAC: HiVac Centrum dopravního výzkumu


ash (Ostrava)


Device: VG2730582CZ

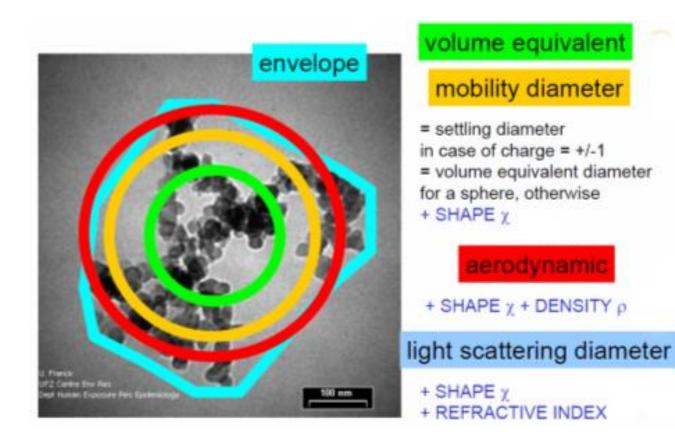
VAC: HiVac

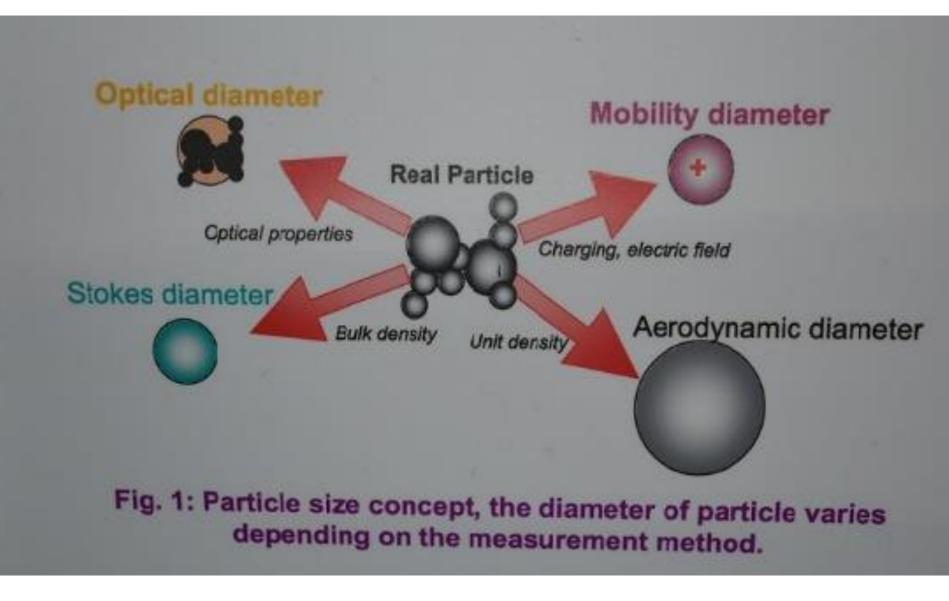
agreggates from traffic

particles of biological origin

SEM MAG: 30.00 kx DET: SE Detecto HV: 30.00 kV Vega ©Tescan DATE: 07/30/09 2 um Device: VG2730582CZ VAC: HiVac Centrum dopravního výzkumu

VAC: HiVac Centrum dopravního výzkumu

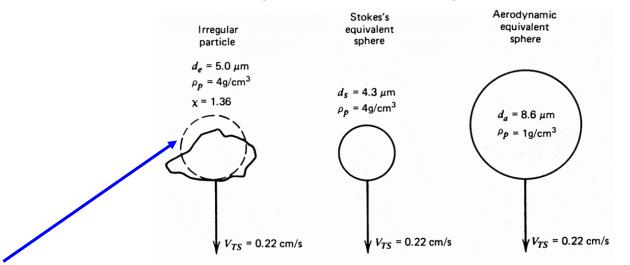

HV: 30.00 kV DATE: 07/27/10 Device: VG2730582CZ


10 um

Vega ©Tescan Centrum dopravního výzkumu

Particle diameter $(D_p) \Rightarrow$ particle size

- unambiguous definition D_p: spherical particle
- equivalent diameter: dimeter of sphere with the same physical property as measured particle of irregular shape
- particle Ø defined according to measurement method ⇒ aerodynamic, optical, electromobility,
 Stokes, volume, geometric, …



Important equivalent diameters of irregular particles:

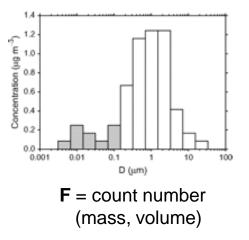
- Aerodynamic diameter (Da): diameter of sphere with unit density (1000 kg/m³) and the same settling velocity as the irregular particle. Da determines particle behaviour in air (sedimentation, deposition in lungs, ...)
- Stokes diameter (Ds): diameter of sphere with the same density and the same

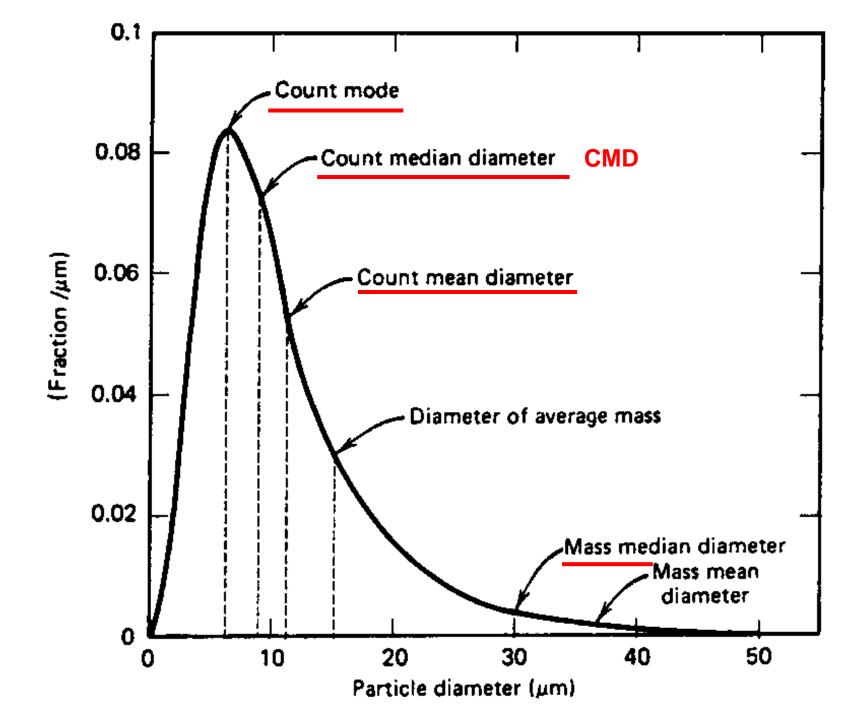
settling velocity as the irregular particle.

- Volume equivalent diameter: diameter of spherical particles with the same volume and with the same settling velocity as the irregular particle.
 Corrections for other shapes: χ (dynamic shape factor): sphere 1.00; cube 1.08; quartz 1.6; fibre: 1.35 (5:1); 1.68 (10:1)
- Equivalent mobility diameter: diameter of spherical particles with the same mobility ...

Size distribution of aerosol:

- simultaneous characterization of size and concentration of individual aerosol particles
- real aerosols: high concentration of particles impossible to characterize each particle separately
- size distribution (curve) ⇒ particle concentration as a function of particle diameter


 concentration (number, mass, volume, surface) of particles in selected size interval
 distribution is characterized by location and width of distribution

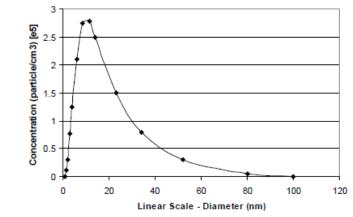

Locations of distribution curve:

- Mode: particle diameter (D_p) with the highest frequency
- Median: D_p that divides frequency curve into equal areas
- Mean (arithmetic average, \overline{d}_p): D_p with arithmetic mean value
- Geometric mean (D_g): mean diameter on log-normal distribution curve
- mode < median < mean

 $\overline{d}_p = \frac{\sum d}{N} = \frac{\sum n_i d_i}{N}$

$$d_{g} = \left(\prod_{i=1}^{N} d_{i}\right)^{1/N} = (d_{1}d_{2}...d_{N})^{1/N}$$
$$\ln d_{g} = \frac{1}{N}\sum_{i=1}^{I} n_{i} \ln d_{i}$$

Monodisperse aerosol: very narrow range of particle sizes (mean = mode = median)

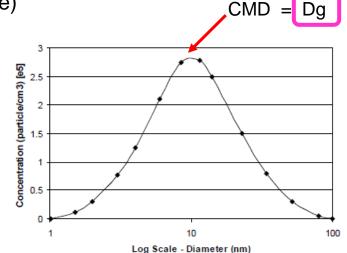

Polydisperse aerosol: wide range of particle sizes

1) linear scale of sizes \Rightarrow Normal distribution

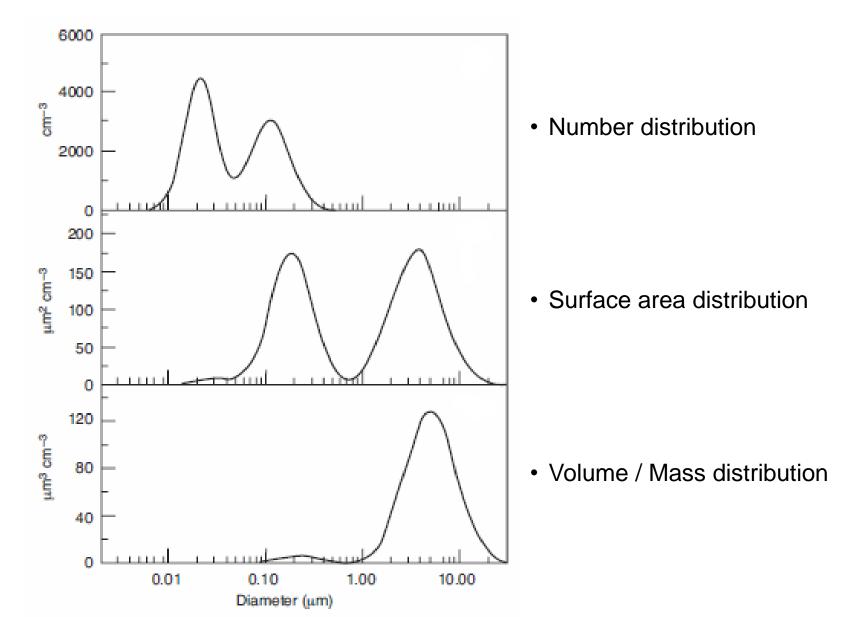
- unsymmetrical

$$f(d_p) = \frac{1}{\sigma\sqrt{2\pi}} \exp\left(-\frac{(d_p - \overline{d}_p)^2}{2\sigma^2}\right)$$
$$\sigma = \left(\frac{\sum n_i (d_i - \overline{d}_p)^2}{N - 1}\right)^{1/2}$$

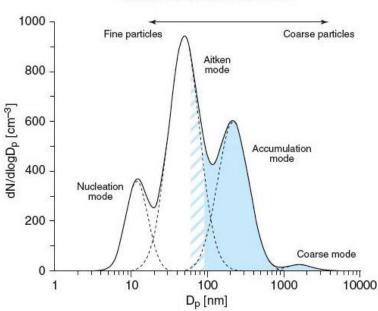
 $\boldsymbol{\sigma}$ - standard deviation


2) logaritmic scale \Rightarrow Log-normal distribution

$$f(d_p) = \frac{1}{\ln \sigma_g \sqrt{2\pi}} \exp\left(-\frac{\left(\ln d_p - \ln CMD\right)^2}{2(\ln \sigma_g)^2}\right)$$
$$\ln \sigma_g = \left(\frac{\sum n_i \left(\ln d_i - \ln d_g\right)^2}{N - 1}\right)^{1/2}$$


 σ_{q} - geometric standard deviation

- monodisperse aerosol: $\sigma_g \le 1.25$
- polydisperse aerosol: $\sigma_{g} \ge 1.25$


Log-normal distribution curves of ambient aerosol:

- weighted by N, S, M / V

Atmospheric aerosol: 4 - modal number size distribution

- \rightarrow different sources and composition particles
- Nucleation mode: Dp < 20 nm, "lifespan" ≈ 1 hod
 - origin: nucleation of gases \rightarrow formation of new particles
 - composition: ions, organic compounds
- Aitken mode: 0.02 < Dp < 0.1 µm (UFP)
 - origin: emission from combustion processes, condensation of cooled gases after emission, coagulation of particles of nucleation mode
 - composition: EC, organic compounds, ions, metals
- Accumulation mode: 0.1 < Dp < 2.5 μm, "lifespan" ≈ weeks
 - origin: coagulation of smaller particles, condensation of volatile compounds, reaction of gases
 - composition: sulphates, nitrates, NH₄⁺, organic compounds, EC, metals
- Coarse mode: Dp > 2.5 µm, "lifespan" ≈ hours days
 - origin: resuspension, mechanic decomposition/erosion of material of earth's surface, emission from traffic and building, sea aerosol, ...
 - composition: earth crust material (particles of soil, weathered rocks and minerals), bioaerosol, products of mechanic operation (milling, quarries, ...) and traffic (abrasions of tires, cars, pavements, ...), desert sand, sea aerosol, ...
- **Fine aerosol** = Nucleation + Aitken + Accumulation modes

Particle Number Size Distribution

4 ⇒ 3 - modal particle size distribution:

Particle size: dependence of particle Ø on measurement method

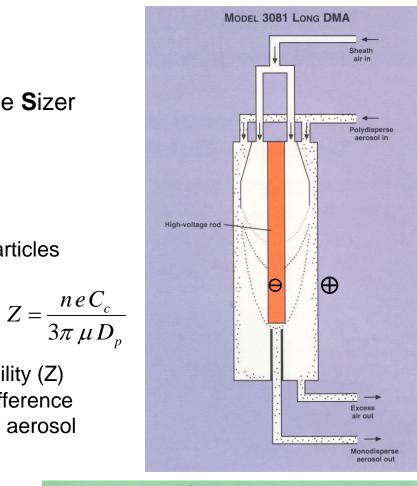
- wide range (5 orders): 1 nm 100 μm
- no universal method for all size range
- different measurement principles \Rightarrow different sizes pro the same particle

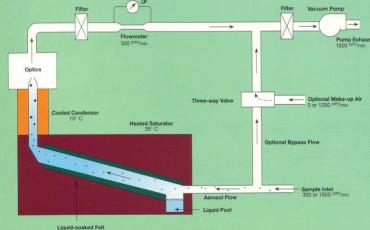
Diameter	Dependence on:	Instrumentation
aerodynamic mobility optical geometric 	size, shape, density size, shape size, shape, refractive index size	APS, impactor SMPS, FMPS, EEPS OPC electron microscopy

APS, SMPS, OPC: size + number concentration simultaneously

 \Rightarrow number size distribution

Mobility diameter (D_{EM}):

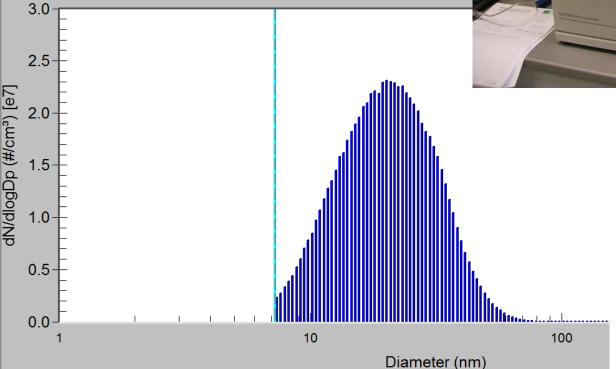

- SMPS Spectrometer = Scanning Mobility Particle Sizer
- **SMPS** = impactor + neutralizer + DMA + CPC
- 1) Impactor: removal of particles $D_p > 1 \ \mu m$
- 2) **Neutralizer:** redistribution of electric charge of particles according to Boltzmann (⁸⁵Kr, ²¹⁰Po, ²⁴¹Am)


3) DMA – Differential Mobility Analyser

- Classification of particles according to electric mobility (Z) into narrow size intervals depending on voltage difference between inner/outer electrodes → monodisperse aerosol at DMA output
- D_{EM} = *f* (shape, geometric size)

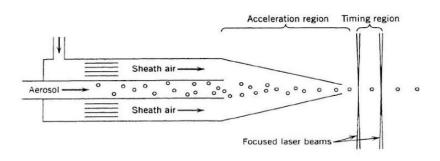
4) CPC – Condensation Particle Counter

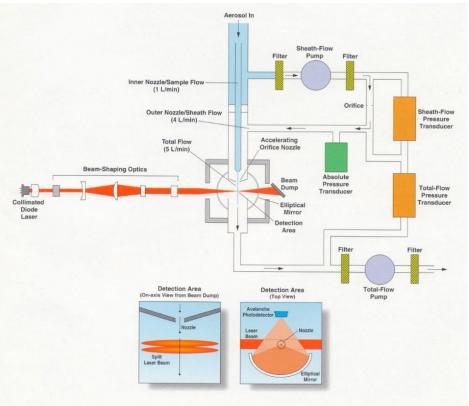
- detection of classified monodisperse particles
- saturation of air by vapor of n-BuOH (H_2O , isoPrOH) at increased T, condensation on particles after cooling, increase of particle size above 1 μ m, optical detection (scattering of laser light)



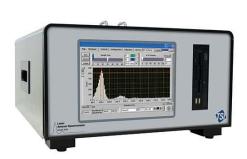
SMPS = Scanning Mobility Particle Sizer

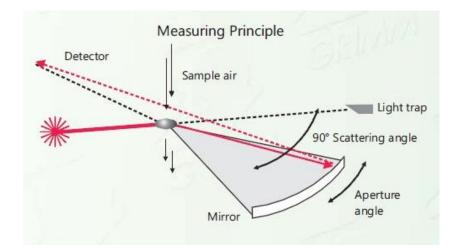
- size range: 2.5 1000 nm
- concentration range: max. 2×10⁸ P/cm³
- resolution: max 167 size channels
- CPC: n-BuOH, isopropanol, H₂O
- electrometer: CPC alternative lower sensitivity



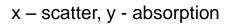

Aerodynamic diameter (Da):

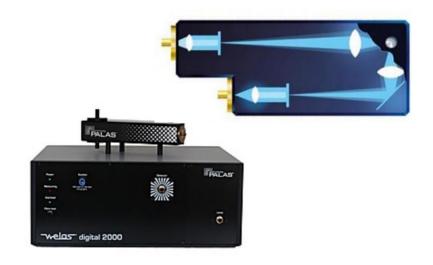
APS Spectrometer = Aerodynamic Particle Sizer - measurement of flight time between 2 laser beams - $D_a = f$ (density, shape, size) $\rightarrow 1 \text{ g/cm}^3 \longrightarrow \text{ sphere}$


- study of deposition (lungs) and behaviour of particles in air (sedimentation)
- "single-particle" detection
- size range $D_a{:}$ 0.5 20 μm
- concentration range: max. 1×10³ P/cm³
- resolution: 52 size channels



Optical diameter:


- **OPC** = Optical Particle Counter
- light scattering on particle
- "single particle" detection
- **D** = *f* (size, shape, refractive index)
- scatter angle \rightarrow **particle size**
- intensity of scatter puls \rightarrow concentration
- source: laser, white light (Palas)
- size range: 0.1 40 µm
- concentration range: max. 1×10⁵ P/cm³
- resolution: 52 size channels



Refractive index:
$$m_P = \frac{v_{air}}{v_P} = x - iy$$

Number concentration of aerosols: P/cm³

- measurement method determines:
 - \circ measured size range
 - \circ concentration range
 - o particle diameter

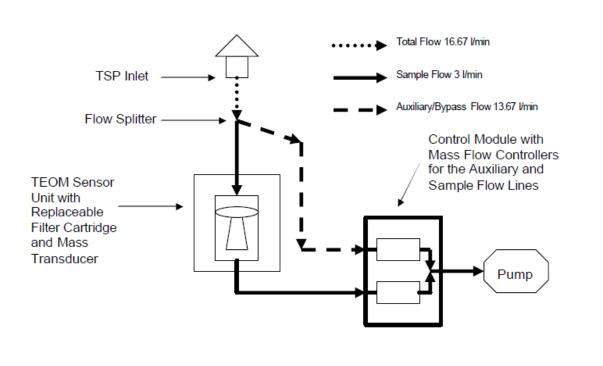
Method	Size range:	Concentration range (P/cm ³)	Particle diameter
SMPS	1 – 1000 nm	$ \begin{array}{r} 1 - 2 \times 10^8 \\ 1 - 1 \times 10^3 \\ 1 - 1 \times 10^5 \end{array} $	mobility
APS	0.5 – 20 μm		aerodynamic
OPC	0.1- 40 μm		optical

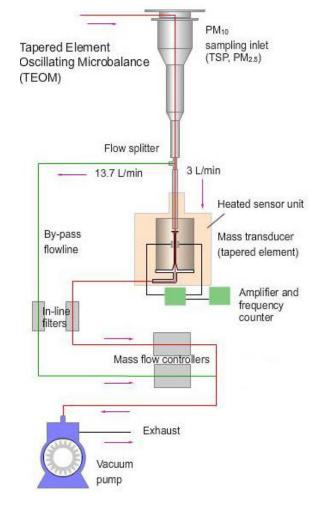
Mass concentration of aerosols: ng/m³, µg/m³

- measured mostly in defined size fraction (TSP, PM10, PM2.5, PM1)
- 1) discontinuous: sampling on filters (foils in impactors)
 - integral method
 - weighing filters or foils
 - difference in mass of filters/foils before and after exposition
 - filters \Rightarrow 1-2 days equilibration in special weighing room (50%, 20°C)
 - static charge on filter/PM \Rightarrow charge removal
 - weighing filters on special microbalance (\pm 1 µg)
 - reference method (nitrocellulose filters)
 - low time resolution (~ 2 24 h)
- 2) continuous: <u>on-line instrumentation</u>
 - high time resolution (1-min and less)
 - oscilation microbalance (TEOM)
 - radiometric method

- only 1 size fraction

- optical spectrometer \rightarrow parallel 3 size fraction (PM10, PM2.5, PM1)

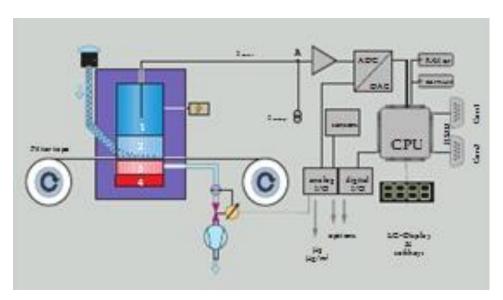



TEOM = Tapered Element Oscillating Microbalance

- continuous on-line measurement of mass concentration
- collection of PM on filter placed on oscillating tube \Rightarrow oscillation frequences decreases with

increasing mass of filter

- selection of analysed PM fraction according to inlet separator
- mass resolution: 0.1 μ g/m³ (5 min)

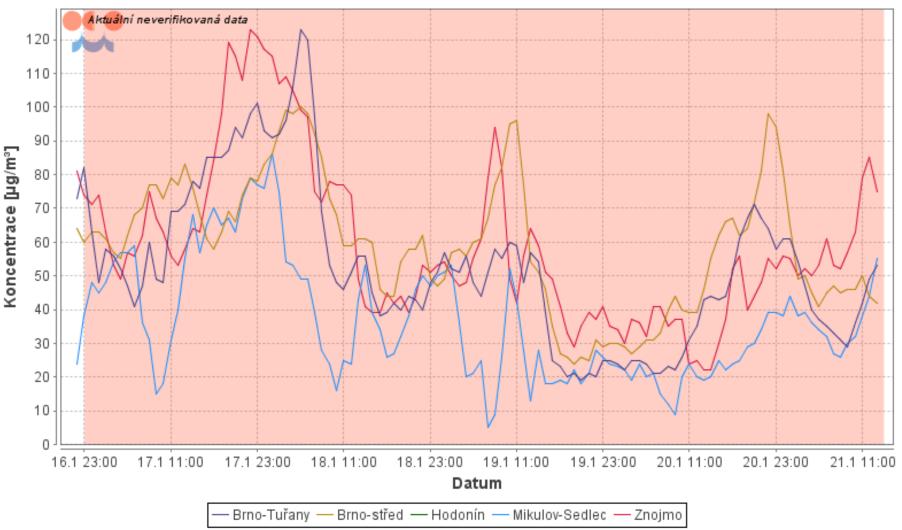

Radiometric method of mass concentration measurement:

"beta attenuation"

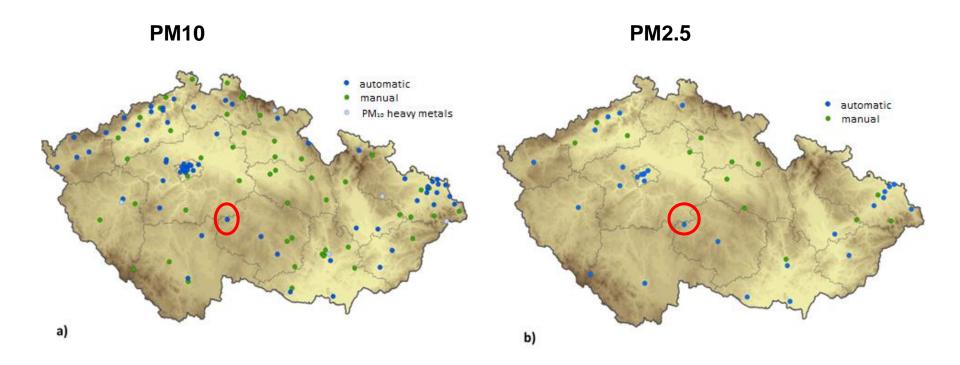
- semi-continuous measurement of mass concentration (time resolution 1 h)
- collection of aerosols on filters \Rightarrow measurement of β -radiation (¹⁴C, ⁸⁵Kr) attenuation with Geiger-Müller counter
- selection of analysed PM fraction according to inlet separator
- mass resolution: 1 μ g/m³ (24 h)

5 µg/m³ (1 h)

- measurement of PM10 and PM2.5 in CHMI



PM10 - Suspendované částice frakce PM10


17.01.2009 - 22.01.2009

- Radiometric method ("beta attenuation")
- Daily limit PM10: 50 µg/m³

AIM – automatic immision monitoring network (CHMI):

- measurement PM10 from 1996
- measurement PM2.5 from 2005

Station classification according to type: traffic, urban, rural, background

Váňa M., conference CAS 2013, Nový Smokovec

Aerosol toxicity:

Deposition of PM in lungs and subsequent release of bound harmful compounds

- > particle size: $Dp < 10 \ \mu m \Rightarrow$ enter into respiratory tract
- > particle shape: fibrous × spherical

fibrous particles (asbestos) - cancerogenic effects

- particle components:
 - \circ several compounds bound to PM toxic for body/organs \Rightarrow metals, organic compounds
 - o solubility / bioavailability of components

a) organic compounds:

- PAHs: BaP – carcinogenic/mutagenic (WHO), estimation of health risk (cPAHs)

cPAHs = 7 carcinogenic PAHs: benz[*a*]anthracene, chrysene, benzo[*b*]fluoranthene, benzo[*k*]fluoranthene, benzo[*a*]pyrene, dibenz[*a*,*h*]anthracene, indeno[1,2,3-*cd*]pyrene

- nitroPAHs
- PCBs
- PCDD/PCDFs, ...
- b) metals: Pb, Ni, Cr^{VI}, As, Cd, Hg (Be, Tl, Ba, Pt, ...)

Analysis of chemical composition:

- 1. Aerosol sampling: continuous, semi-continuous, discontinuous
- 2. Sample treatment: extraction, derivatization, preconcentration
- 3. Sample analysis: organic compounds GC, LC, IC, MALDI, ..., AMS

metals – PIXE, RTG, NAA, ICP, AAS, ...

ions - IC, CZE, FIA, AMS, ...

continuous methods:

- time resolution: seconds min
- in-situ
- Aerosol Mass Spectrometer)

semi-continuous methods:

- time resolution: min hod
- continuous sampling
- on-line analysis (in-situ)
- limited mostly to water-soluble compounds (ions, DCA, NH₄⁺, metals)

discontinuous methods:

- time resolution: 2-24 hod
- aerosol collection on suitable medium (filters, foils)
- off-line analysis in laboratory

Aerosol sampling:

obtaining representative sample of aerosol

- no change in chemical composition (elimination losses and deposition of PM)
- no change in particle distribution

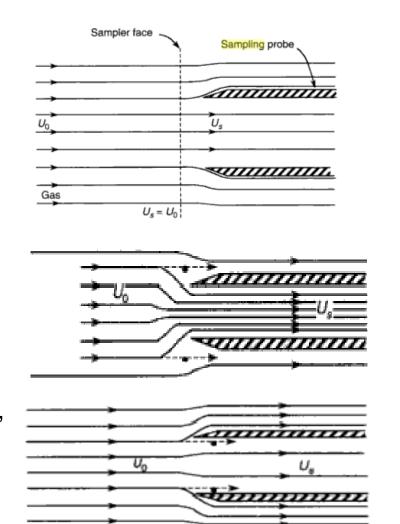
Isokinetic sampling:

- $U_{inlet} = U_{streamline}$
- same velocity of aerosol sample and air

Superisokinetic sampling:

 $U_{inlet} > U_{streamline}$

Subisokinetic sampling:

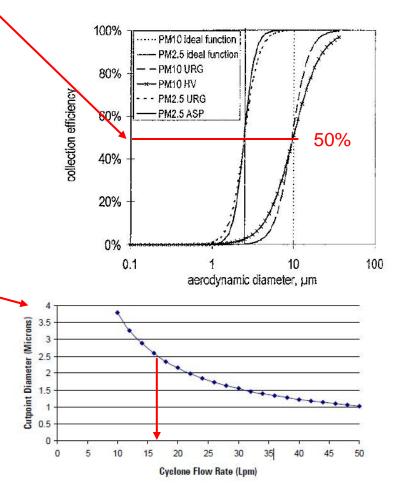

U_{inlet} < U_{streamline}

losses:

deposition,

> turbulence,

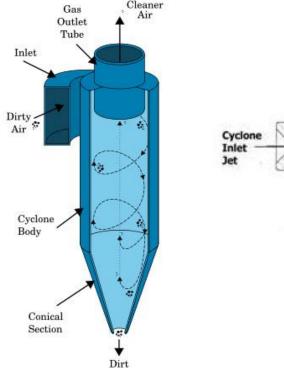
coagulation,

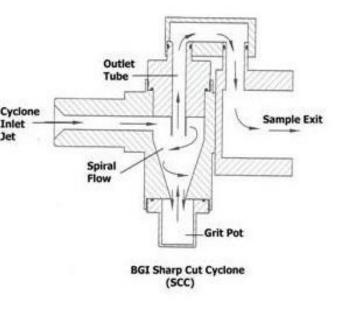

Size selective inlets:

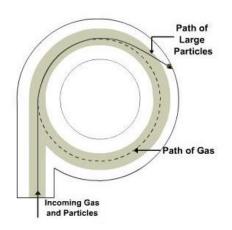
- selection of sampled particle fraction
- > removing of particles with $D_p > D_{p50}$ from sampled air stream
- > **PMX** ⇒ **X** = "cut-point" diameter (D_{p50}) ⇒ PM10, PM2.5, PM1, …)
- X (D_{p50}) determines size fraction sampled with 50% efficiency (PMX)
 - $D_p > X \implies$ particle removal (collection in inlet)
 - $D_p < X \implies$ particle penetration through inlet into sampler
- > PMx = f (sample flow rate) from sampled air stream
- principle inertial classification:

impactor

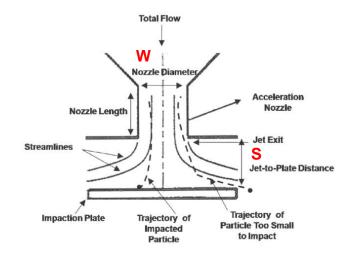
□ cyclone

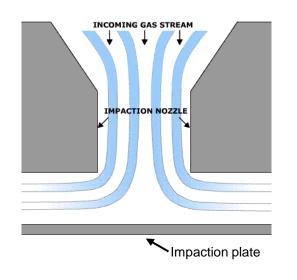

designed for specific cut-point diameter and sample flow rate



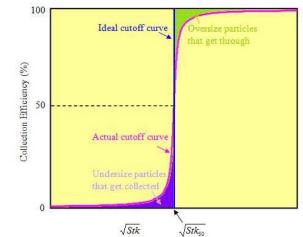

Size selective inlet: 1. cyclone

- particle separation based on principle of inertia
- larger particles with a higher inertia cannot follow the path and impact on the cyclone wall while gases and lighter particles have less inertia and exit cyclone through outlet tube
- no reliable theory for cut-off point calculation
- cut-off are not as sharp as in impactors
- long-term operation without maintenance
- collection of much larger quantity of particles than impactor



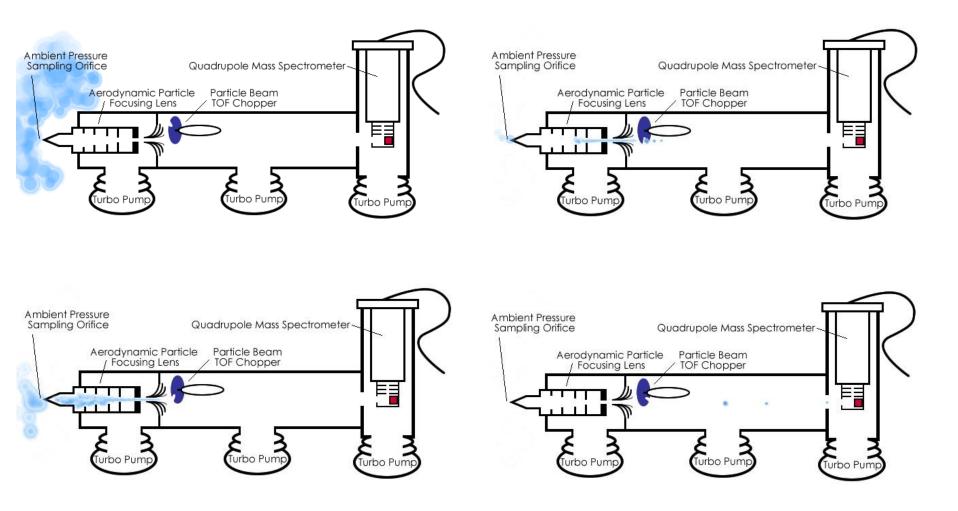

Size selective inlet: 2. impactor

- particle separation based on principle of impaction of PM on impaction plate in front of jet nozzle
- calculation of collection efficiency \rightarrow **Stk** (Stokes number)
- cut-off (d_{p50}) = \sqrt{Stk} $Stk_{50} = 0.24$ (circular nozzle)
 - = 0.59 (rectangular nozzle)
- particles with Stk > Stk₅₀ are collected



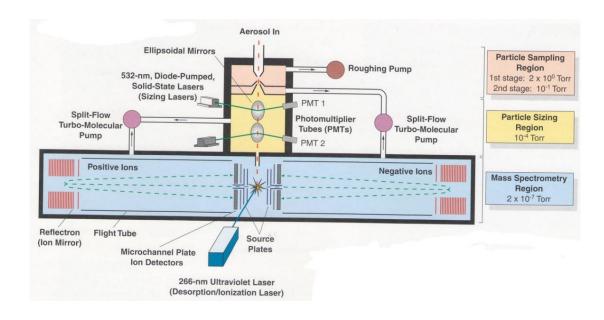
S – stopping distance

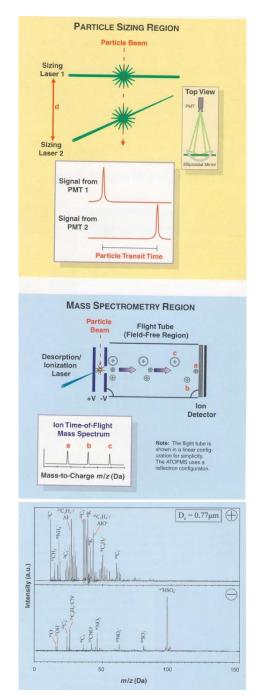
actual and ideal impactor cutoff curves


inlet PM2.5 + PM10

Continuous analysis of chemical composition of aerosols:

□ Aerosol Mass Spectrometer

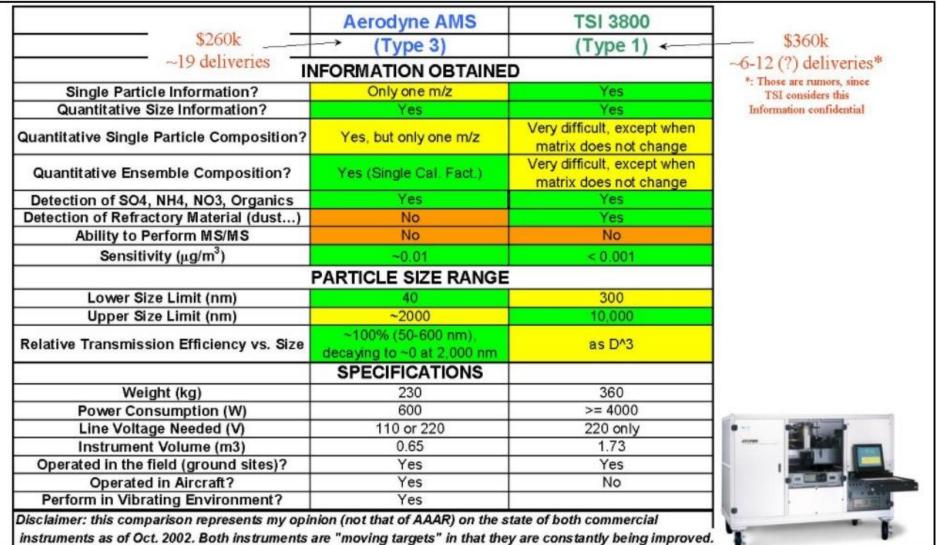

□ continuous sampling + on-line MS analysis of particles in real time



Aerosol Time of Flight Mass Spectrometer:

□ continuous sampling + on-line analysis in real time

- size and chemical composition of individual particles in real time
- size range: 30 1000 (3000) nm
- qualitative analysis:
 - sufficient for inorganic ions, metals
 - insufficient for identification of organic compounds
- quantitative analysis: questionable
- problematic field application (high weight)



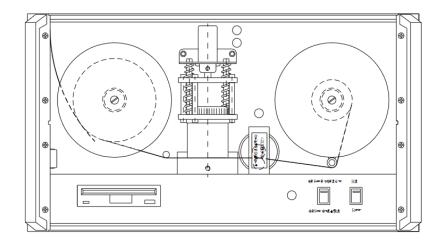
Commercial AMSs comparison:

- Aerodyne AMS (Aerodyne)

- ATOFMS = Aerosol Time of Flight Mass Spectrometer (TSI, model 3800)

Talk to representatives of both companies about how THEIR instrument matches YOUR application.

Black – Brown – Elemental – Soot – Organic – Inorganic Carbon


- Soot: A black, blackish or brown substance formed by combustion, present in atmosphere as fine particles, or adhering to sides of chimney or pipe conveying smoke
- Soot carbon (Csoot): carbon particles with morphological and chemical properties typical of soot particles from combustion: aggregates of spherules made of graphene layers, consisting almost purely of carbon, with minor amounts of bound heteroelements (H, O)
- Black carbon (BC) originates from combustion processes (coal, wood, traffic), responsible for absorption of visible sunlight and warms atmosphere. BC is generally used when optical methods are applied for its determination
- Elemental carbon (EC): fraction of carbon oxidized in combustion analysis above a certain temperature threshold, and only in presence of oxygen-containing atmosphere
- "BC" and "EC" are used as synonyms for Csoot
 BC × EC: different measurement methods
- Brown carbon (BrC; light-absorbing organic carbon): class of organic carbon, light brownish color, absorbs strongly in the ultraviolet wavelengths and less significantly in VIS. Includes tar materials from smoldering fires or coal combustion or biomass burning
- Organic carbon (OC): carbon in organic compounds (primary emissions from sources)
- Secondary organic carbon (SOC): C in organic compounds formed secondary in atmosphere
- **Total carbon** (**TC**): TC = OC + EC
- Inorganic carbon (IC): carbon in inorganic carbonates

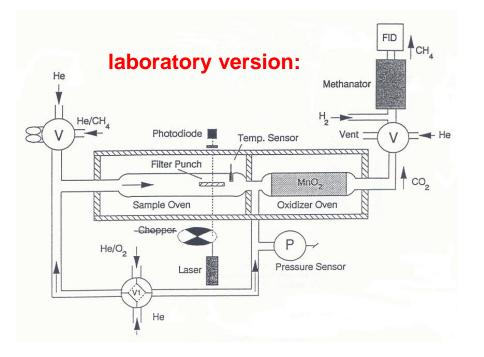
Aethalometer

- optical method of continuous detection of BC and BrC concentration
- BC = Black Carbon , BrC = Brown Carbon
- principle:
 - o continuous collection PM on qurtz filter
 - o attenuation of IR (880 nm) across filter is proportional to **BC** concentration
 - o attenuation of VIS (520 nm) is proportional to **BrC** concentration
 - o attenuation of UV (370 nm) is proportional to aromatic compounds

Model AE33:

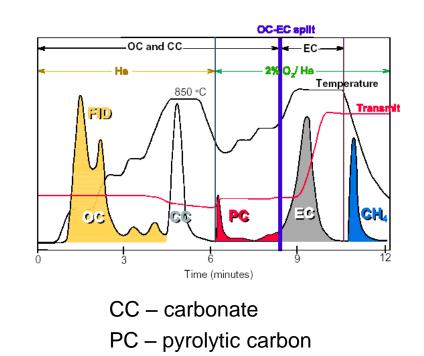
- attenuation of transmitted light at wavelengths of **370**, 470, **520**, 590, 660, **880** and 950 nm
- detection limit (1 hour): <0.005 μg/m³
- range: <0.01 to >100 μ g/m³ BC
- resolution: 0.001 µg/m³

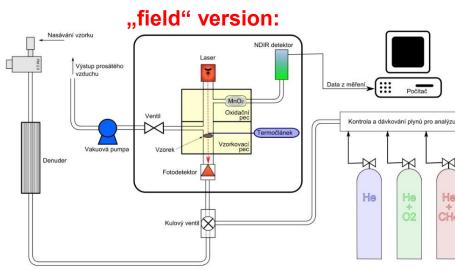
f. Magee Scientific


EC-OC analyser:

thermal-optical transmission method (TOT)

M


He


CH4

f. SunSet Laboratory

- direct analysis without derivatization
- collection PM on guartz filters
- laboratory version: off-line filter treatment $\textbf{EC-OC} \rightarrow \textbf{CO}_2 \rightarrow \textbf{CH}_4 \rightarrow \textbf{FID}$
- field version: on-line filter treatment $EC-OC \rightarrow CO_2 \rightarrow IR$

Semi-continuous analysis of chemical composition:

Continuous collection of PM into liquid and subsequent on-line analysis (FIA, LC, IC, ...)

□ advantages:

- collection of PM from air directly into liquid (H₂O)
- elimination of errors resulting from manual treatment of filters
- quick detection (FIA CL / FL) \rightarrow short time resolutiom (s min)

□ disadvantages:

- size of small particles has to be first increased to be collected
- limited only to water-soluble aerosol components: ions, NH₄⁺, metals, several

organic compounds (DCA, saccharides)

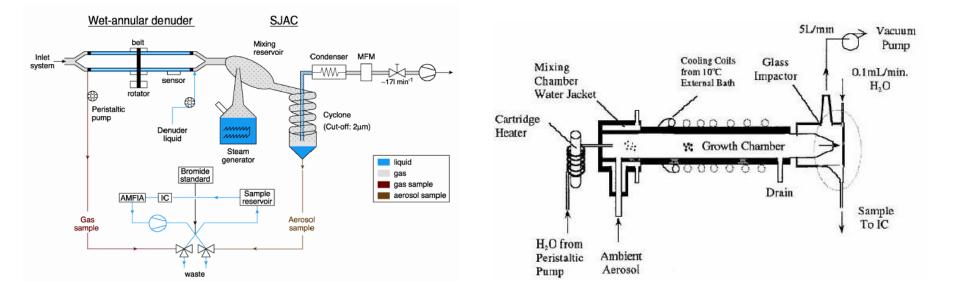
- interference: positive \Rightarrow collection gaseous pollutants into water (HNO₃, NO₂, NH₃, PAHs, ...)

 \rightarrow eliminated by diffusion denuder

negative \Rightarrow losses of volatile compounds by evaporation in oversaturated environment (PAHs, NH₄NO₃)

- on-line detection requires fast and sensitive instrumentation

 \Box continuous collectors \rightarrow 2 different principles:

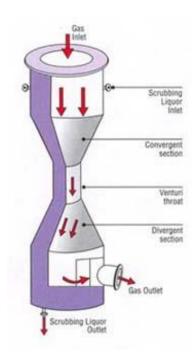

- condensation of supersaturated water steam on particles
- Venturi scrubber

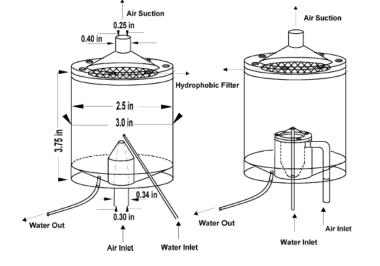
Continuous collectors: 1) condensation type

- condensation of supersaturated water steam on aerosol particles
- ➤ turbulent mixing of analysed air with water steam (100° C) → adiabatic cooling → water steam supersaturation → steam condensation → particle size increase → collection of enlarged particles into H₂0
- ➤ 100 % CE for Dp > 10 nm
- disadvantages: SVOC losses, NO₂ interference

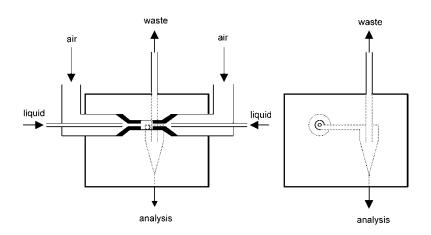
SJAC: Steam-Jet Aerosol Collector

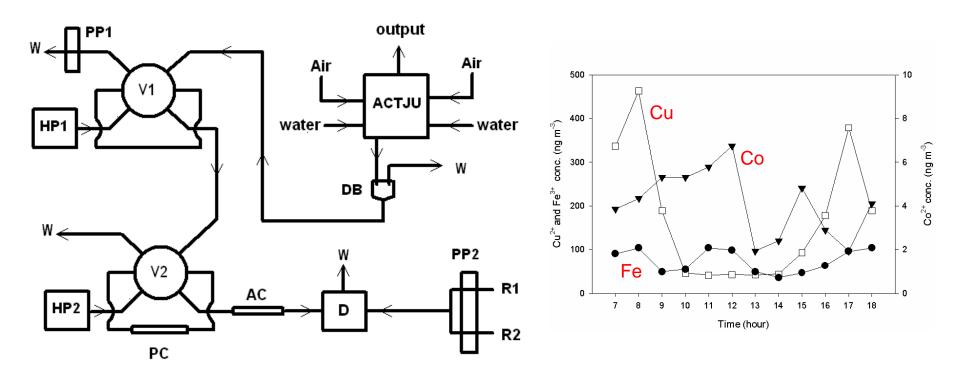
PILS: Particle-Into-Liquid Sampler



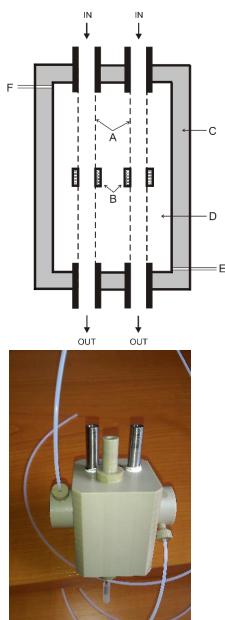

Continuous collector: 2) Venturi scrubber

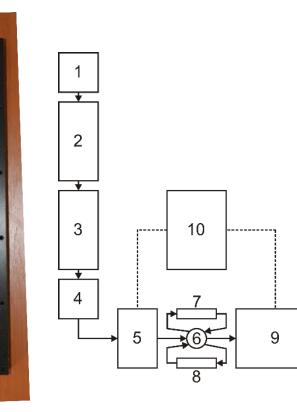
- Venturi scrubber: efficient way for removing of particles from air stream
- turbulent mixing of air and absorption liquid in Venturi throat, increased velocity of air, atomisation of water, mutual collisions of particles and water droplets, particles are collected into water droplets
- ➤ 100 % CE for Dp > 0.3 µm

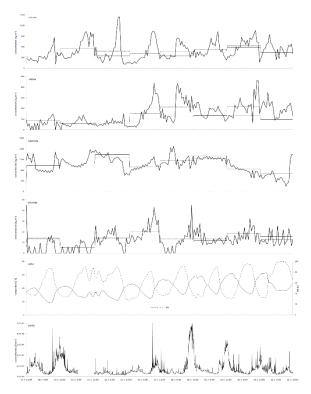

VPC: Venturi Particle Collector



ACTJU: Aerosol Counterflow Two-Jets Unit


Semi-continuous determination of metals in PM:




PP - peristaltic pump, D - detector, W - waste,
V - injection valve, HP - high-pressure pump,
DB - debubbler, PC - preconcentration column,
AC - analytical column, R1, R2 - reagents

Absorption liquid – H_2O CL detection: luminol + H_2O_2 Time resolution - 30 min

Semi-continuous determination of ions and DCAs in PM:

Absorption liquid – H_2O Time resolution - 60 min

1 – cyclone inlet, 2 – annular diffusion denuder, 3 – Condensation Growth Unit, 4 – ACTJU, 5 – piston pump, 6 – 10-way injection valve, 7 – preconcentration column No. 1, 8 – preconcentration column No. 2, 9 – IC, 10 – computer

Discontinuous analysis of chemical composition:

- □ sampling aerosols on filters / foils + off-line analysis in laboratory
- □ the most frequent method for determination of chemical composition
- □ sampling medium:
 - > filters \rightarrow only 1 size fraction of aerosols (PM1, PM2.5, PM10, TSP)
 - \rightarrow size selective inlets: impactor, cyclone
 - \succ foils in cascade impactors \rightarrow several size fraction simultaneously \Rightarrow size resolved

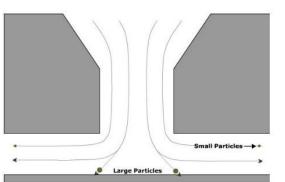
chemical composition

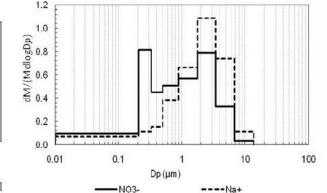
- advantages:
 - \succ collection of sufficient amount of sample \rightarrow analysis of different groups of compounds

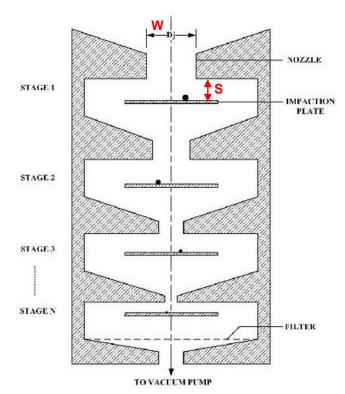
□ disadvantages:

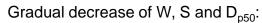
- off-line analysis of aerosol components in laboratory
- Iong time of sampling
- results averaged over time
- sampling artefacts (over-/under- estimation of aerosol component concentration):
 - 1. positive (adsorption of gases, organic vapors or SVOC on collected particles/filter)
 - 2. <u>negative</u> (losses due to volatility of compounds bound to collected particles (NH₄NO₃,

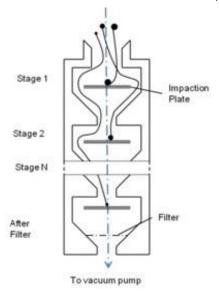
PAHs, ...)


- 3. change in composition of collected particles (reaction with NO₂ or oxidants (O₃, OH, ...)
- possible contamination during manual processing or transport
- > particle size distortion (particle losses in inlet or between plates of cascade impactor)


Sampling PM on cascade impactors:

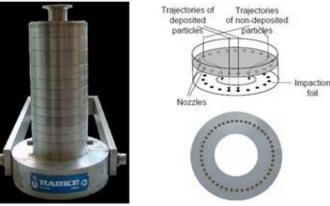

- classification of particles into several sizes according to aerodynamic diameter
- > collection of particles on principle of inertial impaction:
 - mass concentration and chemical composition in several size fraction simultaneously (size resolved composition)
 - \bullet number concentration PM \rightarrow "electrical" impactor
- cascade impactor: 3 13 plates + "back-up"filter
- ➤ separation particles in size range 10 nm 18 µm
- Iow plates small amount of samples
- sampling medium: 1. foils (AI, Tedlar)


2. filter (Nucleopore, Zefluor)


foils covered with inert grease (Apiezon, silicone) to prevent particle bouncing and transfers to next plate

Cascade impactors used for mass + chemical composition:

- Berner low pressure: 10 plates, 25 LPM, 26 nm 6.8 μm
- Moudi (rotating): 13 plates, 30 LPM, 10 nm 18 μm
- Dekati low pressure: 13 plates, 30 LPM, 30 nm 10 μm
- Andersen: 8 plates
- Sioutas personal: 3 plates, 9 LPM


Parameters of Berner LPI:

Stage	D _{Nozzle} (mm)	No Nozzles	S _{Jet-to-Plate} (mm)	Re _{Nozzle}	P _{up} (kPa)	Stk ₅₀	D ₅₀ (μm)
1	0.289	262	0.99	461	17.74	0.198	0.026
2	0.315	127	0.95	872	29.90	0.213	0.062
3	0.343	65	0.74	1565	47.34	0.234	0.110
4	0.426	25	1.01	3275	77.19	0.235	0.173
5	0.531	16	1.24	4106	95.23	0.204	0.262
6	0.686	16	1.70	3178	100.47	0.194	0.460
7	0.711	46	2.28	1066	101.11	0.190	0.890
8	1.210	33	2.96	874	101.26	0.202	1.770
9	2.180	20	3.48	800	101.30	0.202	3.400
10	5.150	6	5.98	1129	101.32	0.190	6.800
preimpactor	14.60	1	_	-	101.32	0.200	13.70

Moudi:

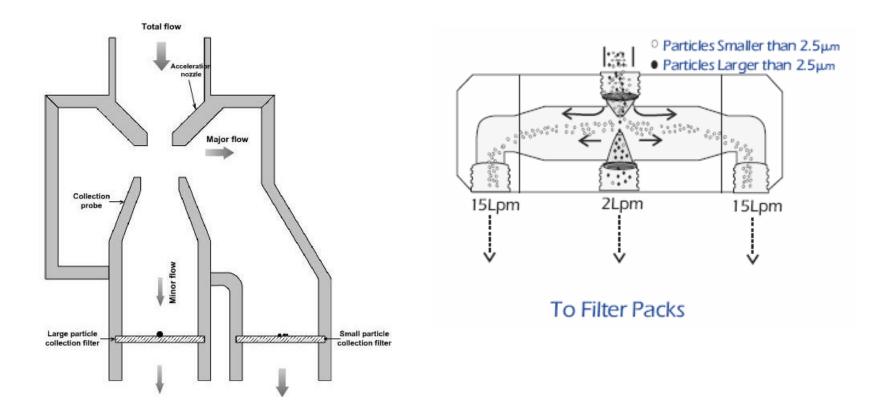
Berner Low Pressure Cascade Impactor

Electrical Low Pressure Impactor (ELPI, Dekati)

- measurement of real-time particle size distribution and number concentration (7 nm 10 μ m) \geq
- principle: \geq

Vacuum pump

- o particle charging in a unipolar corona charger
- o size classification of particles in a cascade impactor according to aerodynamic diameter


o electrical detection of electric charge carried by particles into each impactor stage

Specifications	Stage	Di [µm]	Number max [1/cm ³]	
Particle size range	0.007 – 10 μ m with filter stage 0.030 – 10 μ m standard	13	[pin]	[//offi]
Number of size classes	12	12	8,4	2,0E+04
Sample flow rate	10 or 30 l/min	11	5,3	2,0E+04
Impactor dimensions	Ø 65 x 300 mm	10	3,2	4,5E+04
ELPI dimensions	H 570 x W 400 x D 230 mm	9	2	8,8E+04
Collection plate diameter	25 mm	8	1,3	1,6E+05
Unit weight	35 kg	7	0,81	2,9E+05
Lowest stage pressure	100 mbar	6	0,51	5,4E+05
		5	0,33	9,8E+05
Sample		4	0,21	1,7E+06
•		3	0,14	3,1E+06
Corona 🙀 Flush pump and f	ilter	2	0,081	6,1E+06
charger		1	0,042	1,4E+07
HV and power sol	irce External PC or laptop	Filter stage	0,014	6,9E+07
Impactor	Internal PC Controls and LCD display			

Virtual Impactor

- impaction plate is replaced with collection probe
- particles with sufficient inertia are thrown into collection probe. These particles remain airborne and are carried by minor air flow into filter.
- smaller particles are carried radially away from jet axis by major air flow, avoid collection probe and are collected on another filter
- > particles larger than and smaller than cut-off diameter are collected on separate filters

Sampling on filters: rob Filter Holder (with filter, support screen and D-ring/gasket Samplers: Flow Regulator Flow high-volume (30-60 m³/h: Digitel (filters 150 mm), ... Measure evice medium-volume (3-6 m³/h): Leckel, Derenda filters 47 mm Iow-volume (1 m³/h): Leckel, home-made inlet **PM2.5**

NILU filter (47 mm) holder

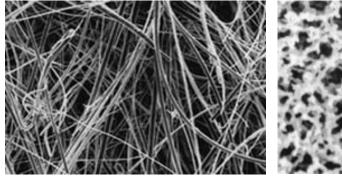
Digitel DHA-80

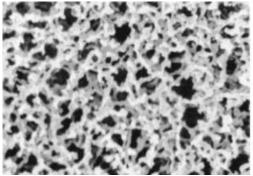
inlet PM2.5

Filters:

 \square 100 % collection efficiency (Dp \approx 0.3 $\mu m)$

□ choice of filter type according to analysed compounds:


- ➢ fibrous (quartz, QMA) porosity 70-99%, low flow resistance, Ø fibre 1-100 µm
 - analysis of organic compounds (ions, metals) bound to PM
- > membrane: porosity 50-90%, higher flow resistance
 - cellulose esters (nitrate/acetate-cellulose) \rightarrow analysis of metals
 - Teflon (Zefluor, Teflo) \rightarrow analysis of ions
 - polycarbonate → determination of particle shape (SEM, TEM)


□ shape and size of filters: circular (Ø 25; 37; 47; 150 mm)

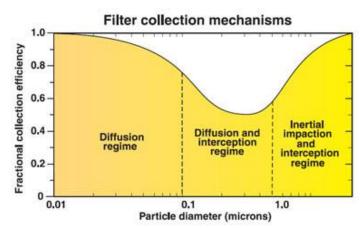
rectangular (250 × 200 mm)

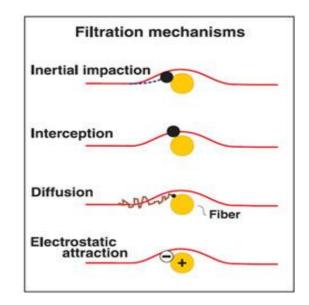
 \Box dependence on air humidity \rightarrow equilibration at const t/RH before weighing (24-48 hod)

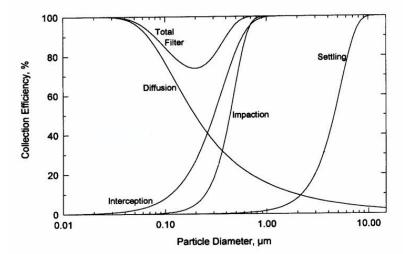
clean and exposed QMA (PM2.5, 24 h, 720 m³)

quartz and membrane filter under microscope

Efficiency of PM collection on filters:


Mechanisms of PM collection on filters / deposition in lungs:


- inertial impaction
- interception
- diffusion (Brown)
- electrostatic deposition
- gravitational settling


Efficiency of filters:

- *f*: ➤ filter type (filter thickness, diameter of pores/fibres, ...)
 - particle diameter
 - flow rate of sample through filter
 - filtration mechanism
- minimum filtration efficiency for particles with $D_a \approx 0.3 \ \mu m$

(the most penetrating particle size !)

Discontinuous analysis of chemical composition:

- 1. collection of PM on filters or foils
- 2. direct on-line filter analysis: OC/EC: field analyser

BC: aethalometer

metals: RTG, NAA, PIXE, ..., LAS, LIBS, ...

3. off-line filter/foils analysis:

□ filter treatment:

- before sampling: filter cleaning only for QMA (500°C, min. 10 h)
 - equilibration at constant T/RH (20°C / 50%)
 - removal of static charge
 - weighing of filter on sensitive microbalance (\pm 1 µg)
- > after sampling: equilibration, removal static charge, weighing
 - extraction: water ultrasonic extraction

organic solvents: MeOH, DCM, acetone, hexane, ...

ultrasonic / Soxhlet / ASE / PSE

- decomposition: HNO₃, HF, ...

- □ extract treatment: extract preconcentration: solvent evaporation
 - extract fractionation: silicagel/alumina + solvents with increased polarity extract derivatization: low volatility or thermally unstable compounds
- □ extract analysis: organic compounds: GC-MS/FID, LC-MS, HPLC, IC, MALDI, ...

OC/EC: laboratory analyser metals: ICP-MS, AAS, RTG, OES, ... ions: IC, CZE, FIA, LC,

Chemical composition of aerosols:

variable

- □ dependent on particle size, time and place of sampling (different emission sources)
- □ use: identification of emission sources of PM

estimation/evaluation of health risk PM

- □ fine × coarse aerosol
- D PM10, PM2.5, PM1, UFP
- □ water-soluble × water-insoluble
- primary PM components: compounds emitted directly from source

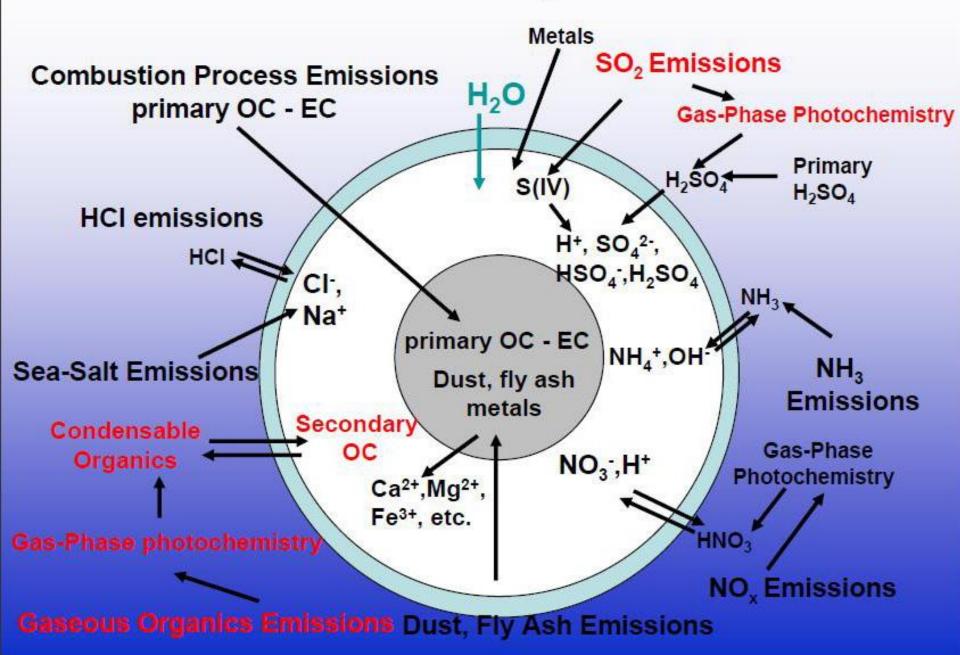
secondary PM components: compounds formed secondary in atmosphere

- \circ reaction of gaseous precursors (SO₂, NO₂, ... → H₂SO₄, HNO₃)
- \circ oxidation of VOCs, reaction with NO₂, ...
- o photolysis of organic compounds, ...

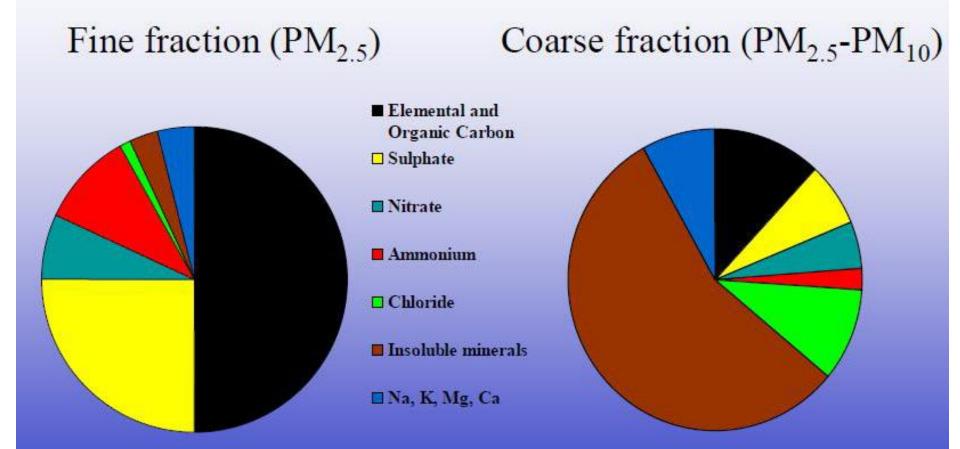
Chemical composition of atmospheric aerosols:

1) **inorganic compounds**: • primary emission: metals, insoluble minerals, ...

• secondary formation: nitrates, sulphates, NH_4^+ , ...

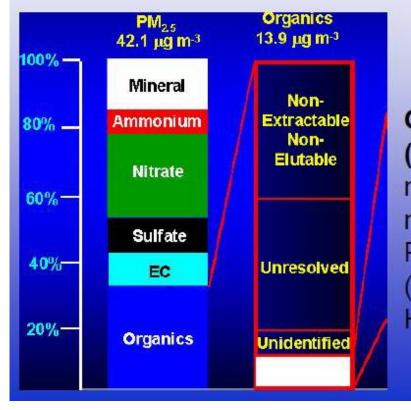

2) organic compounds:

- primary: EC, polar (acids, saccharides,...) and nonpolar (PAHs, alkanes, ...)
- secondary: oxo-, nitro-, ... derivates, dicarboxylic acids, ...
- HULIS (HUmic-Like Substances)
- 3) water: mainly PM2.5 particles are mostly hygroscopic, water content increases with RH (RH > 80%: H₂0 usually forms more than $\frac{1}{2}$ PM2.5 mass)
- \Box SIA: NH₄NO₃, (NH₄)₂SO₄, NH₄Cl, ...


SOA: secondary organic aerosol (DCAs, oxo/nitro-derivates, ...)

- □ carbon in PM: "carbonaceous fraction of aerosols": EC + OC (+ carbonates)
 - **EC**: elementary carbon (\approx BC, soot)
 - EC: elementary carbon (≈ BC, soot)
 OC: organic carbon, ∑ C in organic compounds in PM
 OC + EC form 25-75% PM mass, OC + EC = TC, TC total carbon
 - WSOC: water soluble organic compounds
 - WNSOC: water non-soluble organic compounds
- **<u>HULIS</u>**: group of WSOC with high molecular weight (200-600 Da) accounting up to 72% of WSOC mass. HULIS are comprised of hydrophobic aliphatic and aromatic compounds containing different polar functional groups (hydroxyl, carboxyl and carbonyl). Due to complexity and chemical diversity (hundreds of individual substances), chemical characterization is still relatively poor. Primary and secondary origin.

Chemical composition


Chemical composition : an example of its dependence on aerosol size

Field campaign in UK, 1997

Organic Compounds (OC)

- Man made : combustion processes + SOA from VOC
- Natural : SOA from biogenic VOC
- Complex mixture of 1000's of compounds

Only 10% identified with n_c > 20 (semi & nonvolatile): n-Alkanes n-Alkanoic acids Polycyclic aromatic compounds (e.g. Polycyclic Aromatic Hydrocarbons, PAH)

- Unresolved (UCM): rozvětvené cyklické a nenasycené CHx (emise z dopravy)
- Non-Extractable/Non-Elutable: HULIS, …

Organic compounds analysed in PM collected on filters + indicated sources:

 \Box compounds important due to health effects \Rightarrow evaluation of health risk

(PAHs, nitroPAHs, PCBs, dioxines, ...)

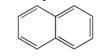
\Box molecular markers \Rightarrow unique identification of emission sources

- monosaccharide anhydrides: biomass combustion
- resin acids + retene: softwood combustion
- methoxyphenols: wood combustion (soft- and hard-wood)
- > saccharides: monosaccharides: wood combustion, plant

disaccharides: plant (pollen, ...), microorganisms

polyols: fingal spores, bacteria, soil microorganisms

- > alkanes: traffic, coal combustion, biological sources (plant metabolites)
- > acyclic isoprenoids: traffic, biogenic sources
- hopanes: coal combustion, traffic
- > steranes: traffic
- picene: coal combustion
- triphenylbenzene: plastic material combustion
- > 1-nitropyrene: diesel
- > oxo/nitro-PAHs: SOA
- dicarboxylic acids: traffic, SOA
- > higher monocarboxylic acids (C_{16} , C_{18}) + cholesterol: cooking

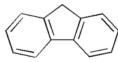

□ other: OC-EC, HULIS, ...

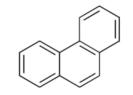
Polycyclic aromatic hydrocarbons: 16 priority PAHs

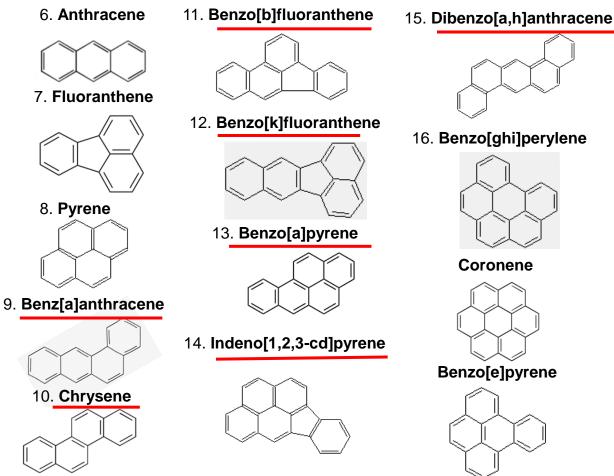
	Potency equivalency factors
Benz[a]anthracene	0.1
Chrysene	0.01
Benzo[b]fluoranthene	0.1
Benzo[k]fluoranthene	0.1
Benzo[a]pyrene	1.0
Benzo[e]pyrene	0.004
Indeno[1,2,3-c,d]pyrene	0.1
Dibenzo[a,h]anthracene	5.0

carcinogenic PAHs ------

1. Naphthalene

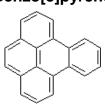

2. Acenaphthylene

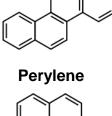

3. Acenaphthene



4. Fluorene

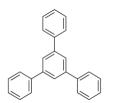
5. Phenanthrene

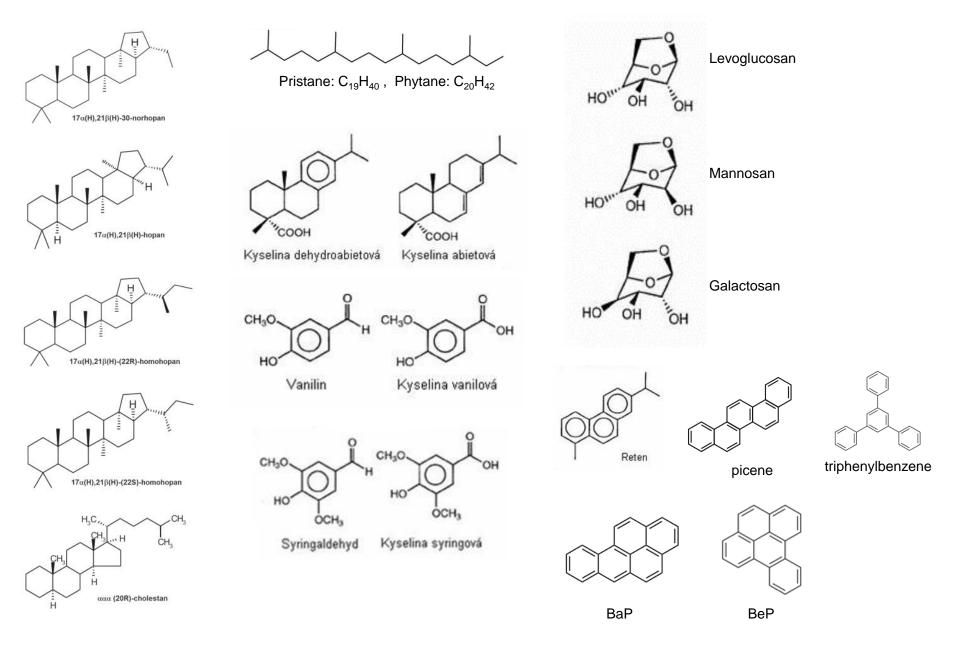




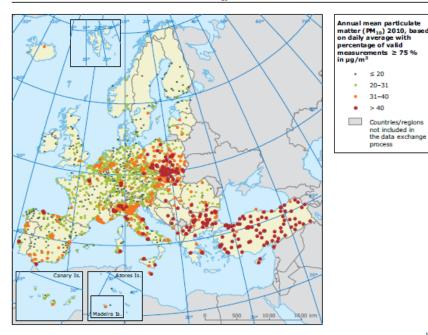
Picene

Retene

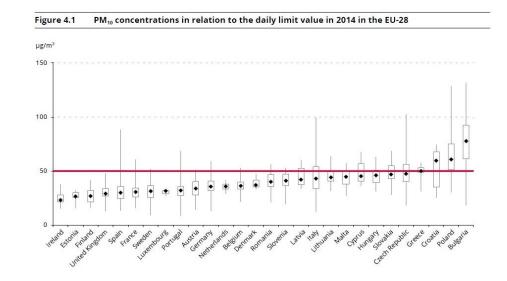




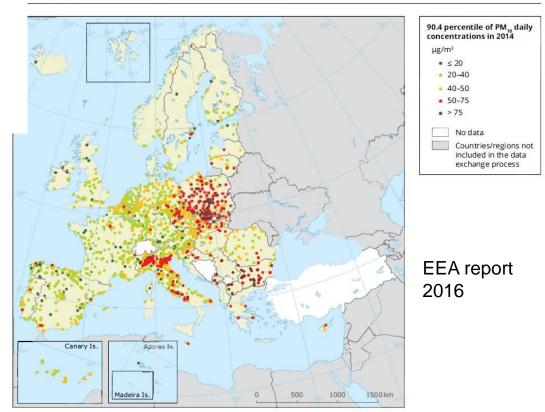
Triphenylbenzene


PM10 in Europe

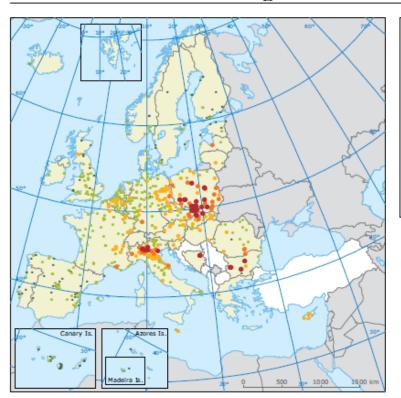
≤ 20 20-31 31-40 > 40


Countries/regions not included in the data exchange

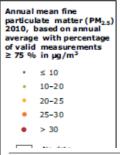
process


Map 2.1 Annual mean concentrations of PM₁₀ in 2010

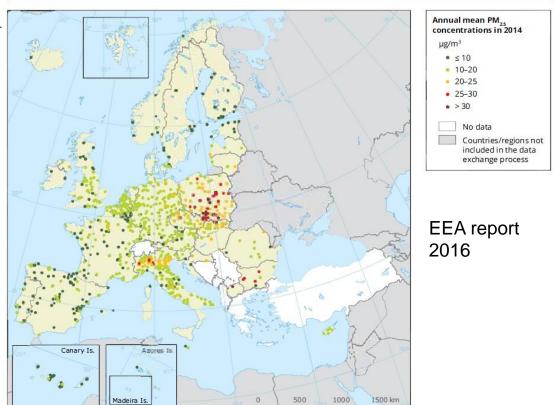
EEA report 2012

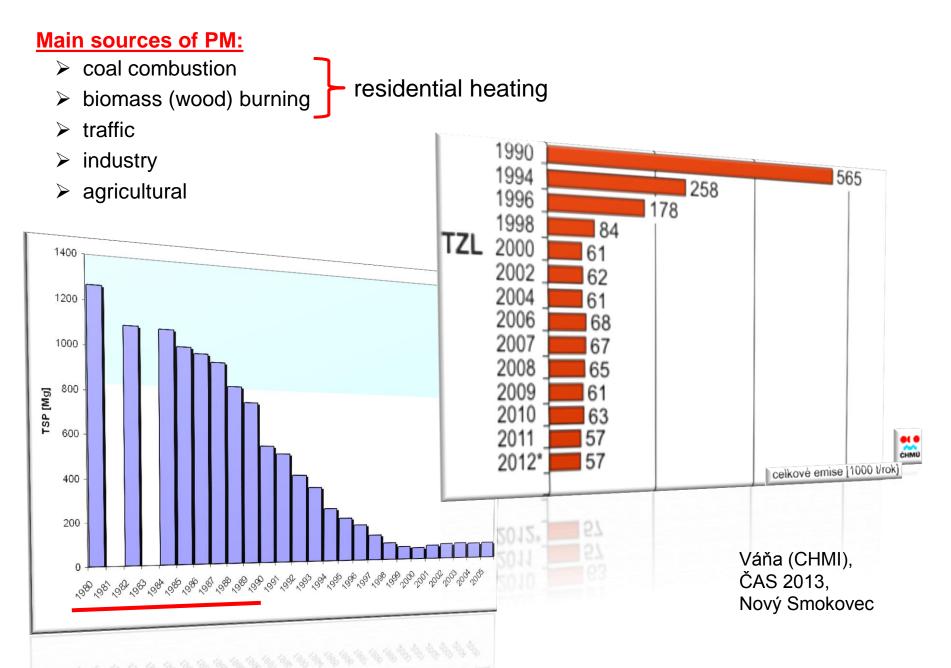


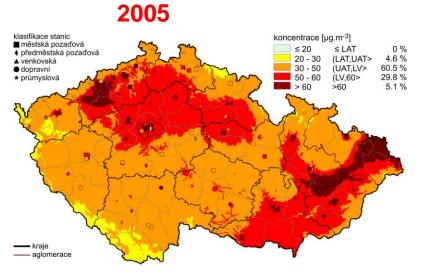
Concentrations of PM₁₀ in 2014 p 4.1

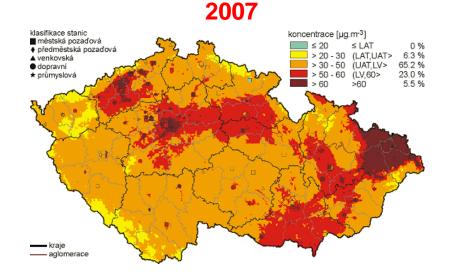


PM2.5 in Europe

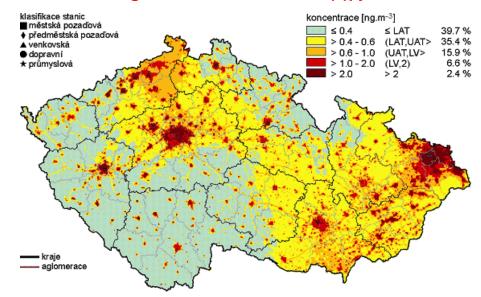

Map 2.2 Annual mean concentrations of PM_{2.5} in 2010


EEA report 2012

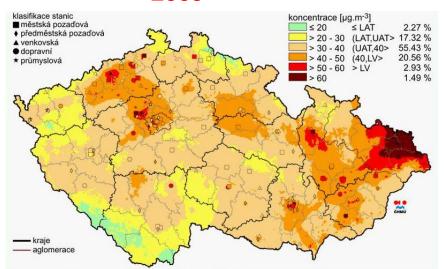

Map 4.2 Concentrations of PM_{2.5} in 2014



TSP concentration + dust emission: trend in CR



Field of 36. highest 24-hod concentration PM10 in CR (CHMI): ⇒ effect of meteorological situation on PM10



Annual average concentration of benzo(a)pyrene in 2007

2009

Positive use of aerosols:

Speleotherapy ⇒ inhalation of speleoaerosols (cave aerosols) in selected caves (Sloupsko-Šošůvské caves), specific clima with constant temperature and high humidity, metals in aerosols: Ca, Mg, K, Na, Cl, Fe, … → treatment of asthma

□ Inhalation aerosols:

- application of the rapeutic aerosols for targeted dosing of aerosols into patient lungs \rightarrow aerosols as carrier of drug \rightarrow **treatment of allergy**
- treatment of cystic fibrosis (disruption of chloride cellular transport): transport of genetically modified virus to lungs
- Elimination of CO₂ increase in atmosphere: transport sulphate aerosols into low stratosphere (5% contribution of sulphur into aircraft fuel)

Literature:

1) W.C. Hinds: Aerosol Technology. Properties, Behaviour, and Measurement of Airborne Particles (Wiley, 1982)

2) K. Willeke, P.A. Baron: Aerosol Measurement. Principles, Techniques, and Applications (Nostrand Reinhold, 1993)

3) P.C. Reist: Aerosol Science and Technology (McGraw-Hill, 1993)

4) C.N. Davies: Aerosol Science (Academic Press, 1966)

5) I. Colbeck: Environmental Chemistry of Aerosols (Blackwell Publishing, 2008)

6) K.R. Spurný: Analytical Chemistry of Aerosols (CRC Pres, 1999)