Conformation, allostery

Petr Louša

16.11.2017

Petr Louša

Outline

2 Allostery

3 Kinetics of conformational changes

4 Folding

Conformation of proteins

constitution topology of molecule – isopropanol, n-propanol configuration bond arrangement – cis/trans, R/S conformation 3D structure – rotation around single bonds

4/28

Outline

3 Kinetics of conformational changes

4 Folding

Allostery

- Change of conformation after ligand binding.
- \Rightarrow Change of $K_{\rm d}$ for other ligands.
- Typical example hemoglobin.
- Often multimeric proteins with more equivalent active sites.

Types of allostery

- By type of $K_{\rm d}$ change:
 - positive K_d decreases next substrate binds more easily activation
 - negative K_d increases next substrate binds more poorly – inhibition

Types of allostery

- By type of $K_{\rm d}$ change:
 - positive K_d decreases next substrate binds more easily activation
 - negative K_d increases next substrate binds more poorly – inhibition
- By type of substrate:
 - homotropic more same ligands bind to protein e.g. hemoglobin
 - heterotropic activator/inhibitor differs from next bound substrate – e.g. strychnine inhibits glycine receptor (inhibitive neurotransmitter)

Types of allostery

- By type of $K_{\rm d}$ change:
 - positive K_d decreases next substrate binds more easily activation
 - negative K_d increases next substrate binds more poorly – inhibition
- By type of substrate:
 - homotropic more same ligands bind to protein e.g. hemoglobin
 - heterotropic activator/inhibitor differs from next bound substrate – e.g. strychnine inhibits glycine receptor (inhibitive neurotransmitter)
- Non-regulatory allostery
 - protein needs other component for its function, but is not regulated by it – e.g. ions, vitamins

Hill equation I

Quantification of cooperativity

$$R + L \rightleftharpoons RL \qquad K_{d}^{(1)}$$

$$RL + L \rightleftharpoons RL_{2} \qquad K_{d}^{(2)}$$

$$\vdots$$

$$RL_{n-1} + L \rightleftharpoons RL_{n} \qquad K_{d}^{(n)}$$

• Constants $K_{d}^{(i)}$ differ – system is cooperative.

Hill equation II

- Assumption $[RL]_i = 0$
- Only one equation remains \Rightarrow Hill analysis.

$$R + nL \rightleftharpoons RL_n \qquad \hat{K_d} \qquad (1)$$
$$\hat{K_d} = \frac{[R][L]^n}{[RL]_n} \qquad (2)$$
$$\hat{K_d} = (K_d)^n \qquad (3)$$

Analysis of experiment

• Measure fraction of bound receptors and linearize:

$$y = \frac{[\mathrm{RL}]_n}{[\mathrm{R}_{\mathrm{tot}}]}$$
(4)
$$\log\left(\frac{y}{1-y}\right) = n\log[\mathrm{L}] - \log\hat{K}_{\mathrm{d}}$$
(5)

Microskopic models I – MWC model I

- Monod, Wyman, Changeux
- Two-state receptor system can "switch" only in free form.
- Form A is dominant in free form.

 $[A] \gg [B]$

- Affinity to B is significantly larger.
- Assumes change of protein structure after binding "locking" in B state.

Microskopic models I – MWC model II

• Assumes constant microscopic *K*_d.

$$\begin{array}{c} A\rightleftharpoons B\\ A+L\rightleftharpoons AL\\ AL+L\rightleftharpoons AL_2 \end{array} \qquad \begin{array}{c} B+L\rightleftharpoons BL\\ BL+L\rightleftharpoons BL_2 \end{array}$$

- Ligand binds preferentially to B and shifts the equilibrium of free forms.
- Problem?

Microskopic models II – KNF model

- Koshland, Nemethy, Filmer
- Generalization of MWC model.
- Assumes different B constants for sequential equilibria.
- $K_{\rm d}$ constants are free parameters for fitting.
- Each ligand binding changes the binding site for other ligands.
- Disadvantage?

Microskopic models II – KNF model

- Koshland, Nemethy, Filmer
- Generalization of MWC model.
- Assumes different B constants for sequential equilibria.
- $K_{\rm d}$ constants are free parameters for fitting.
- Each ligand binding changes the binding site for other ligands.

 Disadvantage: too many free parameters (K_d constants) – better for experiment fitting than for predictions.

Outline

Kinetic view to allostery

- Ligand binding changes equilibrium between two "states" (MWC model).
- After binding, structural ensemble changes B forms dominate.
- Caused by changes of kinetic parameters of the transition.

Processivity vs. Stochasticity

Processivity

- Ability to run irreversibly in one direction.
- E.g. ATP synthase, motor proteins, polymerases
- Free energy decreases in larger jumps irreversibility.
- Source of energy needed ATP, GTP, proton gradient.
- ATP ca $20k_{\rm B}T$ of energy.

Processivita vs. Stochasticity

Stochasticity

- Many reversible steps.
- E.g. glycolysis.
- Reversibility $\Delta G \approx k_{\rm B} T$
- Even many reversible steps can lead to irreversible event ΔG adds up.

Outline

3 Kinetics of conformational changes

Fundamental questions

1. What structure does given sequence of amino acids take?

2. How does the protein fold?

Fundamental questions

1. What structure does given sequence of amino acids take?

- Homology modeling
- Prediction *de novo*
 - Global minimum search ΔG
 - MD of stretched chain
 - Folding@home, Foldit
 - Evolution covariation requires hundreds of homologous sequences
- 2. How does the protein fold?

Fundamental questions

1. What structure does given sequence of amino acids take?

- Homology modeling
- Prediction *de novo*
 - Global minimum search ΔG
 - MD of stretched chain
 - Folding@home, Foldit
 - Evolution covariation requires hundreds of homologous sequences

2. How does the protein fold?

- Folding process
- Kinetics
- Transit states
- Intermediates

Sometimes.

- Sometimes.
- Spontaneous folding
 - Small proteins often fold without any help.
 - Often capable of multiple de- and renaturation.
 - Anfinsen experiment renaturation of ribonuclease A.
 - Can be simulated by computers.

- Sometimes.
- Spontaneous folding
 - Small proteins often fold without any help.
 - Often capable of multiple de- and renaturation.
 - Anfinsen experiment renaturation of ribonuclease A.
 - Can be simulated by computers.
- "Almost" spontaneous folding
 - Folding starts already during translation.
 - Tranlation takes long time up to 10 seconds.
 - Can not fold spontaneously order is important.
 - Folding in membrane.

- Sometimes.
- Spontaneous folding
 - Small proteins often fold without any help.
 - Often capable of multiple de- and renaturation.
 - Anfinsen experiment renaturation of ribonuclease A.
 - Can be simulated by computers.
- "Almost" spontaneous folding
 - Folding starts already during translation.
 - Tranlation takes long time up to 10 seconds.
 - Can not fold spontaneously order is important.
 - Folding in membrane.
- Only with "helpers" chaperons.
 - Hydrophobic boxes.
 - Proteins can search through the configuration space more easily.

Folding as conformation change

• Folding follows the same physics as other structural changes.

Differences:

- Large ranges of equilibrium and nonequilibrium conditions.
- De-/renaturation can go very slowly and reversibly or "immediately".
- "Unfolded state" is **not** a state.
- Many different substates difficult to characterize.
- Differ also in the denaturation process temperature, pH, chemical agents,...

Overall folding rate

- Unfolded protein can have multiple substates.
- Only some allow transition to folded state.
- Depends on particular rate constants.
- Depends on substate populations.
- Population can differ based on the denaturation process.

Φ values analysis

- Alan Fersht
- Influence of individual residues on folding and transient states.
- Compare ΔG profiles for wild type and mutant.

$$\Delta \Delta G_{ij} = \Delta G_{ij}(\text{mut}) - \Delta G_{ij}(\text{wt})$$

$$\Phi_{\rm F} = \frac{\Delta \Delta G_{\rm D\ddagger}}{\Delta \Delta G_{\rm DN}}$$
(6)
(7)

- $\Phi_{\rm F} = 0$ residuum is unfolded in transient state.
- $\Phi_{\rm F} = 1$ residuum is folded in transient state.

Petr Louša

Conformation, allostery - exercise

Petr Louša

16.11.2017

Petr Louša

Conformation, allostery - exercise

16. 11. 2017 24 / 28

Hill equation

1. Draw Hill plot for case of negative cooperativity.

Hill equation

1. Draw Hill plot for case of negative cooperativity.

Free energy differences

Assume free energy differences between states A and B of:

- **1.** $1 k_{\rm B}T$
- **2.** $5 k_{\rm B}T$
- **3.** $20 k_{\rm B}T$

Calculate ratio of forward and backward reaction. Think, whether it is processive or stochastic process.

Free energy differences – solution

$$\Delta G = -RT \ln K$$
(8)
$$\ln K = \frac{\Delta G}{RT}$$
(9)
$$K = \frac{k_{\text{on}}}{k_{\text{off}}} = \exp \frac{\Delta G}{RT}$$
(10)

1. $1 k_{\rm B}T \Rightarrow K = 2.7$ 2. $5 k_{\rm B}T \Rightarrow K = 150$ 3. $20 k_{\rm B}T \Rightarrow K = 4.85 \cdot 10^8$

16. 11. 2017 27 / 28

References

- Zuckerman, Daniel M. *Statistical Physics of Biomolecules. An Introduction*
- Atkins, Peter; de Paula, Julio. Physical Chemistry
- Kodíček, Milan; Karpenko, Vladimír. Biofysikální chemie

References

- Zuckerman, Daniel M. *Statistical Physics of Biomolecules. An Introduction*
- Atkins, Peter; de Paula, Julio. Physical Chemistry
- Kodíček, Milan; Karpenko, Vladimír. Biofysikální chemie

Wikipedia