Protein kinetics

Petr Louša

16.11.2017

Petr Louša

Enzymatic kinetics

Outline

- 2 Enzymatic kinetics
- 3 Kinetics of conformational changes
- 4 Kinetics of oligomerisation

General kinetics

$$aA + bB \rightarrow cC + dD$$

$$v = -\frac{1}{a}\frac{d[A]}{dt} = -\frac{1}{b}\frac{d[B]}{dt} = +\frac{1}{c}\frac{d[C]}{dt} = +\frac{1}{d}\frac{d[D]}{dt} = \frac{d\xi}{dt}$$

$$v = k[A]^{\alpha}[B]^{\beta}$$
(1)
(2)
(3)

General kinetics

$$a\mathbf{A} + b\mathbf{B} \to c\mathbf{C} + d\mathbf{D}$$

$$v = -\frac{1}{a}\frac{\mathbf{d}[\mathbf{A}]}{\mathbf{d}t} = -\frac{1}{b}\frac{\mathbf{d}[\mathbf{B}]}{\mathbf{d}t} = +\frac{1}{c}\frac{\mathbf{d}[\mathbf{C}]}{\mathbf{d}t} = +\frac{1}{d}\frac{\mathbf{d}[\mathbf{D}]}{\mathbf{d}t} = \frac{\mathbf{d}\xi}{\mathbf{d}t}$$

$$v = k[\mathbf{A}]^{\alpha}[\mathbf{B}]^{\beta}$$
(1)
(2)
(3)

- Reaction velocity v is derivation of reaction extent ξ by time.
- Sign convention reactants decrease, products increase.

General kinetics

$$a\mathbf{A} + b\mathbf{B} \to c\mathbf{C} + d\mathbf{D}$$

$$v = -\frac{1}{a}\frac{\mathbf{d}[\mathbf{A}]}{\mathbf{d}t} = -\frac{1}{b}\frac{\mathbf{d}[\mathbf{B}]}{\mathbf{d}t} = +\frac{1}{c}\frac{\mathbf{d}[\mathbf{C}]}{\mathbf{d}t} = +\frac{1}{d}\frac{\mathbf{d}[\mathbf{D}]}{\mathbf{d}t} = \frac{\mathbf{d}\xi}{\mathbf{d}t}$$

$$v = k[\mathbf{A}]^{\alpha}[\mathbf{B}]^{\beta}$$
(1)
(2)
(3)

- Reaction velocity v is derivation of reaction extent ξ by time.
- Sign convention reactants decrease, products increase.
- For elemental reactions $\alpha = a, \beta = b$, where α, β are partial reaction orders.
- This does NOT hold for more complex mechanisms.

Integrated rate equation

Simplest interesting case

$$A \to B$$
(4)
$$\frac{d[A]}{dt} = -k[A]$$
(5)

Integrated rate equation

Simplest interesting case

$$A \to B$$
(4)
$$\frac{d[A]}{dt} = -k[A]$$
(5)

• Let's integrate:

$$\frac{d[A]}{[A]} = -kdt$$

$$\int \frac{1}{[A]}d[A] = -k\int dt$$

$$\ln[A] - \ln[A]_0 = -kt$$

$$[A] = [A]_0e^{-kt}$$
(6)
(7)
(7)
(9)

2nd order integrated rate equation

Slightly more difficult case

$$A \to B$$
(10)
$$\frac{d[A]}{dt} = -k[A]^2$$
(11)

2nd order integrated rate equation

Slightly more difficult case

$$A \to B$$

$$\frac{d[A]}{dt} = -k[A]^2$$
(10)
(11)

• After integration:

$$\int \frac{1}{[A]^2} d[A] = -k \int dt$$
(12)
$$\frac{1}{[A]} - \frac{1}{[A]_0} = kt$$
(13)

Reaction half time

• First order – concentration independent:

$$\ln \frac{[A]_0}{2} - \ln[A]_0 = -kt_{1/2}$$
(14)
$$t_{1/2} = \frac{\ln 2}{k}$$
(15)

Reaction half time

• First order – concentration independent:

$$\ln \frac{[A]_0}{2} - \ln[A]_0 = -kt_{1/2}$$
(14)
$$t_{1/2} = \frac{\ln 2}{k}$$
(15)

Second order – decreasing concentration prolongs the half time:

$$\frac{2}{[A]_0} - \frac{1}{[A]_0} = kt_{1/2}$$
(16)
$$t_{1/2} = \frac{1}{k[A]_0}$$
(17)

Kinetics of equilibrium processes

• Example of reversible reaction – isomerisation:

$$A \stackrel{k}{\rightleftharpoons}_{k'} B \tag{18}$$

$$\frac{\mathrm{d}[\mathrm{A}]}{\mathrm{d}t} = -k[\mathrm{A}] + k'[\mathrm{B}]$$
(19)

$$\frac{d[A]}{dt} = -(k+k')[A] + k'[A]_0, \text{ pokud } [B]_0 = 0$$
 (20)

$$[A] = \frac{k' + k - (k + k')t}{k + k'} [A]_0$$
(21)

Petr Louša

Protein kinetics

16. 11. 2017 8 / 28

Convergence to equilibrium

• In equilibrium, velocities equalize.

$$v = v'$$
 (22)
 $k[A] = k'[B]$ (23)
 $\frac{[B]}{[A]} = \frac{k}{k'} = K_{eq}$ (24)

- Rate of relaxation to equilibrium can be studied by eg. "T-jump"techniques.
 - fast change of temperature changes K_{eq}
 - system starts to relax measurable signal changes
 - even very fast processes can be analyzed orders of μs

What influences reaction velocity?

concentration of all components included in rate equation usually reactants, also products for reversible reactions

What influences reaction velocity?

concentration of all components included in rate equation usually reactants, also products for reversible reactions

catalyzer often changes rate constant k itself

What influences reaction velocity?

concentration of all components included in rate equation usually reactants, also products for reversible reactions

catalyzer often changes rate constant k itself

temperature very important factor empirically $10 \,^{\circ}\text{C} \rightarrow 2 - 4 \times$ acceleration

Arrhenius equation – empiric

Arrhenius equation – empiric

$$k = A \cdot \exp\left(-\frac{E_A}{RT}\right)$$
(25)
$$\ln k = -\frac{E_A}{R} \cdot \frac{1}{T} + \ln A$$
(26)

Arrhenius equation – empiric

$$k = A \cdot \exp\left(-\frac{E_A}{RT}\right)$$
(25)
$$\ln k = -\frac{E_A}{R} \cdot \frac{1}{T} + \ln A$$
(26)

Eyring equation – derived from statistical thermodynamics

Arrhenius equation – empiric

$$k = A \cdot \exp\left(-\frac{E_A}{RT}\right)$$
(25)
$$\ln k = -\frac{E_A}{R} \cdot \frac{1}{T} + \ln A$$
(26)

Eyring equation – derived from statistical thermodynamics

$$k = \frac{k_B T}{h} \cdot \exp\left(-\frac{\Delta G^{\ddagger}}{RT}\right)$$
(27)
$$\ln k = -\frac{\Delta G^{\ddagger}}{R} \cdot \frac{1}{T} + \ln T + \ln\left(\frac{k_B}{h}\right)$$
(28)
$$\ln k = -\frac{\Delta H^{\ddagger}}{R} \cdot \frac{1}{T} + \ln T + \frac{\Delta S^{\ddagger}}{R} + \ln\left(\frac{k_B}{h}\right)$$
(29)
Protein kinetics 16, 11, 2017 11/21

Petr Louša

Outline

2 Enzymatic kinetics

- 3 Kinetics of conformational changes
- 4 Kinetics of oligomerisation

Energetic barrier

• Conversion of substrate S to product P

 $S \to P$

Energetic barrier

• Conversion of substrate S to product P

 $S \to P$

- Enzyme accelerates the reaction by "decrease" of activation energy E_A
- In reality, it takes the reaction through different reaction coordinate

$$S + E \xrightarrow[k_{-1}]{k_{-1}} ES \xrightarrow{k_2} P + E$$
 (30)

- Negligible amount of product otherwise we must include reverse reaction and the analysis gets complex.
- Substrate exceeds the enzyme: $[S]_0 \gg [E]_0$

• Stationary state:
$$\frac{d}{dt}[ES] = 0$$

Derivation

$$v_0 = k_2[\text{ES}] \tag{31}$$

$$\frac{d[ES]}{dt} = k_1[E][S] - k_{-1}[ES] - k_2[ES]$$
(32)

$$\frac{d[ES]}{dt} = k_1[E]_0[S] - [ES] (k_1[S] + k_{-1} + k_2) = 0$$
 (33)

$$[ES] = \frac{k_1[E]_0[S]}{k_1[S] + k_{-1} + k_2}$$
(34)

$$v_0 = \frac{k_2[E]_0[S]}{\frac{k_{-1}+k_2}{k_1} + [S]}$$
(35)

$$V_{\rm lim} = k_2[{\rm E}]_0, \quad K_{\rm M} = \frac{k_{-1} + k_2}{k_1}$$
 (36)

- Initial velocity is proportional to enzyme concentration.
- Dependence of v_0 on [S] is hyperbolic, approaching limit velocity $v_{\rm lim}$.

Analysis

- Initial velocity is proportional to enzyme concentration.
- Dependence of v_0 on [S] is hyperbolic, approaching limit velocity $v_{\rm lim}$.
- Michaelis constant K_M has units of concentration (mol.dm⁻³).
- $K_{\rm M}$ matches $[S]_0$ at half limit velocity.
- $K_{\rm M}$ is independent of enzyme concentration $[E]_0$.

Analysis

- Initial velocity is proportional to enzyme concentration.
- Dependence of v_0 on [S] is hyperbolic, approaching limit velocity $v_{\rm lim}$.
- Michaelis constant K_M has units of concentration (mol.dm⁻³).
- $K_{\rm M}$ matches $[S]_0$ at half limit velocity.
- $K_{\rm M}$ is independent of enzyme concentration $[E]_0$.
- Turnover number $k_{\text{cat}} = k_2 = \frac{v_{\text{lim}}}{[\text{E}]_0}$

by substrate - more molecules in active site - reaction stops

- by substrate more molecules in active site reaction stops
 - competitive inhibitor and substrate compete about one active site $K_{\rm M}$ increases, $v_{\rm lim}$ constant

- by substrate more molecules in active site reaction stops
 - competitive inhibitor and substrate compete about one active site $K_{\rm M}$ increases, $v_{\rm lim}$ constant
- - $-K_{\rm M}$ and $v_{\rm lim}$ decrease in the same ratio

- by substrate more molecules in active site reaction stops
 - competitive inhibitor and substrate compete about one active site $K_{\rm M}$ increases, $v_{\rm lim}$ constant
- - $K_{\rm M}$ and $v_{\rm lim}$ decrease in the same ratio
- non-competitive Inhibitor binds to different site than substrate
 - typically allosteric inhibitors
 - $K_{\rm M}$ constant, $v_{\rm lim}$ decreases

- by substrate more molecules in active site reaction stops
 - competitive inhibitor and substrate compete about one active site $K_{\rm M}$ increases, $v_{\rm lim}$ constant
- - $K_{\rm M}$ and $v_{\rm lim}$ decrease in the same ratio
- non-competitive Inhibitor binds to different site than substrate
 - typically allosteric inhibitors
 - $-K_{\rm M}$ constant, $v_{\rm lim}$ decreases
 - mixed non-ideal conditions e.g. uncompetitively inhibited complex ES can convert to product, however slowly

- by substrate more molecules in active site reaction stops
 - competitive inhibitor and substrate compete about one active site $K_{\rm M}$ increases, $v_{\rm lim}$ constant
- - $K_{\rm M}$ and $v_{\rm lim}$ decrease in the same ratio
- non-competitive Inhibitor binds to different site than substrate
 - typically allosteric inhibitors
 - $-K_{\rm M}$ constant, $v_{\rm lim}$ decreases
 - mixed non-ideal conditions e.g. uncompetitively inhibited complex ES can convert to product, however slowly
 - irreversible permanent deactivation of enzyme e.g. by covalent bond

-	
Dotr	OUCO.
T EU I	Luusa

Outline

Kinetics of denaturation and renaturation

• Usual assumption of simple two-state process:

$$D \stackrel{k}{\underset{k'}{\longleftarrow}} N$$
 (37)

• For kinetics of folding and unfolding:

$$A_t - A_R = (A_N - A_R) e^{-(k+k')t}$$
 (38)

$$A_{\rm R} - A_t = (A_{\rm R} - A_{\rm D}) \,\mathrm{e}^{-(k+k')t}$$
 (39)

where A denotes values of e.g. absorbation A_N for native, A_D for denatured state, A_R in equilibrium and A_t in time t

Classical first order kinetics.

Isomerisation of proline

- Often cause of folding problems isomerisation of proline peptidic bond
 - In oligopeptides, ca 10–30 % bonds of X-Pro in cis state
 - In proteins, only ca 7 % in cis
- Isomerisation slow tens of seconds.
- Helper enzyme prolylisomerase

Outline

- 2 Enzymatic kinetics
- 3 Kinetics of conformational changes
- 4 Kinetics of oligomerisation

Oligomerisation

• Simplest and very often case – homodimerisation:

$$M + M \xrightarrow[k_{off}]{k_{off}} D$$
(40)

Oligomerisation

• Simplest and very often case – homodimerisation:

$$M + M \xrightarrow[k_{off}]{k_{off}} D$$
(40)

$$v = -\frac{1}{2} \frac{d[M]}{dt} = +\frac{d[D]}{dt}$$
(41)
$$\frac{d[D]}{dt} = k_{on}[M]^{2} - k_{off}[D]$$
(42)
$$\frac{d[M]}{dt} = 2k_{off}[D] - 2k_{on}[M]^{2}$$
(43)

Kinetics – exercise

Petr Louša

16.11.2017

Petr Louša

Alcoholic

- Grown man (80 kg) got 1.5 ‰ of alcohol in blood after drinking vodka.
- After several hours following concentrations were measured:

 Time [h]
 2
 3.5
 5
 6

 Alcohol concentration [‰]
 1.24
 1.05
 0.86
 0.73

Alcoholic

- Grown man (80 kg) got 1.5 ‰ of alcohol in blood after drinking vodka.
- After several hours following concentrations were measured:

- 1. How much vodka did the man drink?
- 2. Calculate the order of reaction for alcohol degradation in human body and its rate constant.
- 3. How long after drinking will the man be able to drive a car without losing his driving license?

Alcoholic – solution

1. About 5 large shots ©

80 kg – ca 60 % of water = 48 kg of water – 1.50 ‰ = 72 g of alcohol – 40% vodka – ca 180 g of vodka. Be careful, alcohol is less dense than water ($\rho = 0.8 \text{ g.cm}^{-3}$), therefore the volume of vodka was about 225 ml.

Alcoholic – solution

1. About 5 large shots ©

80 kg – ca 60 % of water = 48 kg of water – 1.50 ‰ = 72 g of alcohol – 40% vodka – ca 180 g of vodka. Be careful, alcohol is less dense than water ($\rho = 0.8 \text{ g.cm}^{-3}$), therefore the volume of vodka was about 225 ml.

2. Zeroth order of reaction – same amount gets degraded during each hour

Rate constant k = 0.13 ‰.h⁻¹

Alcoholic – solution

1. About 5 large shots ©

80 kg – ca 60 % of water = 48 kg of water – 1.50 ‰ = 72 g of alcohol – 40% vodka – ca 180 g of vodka. Be careful, alcohol is less dense than water ($\rho = 0.8 \text{ g.cm}^{-3}$), therefore the volume of vodka was about 225 ml.

2. Zeroth order of reaction – same amount gets degraded during each hour

Rate constant k = 0.13 ‰.h⁻¹

3. About 11 hours after finishing vodka drinking – the blood concentration of alcohol drops below 0.1 ‰.

Enzymatic activity

- Initial substrate concentration $10 \ \mu mol.dm^{-3}$
- Michaelis constant $K_{\rm M} = 2 \text{ mmol.dm}^{-3}$
- After 1 minute 2 % of substrate converted to product.

Enzymatic activity

- Initial substrate concentration $10 \ \mu mol.dm^{-3}$
- Michaelis constant $K_{\rm M} = 2 \text{ mmol.dm}^{-3}$
- After 1 minute 2 % of substrate converted to product.

- 1. How much substrate was converted after 3 minutes?
- 2. What is the limiting velocity?
- 3. The limiting velocity will be achieved at $[S]_0 = 0.2 \text{ mol.dm}^{-3}$. How much substrate will convert in 3 minutes?

Enzymatic activity – solution

- 1. 5.6 %, first order kinetics ([S] $\ll K_{\rm M}$), $k = 0.02 {\rm ~min^{-1}}$
- **2.** $v_{\rm lim} = 40.2 \ \mu {\rm mol.dm^{-3}.min^{-1}}$
- 3. Concentration of product will be $120 \ \mu mol.dm^{-3}$, being $0.06 \ \%$ of substrate.

References

- Zuckerman, Daniel M. *Statistical Physics of Biomolecules. An Introduction*
- Atkins, Peter; de Paula, Julio. Physical Chemistry
- Kodíček, Milan; Karpenko, Vladimír. Biofysikální chemie

References

- Zuckerman, Daniel M. *Statistical Physics of Biomolecules. An Introduction*
- Atkins, Peter; de Paula, Julio. Physical Chemistry
- Kodíček, Milan; Karpenko, Vladimír. Biofysikální chemie

Wikipedia