LASERY – ABSORPČNÍ METODY

Vítězslav Otruba

2010

Lasery v AAS

2

Přednosti proti klasickým zdrojům měřícího záření:

- 1. Malá šířka spektrální čáry (lineární kalibrace)
- 2. Spojitá změna vlnové délky (skenování)
- 3. Vysoká intenzita (šum, rychlé děje jiskra, pece)
- 4. Malá divergence (prostorové profily, miniatomizátory)
- 5. Krátká doba impulzu (časové rozlišení)
- Libovolná vlnová délka (AAS excitovaných a ionizovaných atomů)

AAS s nízkou intenzitou záření

3

Nízká intenzita = nemění podstatně obsazení energetických hladin

- 1. Atomové absorpční profily ($\Delta\lambda \approx 0, 1 0,001$ pm)
- 2. Izotopické posuny (\approx 0,2 pm pro $\Delta M=1$)
- 3. Štěpení jaderným spinem
- 4. Dopplerovo rozšíření (teplota)
- 5. Srážkové tlumení
- 6. Starkovo rozšíření (elektronová hustota)
- 7. Kalibrační grafy (linearita až 6 koncentračních řádů)

Absorpční spektroskopie

□ Lambertův zákon:
$$dI = -\alpha I_0 dx \Longrightarrow I = I_0 e^{-\alpha x}$$

Lambertův-Beerův zákon:

$$\log \frac{I}{I_0} = -\varepsilon \ c \ x$$

Obecný vztah pro absorpci světla

$$\frac{\mathrm{d}I}{\mathrm{d}x} = -h\nu N_n P_{nm} = -h\nu B_{nm} N_n I = -\frac{c^3}{8\pi\nu^2} \frac{g_m}{g_n} A_{nm} N_n I$$

N_n závisí na koncentraci atomů (molekul) v daném stavu n.

Absorpce

Lineární absorpce

Linear absorption

$$E = E_0 e^{i(\omega t - kz)}$$

 $E_k - E_i = \hbar \omega_0$

$$dI = -I\alpha(\omega)dz = -I\sigma_{ik}(\omega)(N_i - N_k)dz$$

Absorption cross section: σ_{ik}

For small *I*:

 $N_{\rm k}$ and $N_{\rm i}$ not affected

$$\Rightarrow \alpha \neq \alpha(I)$$

 $I(z) = I_0 e^{-\alpha z}$ Beer's law

Jemná struktura Hg I 404,7 nm

7

Kolem 2/3 stabilních atomových jader má výsledný jaderný spin, způsobující jemnou strukturu čar. ¹⁹⁹Hg a ²⁰¹Hg mají nepárové neutrony a vykazují spinové rozštěpení. Toto je pak kombinováno s přirozenou šířkou čar a Dopplerovským rozšířením na výsledný profil. Izotopy ¹⁹⁸Hg; ²⁰⁰Hg; ²⁰²Ha a ²⁰⁴Hg nejsou rozštěpeny.

prof. Otruba 2010

AAS s grafitovou kyvetou

8

Příklad AAS spektrometru s laserovou diodou a elektrotermickým atomizátorem (grafitovou kyvetou)

prof. Otruba 2010

AAS v laserové jiskře

9

Molekulová absorpční spektroskopie

- Identifikace složení vzorku je prováděna sledováním úbytku záření po průchodu vzorkem
- Laser vyniká mimořádnou monochromatičností emitovaného záření, selekce vlnových délek je tak zajištěna přímo u zdroje záření
- Laserové záření je mimořádně intenzivní, poměr signálu k šumu je zde velmi příznivý Při použití multireflexní kyvety lze dosáhnout extrémně nízkých mezí detekce
- Rychlost měření za použití laseru je větší než u klasických spektrometrů. Neuplatňuje se zde parazitní infračervené záření tepelného zdroje
- Zdroj záření je možné oddálit od měrné kyvety (použití světlovodných vláken)
- Značná pozornost je věnována laserové spektroskopii v IR oblasti. Laserový (diodový) spektrometr v IR oblasti (polovodičový laditelný laser) umožňuje velmi přesně identifikovat spektrální čáry v IR oblasti (strukturní analýza)

Absorpční spektrometr s laserem

(b)

A – klasický absorpční spektrometr; B – spektrometr s laserovým zdrojem měřícího záření

prof. Otruba 2010

Metody měření nízkých absorbancí

- intenzivní zdroj monochromatického světla absorpce se měří diferenčně
- vícenásobný průchod absorbovaného světla prostředím prodloužení absorpční délky
- absorbovat záření a měřit fluorescenci z excitovaných stavů
- optoakustické metody detekce
- absorbovat záření a měřit emisní Ramanova spektra

Absorpční spektroskopie v dutině rezonátoru

- Mezi zrcadlem rezonátoru a aktivním prostředím laseru je prostor využitelný pro spektroskopické účely, do něhož se vkládá kyveta se vzorkem
- Jedná se o zvláštní způsob detekce, který vyniká mimořádnou citlivostí
- Laserové záření prochází skrz kyvetu umístěnou uvnitř rezonátoru opakovaně
- Výstupní parametry laseru jsou výrazně ovlivněny vnitřní absorpcí
- Pro svoji citlivost je metoda absorpce uvnitř rezonátoru nejlépe využitelná k detekci nízkých koncentrací látek, zejména plynů
- Spektroskopie uvnitř rezonátoru je vhodná především pro kvalitativní analýzu

Absorpce uvnitř rezonátoru

prof. Otruba 2010

Diferenční měření

Před vlastním měřením je třeba nastavit zesílení obou fotonásobičů tak, aby bylo výsledné napětí nulové. V přítomnosti plazmatu pak zaznamenáváme diferenční napětí v řádu μ V – mV.

prof. Otruba 2010

Vícenásobný průchod světla

zdroj

základní nevýhody - ztrácíme prostorové rozlišení - světelný svazek se rozbíhá

16

Využití Fourierovy transformace

Signál z detektoru je amplitudově modulován výbojem. Fourierovou transformací v PC separujeme signál s jinou frekvencí, než je frekvence modulační; důsledkem je omezení šumu. Lze realizovat i přímou modulaci zdroje (např. napětím výbojky). V absorpční spektroskopii je vhodné použít Fourierovu transformaci zejména při diferenčním zapojení detektorů, kdy je signál malý.

Cavity Ring Down Spektroskopie

Cavity Ring Down Spektroskopie

Cavity Ring Down Spektroskopie

- Užitím paměťového osciloskopu a PC lze průměrovat velký počet pulsů, což omezuje šum.
- Z exponenciálního poklesu intenzity světla lze stanovit koncentraci absorbujících částic.
- □ Detekční limit je řádově A=10⁻⁶.
- Parabolická zrcadla umožňují prostorovou lokalizaci detekované oblasti, lze tedy měřit profily koncentrací.
- V současnosti se tato metoda užívá pouze ve viditelné a blízké UV oblasti.

Laserová absorpční spektrometrie IR s vysokým rozlišením

21

FP =Fabry Perotův etalon pro kalibraci vlnočtu ($\Delta v = c/(2dn)$) L =polovodičový laser PbSnTe; PbCdS; Pb_{1-x}Sn_xSe; $\lambda \approx 2 - 30 \ \mu m$; R $\approx 10^7$; UV – VIS: barvivové lasery, R $\approx 5.10^7$

Metody dvojí rezonance

22

 $\omega_{1,2} = laser s konstantní frekvencí, silná populace hladiny 2$ $<math>\omega_{2,3} = laděné radiofrekvenční, mikrovlnné či optické záření$ $<math>\omega_{3,4} = fluorescenční záření indikující rezonanci$

prof. Otruba 2010

Opticko-mikrovlnná dvojí rezonance

Přelaďování absorpčních hladin

- Zeemanův jev je možné použít u molekul s permanentním magnetickým dipólovým momentem. Působením magnetického pole dojde k rozštěpení degenerovaných hladin:
 - $\Delta E = -\mu_B gm$, kde g=Landého faktor; μ_B =Bohrův magneton; B= magnetická indukce; m=magnetické kvantové číslo.
 - Vysoká je citlivost zejména pro radikály s nepárovým elektronem.
- Starkův jev způsobí rozštěpení u molekul s permanentním elektrickým dipólovým momentem. Potřebné intenzity homogenního el. pole jsou řádu 1000V/mm.
- Především v IR oblasti, lasery HF, DF, CO, CO₂, N₂O, H₂O, D₂O, HCN

Přelaďování hladin – Zeemanův jev

prof. Otruba 2010

Nelineární spektroskopické metody

- Metody založené na současné absorpci více fotonů částicí vzorku
- Při současné absorpci více fotonů částicí se mění hodnota absorpčního koeficientu
- Při interakci vzorku s velkým množstvím fotonů dojde ke zvýšení obsazení horní energetické hladiny a sníží se tím absorpce vzorku díky nasycení absorpčního přechodu
- Dochází-li k nelineárním efektům, nelze pro absorpci použít Lambertův-Beerův zákon

Nelineární absorpce

27

Non-linear absorption

I large $N_{\rm i}$ and $N_{\rm k}$ change; $N_{\rm i}$ + $N_{\rm k}$ = N

$$\frac{dN_i}{dt} = -\frac{dN_k}{dt} = -B_{ik}\rho(\omega_0)N_i + B_{ki}\rho(\omega_0)N_k + A_{ki}N_k \qquad B\rho(\omega) = \frac{I(\omega)}{\hbar\omega}\sigma(\omega)$$

S

Steady state:

$$\frac{dN_{i}}{dt} = 0 \implies N_{i} = N \frac{1 + \frac{1}{2}S}{1 + S}$$

$$S = \frac{I}{I_{s}} = \frac{2\rho(\omega)B_{ki}}{A_{ki}} = \frac{2}{A_{ki}} \frac{I(\omega)}{\hbar\omega}\sigma(\omega) = \text{saturation parameter}$$

$$\alpha = \Delta N\sigma = (N_{i} - N_{k})\sigma = \frac{N}{1 + S}\sigma$$

$$\alpha = \frac{\alpha_{0}}{1 + I/I_{s}}$$

Absorption saturates, when *I* increases \rightarrow sample becomes transparent

Saturační spektrometrie

- Absorpce opticky tlustou vrstvou regulace absorpčního koeficientu
- Bezdopplerovská spektrometrie, např.:
 - Lamb-dip spectrometry
 - Dvoufotonová subdopplerovská spektrometrie
 - Frekvenční stabilizace laserů
- Multifotonové metody

Saturační subdopplerovská spektroskopie (spektroskopie Lambova zářezu)

- Metoda saturační subdopplerovské spektroskopie nalézá hlavní uplatnění při zjišťování přesných hodnot absorpčních čar a při stabilizaci laserů
- Princip metody saturační subdopplerovské spektroskopie je založen na Dopplerovu jevu

29

- Saturační subdopplerovská spektroskopie je metoda využívaná pro studium látek v plynném skupenství
- Částice plynu, které se chaoticky pohybují, se projevují při interakci se zářením frekvenčním posunem podle rychlosti pohybu vůči směru sledování
- Částice interagují se zářením s frekvenčním posunem daným okamžitou složkou rychlosti

Přirozená šířka čáry

Natural linewidth (classical model)

Atom in an excited state: damped oscillator

$$\begin{aligned} \ddot{x} + \gamma \dot{x} + \omega_0 x &= 0 \\ \omega_0 &= \left(E_i - E_k \right) / \hbar \\ \Rightarrow x(t) &= x_0 e^{-\gamma t/2} \cos \omega_0 t , \text{ for } \gamma << \omega_0 \end{aligned}$$

Spectrum by Fourier transformation:

$$\mathcal{F} \{ x(t) \} = A(\omega) \quad \rightarrow \quad I(\omega) = |A(\omega)|^2$$

When $|\omega - \omega_0| \ll \omega_0$
 $I(\omega) = I_0 \frac{\gamma}{(\omega - \omega_0)^2 + (\gamma/2)^2}$

 $A_{ik} = \gamma = 1/\tau = natural linewidth$

Heisenbergův princip neurčitosti

31

The natural line-width can be obtained also by applying

Heisenberg uncertainty principle:

$$\Delta E \cdot \Delta \tau \approx \hbar$$

Excited state life-time: τ_k

If both levels of the transition have finite life-time:

Total width

 $\Gamma = \left(\gamma_i + \gamma_k\right)$

Dopplerovo rozšíření

32

 \checkmark Sum over all atoms weighing the sum with the velocity distribution

Emission line of gas atoms $I(\omega) = I_0 e^{-\frac{4 \ln 2 (\omega - \omega_0)^2}{\delta \omega_D^2}}$ ($\gamma << \delta \omega_D$)

Homogenní a nehomogenní rozšíření

Typically for atoms:

Doppler width
$$\frac{\Delta \omega_{\rm D}}{2\pi} \approx 1 \text{GHz}$$

Natural width $\gamma/2\pi \approx 10 MHz$

 $\omega' = \omega - \mathbf{k} \cdot \mathbf{v}$

homogeneous

• all atoms behave identically

inhomogeneous

• atoms behave individually (different velocity, environment, etc.)

In classical spectroscopy on free atoms or molecules the resolution is typically limited by the Doppler effect

Pohyb částic v plynu

 Částice plynu, které se chaoticky pohybují, se projevují při interakci se zářením frekvenčním posunem podle rychlosti pohybu vůči směru sledování

prof. Otruba 2010

Saturace absorpce na nehomogenně rozšířené čáře

35

Saturation of absorption of an inhomogeneous line profile

Resonance condition:
$$\omega - \mathbf{k} \cdot \mathbf{v} = \omega_0$$

Absorption cross section: $\sigma(\mathbf{v}, \omega) = \sigma_0 \frac{(\gamma/2)^2}{(\omega - \omega_0 - \mathbf{k} \cdot \mathbf{v})^2 + (\gamma/2)^2}$
Saturation parameter: $S \propto \sigma \implies S(\mathbf{v}, \omega) = S_0 \frac{(\gamma/2)^2}{(\omega - \omega_0 - \mathbf{k} \cdot \mathbf{v})^2 + (\gamma/2)^2}$
Population difference: $\Delta N = \frac{\Delta N_0}{1 + S(\mathbf{v}, \omega)}$
 $\Delta N(\mathbf{v}) = \Delta N_0 (\mathbf{v} \left[1 - \frac{S_0 (\gamma/2)^2}{(\omega - \omega_0 - \mathbf{k} \cdot \mathbf{v})^2 + (\gamma/2)^2} \right]$

 $\gamma_s = \gamma \sqrt{1 + S_0}$ $S_0 = I/I_S = saturation parameter$

Saturační i sondovací paprsek rovnoběžné

prof. Otruba 2010

Bennetův (Lambův) zářez

Resonance condition: $\omega - kv_0 = \omega_0 \implies v_0 = \frac{\omega - \omega_0}{k}$

Laser frequency ω tuned \Rightarrow

Sum over all atoms:

Absorption: $\alpha(\omega) = \int_{-\infty}^{\infty} \sigma(v_z, \omega) \Delta N(v_z) dv_z$

$$\alpha_{s}(\omega) = \frac{\alpha_{0}(\omega_{0})}{\sqrt{1+S_{0}}}e^{-\left(\frac{\omega-\omega_{0}}{\delta\omega_{D}}\right)^{2}}$$

Inhomogeneous linewidth

'Doppler-limited' spectroscopy

Saturační a sondovací paprsek protiběžné

Konečné řešení

39

Saturační absorpční spektrometrie

40

Saturated absorption spectroscopy

 I_a, ω $M \rightarrow I_p, \omega$ I_p, ω For weak saturation

$$S_p = \frac{I_p}{I_s}, \quad S_a = \frac{I_a}{I_s} \quad <<1$$

Perturbation theory

$$\Delta N(v_z) \approx \Delta N_0(v_z) \left[1 - \frac{S_a(\gamma/2)^2}{(\omega - \omega_0 - kv_z)^2 + (\gamma/2)^2} - \frac{S_p(\gamma/2)^2}{(\omega - \omega_0 + kv_z)^2 + (\gamma/2)^2} \right]$$

The absorption of the probe beam (I_p) as a function of ω :

$$\alpha(\omega) = \int_{-\infty}^{\infty} \sigma_p(v_z, \omega) \Delta N(v_z) dv_z$$

$$\alpha_{p}(\omega) \cong \alpha_{0}(\omega) \left[1 - \frac{1}{2} S_{a} \frac{(\gamma/2)^{2}}{(\omega - \omega_{0})^{2} + (\gamma/2)^{2}} \right]$$

Bezdopplerovská spektroskopie

What happens when ω is tuned?

At $\omega = \omega_0$ a resonance of width $\sim \gamma$ (homogeneous width) is obtained

Resolution improved by 2 - 3 orders of magnitude

- High-resolution spectroscopy Saturation spectroscopy (Lamb-dip spectroscopy)
- Laser frequency stabilization (gas lasers)

Experimentální uspořádání

Výsledky experimentu: $Na(g), p=40\mu Pa,$ t=110°C, λ=589 nm $\Delta\lambda_{\text{DOP}} \cong 1,7 \text{ pm}$ (1500 MHz) $\Delta\lambda_{LAS} \cong 0,008 \text{ pm}$ (7 MHz) $\Delta\lambda_{FXP} \cong 0,068 \text{ pm}$ (40 MHz) $\Delta\lambda_{NAT} \cong 0,01 \text{ pm}$ $(\approx \tau = 16 \text{ ns})$

Apparatus for Doppler-free saturated absorption spectroscopy of I₂ and Na

prof. Otruba 2010

Doppler-Free Saturated Absorption Spectroscopy of lodine and Sodium Using a Tunable Ring Dye Laser

prof. Otruba 2010

Absorpční spektrum jodu

Frequency Offset (GHz)

- (a) Ordinary, Doppler broadened, (dashed line) and (b) Doppler-free (solid line)
- (b) absorption spectra of the 5682 Å, P(117), 21-1, X --> B transition of ${}^{127}I_2$.
- (c) (c) 300 MHz interferometer transmission peaks for frequency calibration of laser scan.

prof. Otruba 2010

Stabilizace laserů

L – laserové aktivní prostředí, Z – zrcadla, K = kyveta,

- E etalon, PP = piezoelektrický převaděč, LO ladící obvod,
- D detektor, R zpětnovazební regulace.

Příklad: He-Ne laser 3390 nm, kyveta metan, stabilizace \pm 0,5 Hz.

prof. Otruba 2010

Subdopplerovská spektroskopie - souhrn

- Je-li frekvence intenzivního laserového svazku naladěna v profilu absorpční čáry mimo její střed, vytvoří se zářez do absorpční čáry znamenající pokles koeficientu absorpce (nelineární efekt)
- Při experimentu je svazek laserového záření rozdělen na dva paprsky, intenzivní saturační a slabší testovací
- Oba paprsky procházejí kyvetou proti sobě účinky obou svazků při odladění od středu absorpční čáry leží symetricky vůči středu čáry
- Při naladění laseru na střed čáry je testovací svazek v důsledku poklesu absorpce v zářezu pohlcován méně a dojde k výraznému zvýšení intenzity laserového svazku
- Získá se úzký rezonanční pík, který představuje absorpční čáru vzorku zbavenou dopplerovského rozšíření
- Subdopplerovská spektroskopie umožňuje experimentálně odstranit rozšíření čáry výběrem částic o nulové složce rychlosti ze vzorku

Experimentální výsledky

- * High-resolution measurements of spectra $\mathcal{R} \sim 10^{-8}$ 10^{-9}
- Spectral fine structure, shifts (isotopes, Lamb shift ...)
- Hydrogen spectrum: Rydberg constant 100x improvement of accuracy
- Collision effects

Dvoufotonová subdopplerovská spektroskopie

 $\Delta \omega = 0$ $\Delta \omega = \text{Doppleruv posuv}$

 $\tau_v \approx 10^{-12} \, s$ $\omega_1 = \frac{1}{2} E_{01}$ VIS: $\Delta\lambda \approx 1$ GHz $\Phi_{\rm I}$ < dyn. Starkův jev $\Delta \lambda_{I} \approx 1 \text{ MHz} \Rightarrow$ nutná stabilizace kombinace se Zeemanovým a Starkovým laděním

prof. Otruba 2010

Experimentální uspořádání

Detekce fluorescencí v UV-VIS a blízké IR oblasti – přechody ze vzbuzených hladin Detekce absorpcí jednoho z budících paprsků především v IR oblasti, př. i UV-VIS

prof. Otruba 2010

Dvoufotonová spektrometrie

Two-photon spectroscopy

All atoms participate in the 2-photon signal !

(cf. saturated absorption: only $\gamma / \delta \omega_D$ of the atoms participate)

Aplikace

Applications of two-photon spectroscopy

- ✓ Investigation of high-lying excited states
- ✓ Allows population of levels with the same parity as the initial level
 - (cf. one-photon dipole transitions couple states with opposite parities)

Fig.7.29a,b. Doppler-free two-photon spectrum of the $3S \rightarrow 5S$ and $3S \rightarrow 4D$ transitions in the Na atom. (a) Level scheme. (b) $3S \rightarrow 5S$ transition with resolved hyperfine structure [7.38]