Direct Reactions of Solids "HEAT-AND-BEAT" or "SHAKE-AND-BAKE" Solid state reactions

At least one of the reactants and one of the products are solid

Reactions in a lattice of atoms

Atomic mobility

No mobility without defects – perfect crystal = no chemistry

High temperatures

Reactions on the interphase between phases

Microstructure - crystallite size, shape, defects

Diffusion controls the reaction rate

Solid - solid synthesis - addition	$A + B \rightarrow AB$
$MgO(s) + Al_2O_3(s) \rightarrow MgAl_2O_4(s)$	
$MgO(s) + SiO_2(s) \rightarrow MgSiO_3(s) \text{ or } Mg_2SiO_4(s)$	
Solid - solid synthesis – exchange, metathesis	$AB + C \rightarrow AC + B$
$CaCO_3(s) + SiO_2(s) \rightarrow CaSiO_3(s) + CO_2(g)$	
$\operatorname{Ge}(s) + 2 \operatorname{MoO}_3(s) \rightarrow \operatorname{GeO}_2(s) + 2 \operatorname{MoO}_2(s)$	
Solid - solid synthesis – exchange and addition	
$PbSO_4 + ZrO_2 + K_2CO_3 \rightarrow K_2SO_4 + PbZrO_3 + CO_2$	
Solid - solid synthesis - dissociation	$AB \rightarrow A + B$
$Ca_3SiO_5(s) \rightarrow Ca_2SiO_4(s) + CaO(s)$	

Solid - solid synthesis - addition $A + B \rightarrow AB$ MgO(s) + Al₂O₃(s) \rightarrow MgAl₂O₄(s)MgO(s) + SiO₂(s) \rightarrow MgSiO₃(s) or Mg₂SiO₄(s)

Solid - solid synthesis – exchange, metathesis $AB + C \rightarrow AC + B$ $CaCO_3(s) + SiO_2(s) \rightarrow CaSiO_3(s) + CO_2(g)$ $Ge(s) + 2 MoO_3(s) \rightarrow GeO_2(s) + 2 MoO_2(s)$

Solid - solid synthesis - dissociation $AB \rightarrow A + B$ $Ca_3SiO_5(s) \rightarrow Ca_2SiO_4(s) + CaO(s)$

Solid – gas synthesis $A + B \rightarrow AB$ 2 Fe₃O₄(s) + 1/2 O₂(g) \rightarrow 3 Fe₂O₃(s) 2 SiCl₄(g) + 4 H₂(g) + Mo(s) \rightarrow MoSi₂(s) + 8 HCl(g)

High temperature corrosion of metals in air

Solid – gas dissociation $AB \rightarrow A + B$

 $CaCO_3(s) \rightarrow CaO(s) + CO_2(g)$

 $\begin{array}{ll} Al_4Si_4O_{10}(OH)_8(s) & \rightarrow Al_4(Si_4O_{10})O_4(s) + 4 \ H_2O(g) \\ Kaolinite & Metakaolinite \end{array}$

Other Examples

Oxides

BaCO₃ + TiO₂ \longrightarrow BaTiO₃ + BaTi₂O₅ + CO₂ $K_{6} + H_{2} + 2 H_{2}O \xrightarrow{873 \text{ K}} UO_{2} \text{ (powder)} + 6 \text{ HF}$ dust = radiological hazard, milling, sintering to UO₂ pellets

YBCO 123 Superconductor (1987)

 $Y_2O_3 + BaCO_3 + CuO \xrightarrow[air]{1223 \text{ K}} \xrightarrow[O_2]{473 \text{ K}} YBa_2Cu_3O_{7-x}$

1130 K

 $Tl_2O_3 + 2BaO + 3CaO + 4CuO \longrightarrow Tl_2Ba_2Ca_3Cu_4O_{12}$

Other classes than oxides

Pnictides

 $Na_3E + ME + E \xrightarrow{1100 K} Na_2M_3E_4$ M = Eu, Sr, E = P, As

Metals

 $UF_4 + 2 Ca \longrightarrow U + 2 CaF_2$ Manhattan Project

Chlorides

 $3 \operatorname{CsCl} + 2 \operatorname{ScCl}_3 \longrightarrow \operatorname{Cs}_3 \operatorname{Sc}_2 \operatorname{Cl}_9$

 $6 \text{ NH}_4\text{Cl} + \text{Y}_2\text{O}_3 \longrightarrow 2 \text{ YCl}_3 + 3 \text{ H}_2\text{O} + 6 \text{ NH}_3$ $6 \text{ NH}_4\text{Cl} + \text{Y} \longrightarrow (\text{NH}_4)_3 \text{YCl}_6 + 1.5 \text{ H}_2 + 3 \text{ NH}_3$ $4 \text{ NH}_4\text{Cl} + 3 \text{ NH}_4\text{ReO}_4 \longrightarrow 3 \text{ Re} + 12 \text{ H}_2\text{O} + 3.5 \text{ N}_2 + 4 \text{ HCl}$

Aluminosilicates

 $NaAlO_2 + SiO_2 \longrightarrow NaAlSiO_4$

Chalcogenides

Pb + Mo + S $\xrightarrow{1400 \text{ K}}$ PbMo₆S₈ Chevrel phases (M_xMo₆X₈, M = RE, Sn, Pb, Cu, X = S, Se, Te)

7

Experimental Considerations

Powder Mixing Method

Precise weighing for exact stoichiometry

Mixing (components, dopants, additives)

Milling or grinding (ball mill, mortar)

Compaction (pelleting, organic binders)

Calcination @ high temperature (> 1000 °C)

Firing/grinding cycles

Milling

Planetary ball mill

Rotation speed: up to 400 rpm *Milling jars:* alumina, YSZ, tungsten carbide, agate

Planetary ball mill

Rotation and counter-wise spining

Milling

Atritor mill

Compaction - Pressing

Hydraulic Uniaxial Press *Maximum pressure:* 120 MPa Warm Isostatic Press Max. pressure: 400 MPa Max. temperature: 80 °C Volume: 2,5 1 Hot press Max. temperature: 1250 °C Max. pressure: 100 MPa Max. diameter: 25 mm1

Calcination

Tube Furnace

in air and in controled atmosphere Maximum temperature: 1450 °C or 1600 °C Furnace-tube diameter: up to 75 mm

Vacuum Furnace in vacuum or Ar, N₂, O₂ atmosphere *Maximum temperature:* 1200 °C *Chamber Dimensions:* $150x200x250 \text{ mm}^3$

Advantages simple equipment low cost and easily accessible starting materials well studied

Disadvantages impurities from grinding (Fe, Cr, ...) broad particle size distribution some phases unstable @ high T, decomposition formation of undesirable phases slow formation, diffusion, long reaction times large grain size poor chemical homogeneity: poor mixing of large crystallites (milling lower limit ~ 100 nm) volatility of some components (Na₂O, PbO, ...) uptake of ambient gas (O₂ in superconductors)

Experimental Considerations

• Reagents

Drying, fine grain powders for maximum SA, surface activation (Mo + H_2), in situ decomposition (CO₃²⁻, OH⁻, O₂²⁻, C₂O₄²⁻) for intimate mixing, precursor reagents, homogenization, organic solvents, grinding, ball milling, ultrasonication

●[™] Prior decomposition

Initial cycle at lower temperature to prevent spillage or volatilization, frequent cycles of heating, cooling, grinding, boost SA. Overcoming sintering, grain growth, fresh surfaces. Pelleting, hot pressing, enhanced contact area increases rate and extent of reaction

Container Materials

Chemically inert crucibles, boats, ampoules (open, sealed, welded) Noble metals: Au, Ag, Pt, Ni, Rh, Ir, Nb, Ta, Mo, W Refractories: alumina, zirconia, silica, BN, graphite Reactivities with containers at high temperatures needs to be carefully evaluated for each system, pelleting minimizes contact with container, sacrificial pellet

Properties of Common Container Materials

Material	Maximum Working Temp., K	Thermal Shock Resistance	Thermal Conductivity, W m ⁻¹ K ⁻¹	Coefficient of Linear Expansion	Other Properties
Pyrex	770	GOOD	1.13	3.2	Permeable to air at high T
CaF_2	1420	FAIR	-	24	-
SiO_2	1530	VERY GOOD	1.38 - 2.67	0.4 - 0.6	Permeable to air at high T, devitrification
$\mathrm{Si}_3\mathrm{N}_4$	1770	FAIR	10 - 33	6.4	above 1670 K -
Pt	1950	VERY GOOD	73	9.11	Plastic at high T
BN	1970	VERY GOOD	5.02	0.2-3	Oxidizes in air above 970 K
Vitreous C	2070	GOOD	4.19 - 8.37	2-3.5	Oxidizes in air above 900 K
Al_2O_3	2170	FAIR	35 - 39	8	Reacts with metals above
AlN	2270	FAIR	50 - 170	5.7	- -
BeO	2570	GOOD	230	8.4	Reacts with metals above
ZrO ₂	2570	GOOD	1.97	4.5	1800 K -
Ir	2600	VERY GOOD	148	6.8	-
MgO	2870	FAIR	37.7	25	High vapor pressure
ThO ₂	3070	FAIR	4.19	6	Reacts with C above 2290 K

Experimental Considerations

Heating Program

Slow or fast heating, cooling, holding at a set point temperature. Furnaces, RF, microwave, lasers, ion or electron beam

Tammann's rule: $T_r > 2/3 T_m$

●[™] Controlled atmosphere

oxidizing, reducing, inert or vacuum. Unstable oxidation states, preferential component volatilization if T is too high, composition dependent atmosphere (O_2 , NH_3 , H_2S , ...)

Fuel and Oxidizer type	Temperature (Celsius)
Fluorescent light	60-80
Incandescent light	100-300
Cigarettes - unventilated conditions	288
Cigarettes - ventilated	400-780
Cigarettes - insulated and smoldering	510-621
Stove element	>550
Match	600-800
Tungsten halogen light	600-900
Candle flame	600-1,400
Electrical spark	1,316
Bunsen burner	1,570
Methanol/air	1,910
Methane/air	1,920-1,949
Butane/air	1,977
Propane/air	1,977
Wood/air (most organics are about here))	~1977
MAPP Gas/air	
Hydrogen/air	2,210
Carbon monoxide/air	2,468
Acetylene/air	2,632
Acetylene/Oxygen	3,300
Hydrogen/Oxygen	
Electrical arcing	<3,750
Plasma torch	~4,700
Lightning	30,000

Factors Influencing Direct Reactions of Solids

CONTACT AREA

Surface area of reactants
Particle size
Pelleting, pressing, precursors

DIFFUSION RATE

Diffusion rates of atoms, ions, molecules in solids
Reaction temperature, pressure, atmosphere
Diffusion length, particle size
Defect concentration, defect type
Reaction mechanism

NUCLEATION RATE

*Nucleation of product phase within the reactant with similar crystal structure

- ci ystai sti uctui c
- *****Epitactic and topotactic reactions
- *****Surface structure and reactivity of different crystal planes/faces

KEY FACTORS IN SOLID STATE SYNTHESIS

CONTACT AREA and surface area (SA) of reacting solids control:

→ Rates of diffusion of ions through various phases, reactants and products
→ Rate of nucleation of the product phase

Reaction rate is greatly influenced by the SA of precursors as contact area depends roughly on SA of the particles

Surface Area (SA) of Precursors

spherical particles, radius r [nm], density ρ [g/cm³]

SA = A/m =
$$\frac{4\pi r^2}{4/3\pi r^3.\rho}$$
 = 3000/rp [m²/g]

Consider 1 g of a material, density 1.0 g/cm³, cubic crystallites

number of cubes	edge length, cm	SA, m ² /g
1	1	6.10 ⁻⁴
109	10 ⁻³	0.6
10¹⁸	10 ⁻⁶	600

Contact area

not in reaction rate expression for product layer thickness versus time: dx/dt = k/x

But for a constant product volume $x \propto 1/A_{contact}$ and furthermore $A_{contact} \propto 1/d_{particle}$

Thus particle sizes and surface area inextricably connected and obviously $x \propto d$ and SA particle size affect the interfacial thickness

These relations suggest some strategies for rate enhancement in direct reactions:

→Hot pressing densification of particles High pressure squeezing of reactive powders into pellets (700 atm) Pressed pellets still 20-40% porous. Hot pressing improves densification

→Atomic mixing in composite precursor compounds

→ Coated particle mixed component reagents, corona/core precursors

→ Decreasing particle size, nanocrystalline precursors

Aimed to increase interfacial reaction area A and decrease interface thickness x, minimizes diffusion length scales

dx/dt = k/x = k'A = k''/d

DIFFUSION RATE

Fick's law J = -D(dc/dx)

J = flux of diffusing species, #/cm²s (dc/dx) = concentration gradient, #/cm⁴ D = diffusion coefficient, cm²/s, for good reaction rates > 10⁻¹²

 $D = D_{\infty} \exp\left(-\frac{Q}{RT}\right)$

D increases with temperature, rapidly as you approach the melting point

Tammann's rule: Extensive reaction will not occur until the temperature reaches at least 2/3 of the melting point of one or more of the reactants.

Factors influencing cation diffusion rates:

- → Charge, mass and temperature
- →Interstitial versus substitutional diffusion
- →Number and types of defects in reactant and product phases
- All types of defects enhance diffusion of ions

(intrinsic or extrinsic, vacancies, interstitials, lines, planes, dislocations, grain boundaries)

Reaction Paths between Two Solids

- A_x B_y O_z Stoichiometric formula of spinel ccp O²⁻
- A occupy 1/8 T_d
- B occupy 1/2 O_h

Model reaction, well studied:

 $\begin{array}{ll} MgO + Al_2O_3 \rightarrow MgAl_2O_4 & Spinel \\ (ccp O^{2-}, Mg^{2+} 1/8 T_d, Al^{3+} 1/2 O_h) \end{array}$

Single crystals of precursors, interfaces between reactant grains

On reaction, new reactant-product MgO/MgAl₂O₄ and Al₂O₃/MgAl₂O₄ interfaces are formed

Free energy negative, favors reaction but extremely slow at normal temperatures (several days at 1500 °C)

Interfacial growth rates 3 : 1

Linear dependence of interface thickness x² versus t

Easily monitored rates with colored product at interface, T and t NiO + Al₂O₃ \rightarrow NiAl₂O₄ MgO + Fe₂O₃ \rightarrow MgFe₂O₄

The Spinel Structure: (A)[B₂]O₄

fcc array of O²⁻ ions, A occupies 1/8 of the tetrahedral and B 1/2 of the octahedral holes

→ <u>normal spinel</u>: AB_2O_4 Co_3O_4 , $GeNi_2O_4$, WNa_2O_4

→ <u>inverse spinel</u>: B[AB]O₄ Fe₃O₄: Fe³⁺[Fe²⁺Fe³⁺]O₄, TiMg₂O₄, NiLi₂F₄

→ basis structure for several <u>magnetic materials</u>

The Spinel Structure: MgAl₂O₄

 $(\mathbf{A})[\mathbf{B}_2]\mathbf{O}_4$

The Spinel Structure: MgAl₂O₄ (A)[B₂]O₄

• = Mg x = O• = Al

27

Model for a classical solid-solid reaction (below melting point !): Planar interface between two crystals

 $MgO + Al_2O_3 \rightarrow MgAl_2O_4$ (Spinel)

Phase 1: nucleation Phase 2: growth of nuclei

• Structural differences between reactants and products, major structural reorganization in forming product spinel

MgO ccp O²⁻, Mg²⁺ in O_h sites Al₂O₃ hcp O²⁻, Al³⁺ in 2/3 O_h sites MgAl₂O₄ ccp O²⁻, Mg²⁺ 1/8 T_d, Al³⁺ 1/2 O_h

●[™]Making and breaking many strong bonds (mainly ionic), high temperature process as D(Mg²⁺) and D(Al³⁺) large for small highly charged cations

•**Long range counter-diffusion of Mg²⁺ and Al³⁺ cations across interface, usually RDS (= rate determining step), requires ionic conductivity, substitutional or interstitial hopping of cations from site to site to effect mass transport

●[™]Nucleation of product spinel at interface, ions diffuse across thickening interface, oxide ion reorganization at nucleation site

 \mathbf{x}^2

• Decreasing rate as spinel product layer thickens Parabolic rate law: dx/dt = k/x

$$=$$
 kt 29

Kinetics: Linear x^2 vs. t plots observed ln k vs. 1/T experiments provide Arrhenius activation energy E_a for the solid-state reaction

Reaction mechanism requires charge balance to be maintained in the solid state interfacial reaction:

3Mg²⁺ diffuse in opposite way to 2Al³⁺

MgO/MgAl₂O₄ Interface: $2Al^{3+} - 3Mg^{2+} + 4MgO \rightarrow 1MgAl_2O_4$

MgAl₂O₄/Al₂O₃ Interface: $3Mg^{2+} - 2Al^{3+} + 4Al_2O_3 \rightarrow 3MgAl_2O_4$

Overall Reaction:

 $4MgO + 4Al_2O_3 \rightarrow 4MgAl_2O_4$

the Kirkendall Effect : RHS/LHS growth rate of interface = 3/1

Reaction Mechanism

31

 α – the molar fraction of the reacted product at a time t k(T) – the rate constant of the process

Experimentally evaluate α at different t Fit data into a g(α) = k(T) t expression to obtain k(T) and the type of mechanism model

 $\alpha = \frac{P_t - P_0}{P_e - P_0}$ $P_t = \text{the value of a property at time t}$ $P_0 = \text{the value of a property at the beginning}$ $P_e = \text{the value of a property at the end}$ $P_e = \text{the value of a property at the end}$ $e.g. P_t = \text{mass loss, x,}$

32

 $\frac{d\alpha}{dt} = k(T)f(\alpha) \qquad \qquad \int \frac{d\alpha}{f(\alpha)} = \int k(T)dt$

 $g(\alpha) = \int k(T) dt \qquad g(\alpha) = k(T) t$

Decreasing reaction rate as spinel product layer (x) thickens

Mechanism model

g(α)

Diffusion controlled One-dimensional Two-dimensional Three-dimensional, Jander Three-dimensional, Ginstling Three-dimensional, Carter

$$\begin{array}{r} \alpha^2 \\ \alpha \,+\, (1-\alpha) \ln \, (1-\alpha) \\ [1-(1-\alpha)^{1/3}]^{2/3} \\ (1-2/3\alpha) - (1-\alpha)^{2/3} \\ (1+\alpha)^{2/3} + (1-\alpha)^{2/3} \end{array}$$

Growth controlled	
General	$[1 - (1 - \alpha)^{1-n}]$
First order, n = 1	$[-\ln(1-\alpha)]$

Nucleation controlled	
Power law	$\alpha^{1/n}$

11

Nucleation-Growth	
controlled	
Avrami	$[-\ln(1-\alpha)]^{1/2}$
Erofeev	$[-\ln(1-\alpha)]^{1/3}$
Planar boundary	$1 - (1 - \alpha)^{1/2}$
Spherical boundary	$1 - (1 - \alpha)^{1/3}$

Avrami Plot

Perform the measurements in a range of temperatures T use Arrhenius equation to evaluate the activation energy E_a

 $\mathbf{k}(\mathbf{T}) = \mathbf{k}_0 \exp(-\mathbf{E}_a/\mathbf{R}\mathbf{T})$

Cation Diffusion in LaCoO₃

 $D_{Co} >> D_{La}$

Rate-determining step:

Diffusion of Co cations

37

Growth Kinetics of LaCoO₃

Parabolic rate law valid = diffusion controlled process

Growth Kinetics of LaCoO₃

T/K	$k_{\rm p}~{\rm cm^2 s^{-1}}$	${\rm D}~{\rm cm}^2{\rm s}^{-1b}$
1370	(3.11±0.69)x10 ⁻¹²	3.02x10 ⁻¹²
1478	(1.49±0.14)x10 ⁻¹¹	1.40x10 ⁻¹¹
1573	(5.01±0.16)x10 ⁻¹¹	4.55x10 ⁻¹¹
1673	(1.22±0.22)x10 ⁻¹⁰	1.05x10 ⁻¹⁰

 $E_A = (250 \pm 10) \text{ kJ mol}^{-1}$

Nucleation

Homogeneous nucleation

Liquid melt to crystalline solid Cluster formation

 $\Delta G_v = driving force for solidification (negative)$ below the equilibrium melting temperature, T_m $<math>\Delta T = undercooling, \Delta H_v = enthalpy of solidification (negative)$

Small clusters of crystallized solid form in a melt because of the random motion of atoms within the liquid

Driving force is opposed by the increase in energy due to the creation of a new solid-liquid interface γ_{SL} = the solid/liquid interfacial energy

Nucleation

 ΔG

r: radius of spheric seedr*: critical radius

 ΔG_{N} : <u>total</u> free energy change ΔG_{s} : <u>surface</u> free energy change ΔG_{v} : <u>volume</u> free energy change

 $\Delta G_{\rm N} = 4\pi r^2 \gamma_{\rm SL} + 4/3\pi r^3 \Delta G_{\rm V}$

Critical Radius r*

The critical radius r^* = the radius at which ΔG_N is maximum

$$r^* = \frac{-2\gamma_{\rm SL}}{\Delta G_{\rm T}} = \frac{-2\gamma_{\rm SL}T_{\rm m}}{\Delta H_{\rm T}\Delta T}$$

The energy barrier to homogeneous nucleation

$$\Delta G^* = \frac{16 \pi \gamma_{\rm SL}^3}{3 \Delta G_{\rm v}^2} = \frac{16 \pi \gamma_{\rm SL}^3 T_{\rm m}^2}{\Delta H_{\rm v}^2 \Delta T^2}$$

The temperature-dependence

$$\Delta G_r^* = 1/\Delta T$$
 $\Delta G_r^* = 1/\Delta T^2$

a sub-critical cluster unstable for r < r* the cluster re-dissolves a nucleus stable for r >r* the stable nucleus continues to grow

Nucleation rate *n*

Nucleation rate *n*

Liquid to solid

$$n = n_0 \exp\left(-\frac{\left(\Delta G_N + \Delta G_D\right)}{kT}\right)$$

 ΔG_N = thermodynamic barrier to nucleation ΔG_D = kinetic barrier to diffusion across the liquid/nucleus interface Assume, that solid phase nucleates as spherical clusters of radius r

 $\Delta G_N = \text{the net (excess) free energy change for a single nucleus}$ $\Delta G_N = \Delta G_S + 4/3\pi r^3 \Delta G_V$

 $\Delta G_{\rm S} = 4\pi r^2 \gamma_{\rm SL} \quad \text{surface free energy change} \qquad \text{positive}$ $4/3\pi r^3 \Delta G_{\rm V} \quad \text{volume free energy change} \qquad \text{negative, 1 to s lowers the energy}$

Nuclei can form at preferential sites: flask wall, impurities, catalysts,

The energy barrier to nucleation, ΔG^* , is substantially **reduced**

The critical nucleus size, r* is the same for both heterogeneous and homogeneous nucleation

a solid cluster forming on a wall:

- the newly created interfaces (i.e. solid-liquid and solid-wall)
- the destroyed interface (liquid-wall)

$$\Delta G_{\text{het}}^* = \frac{16 \pi \gamma_{\text{SL}}^3}{3 \Delta G_{\pi}^2} S(\theta) = \Delta G_{\text{hom}}^* S(\theta)$$

$$\cos\theta = \frac{\gamma_{WL} - \gamma_{WS}}{\gamma_{SL}}$$

 θ = wetting angle

Shape factor $S(\theta)$

$$S(\theta) = \frac{(2 + \cos\theta)(1 - \cos\theta)^2}{4}$$

Wetting Angle

Force equilibrium

$$\gamma_{GS} = \gamma_{GL} \cos \theta + \gamma_{SL}$$
$$\cos \theta = \frac{\gamma_{GS} - \gamma_{SL}}{\gamma_{GL}}$$

48

The critical radius r* is the same for both homogeneous and heterogeneous nucleation

The volume of a critical nucleus and ΔG^* can be significantly smaller for heterogeneous nucleation due to the shape factor, depending on the wetting angle, θ ⁴⁹

Solidification

 $\Delta G = 4/3 \pi r^3 \Delta G_v + 4 \pi r^2 \gamma_{SL}$

– Volume free energy + surface energy

One solid phase changing to another

 $\Delta G = 4/3 \ \pi \ r^3 \ \Delta G_v + 4 \ \pi \ r^2 \ \gamma_{SL} + 4/3 \ \pi \ r^3 \ \epsilon$

- Volume energy + surface energy + strain energy
- the new solid does not take up the same volume as the old solid
- a misfit strain energy term, $\Delta G_s = V \epsilon$

$$r^{*} = \frac{-2\gamma_{\alpha\beta}}{(\Delta G_{\pi} + \Delta G_{s})} \qquad \Delta G^{*} = \frac{16\pi\gamma_{\alpha\beta}^{3}}{3(\Delta G_{\pi} + \Delta G_{s})^{2}}$$

 $\gamma_{\alpha\beta}$ = the α/β interfacial energy

Nucleation

Transformation from liquid to solid phase requires:

Nucleation of new phaseGrowth of new phase

Nucleation depends on:

•driving force toward equilibrium – cooling of a melt increases as we move to lower temperatures

•diffusion of atoms into clusters increases at higher temperatures

Combination of these two terms (multiplication) determines the total nucleation rate

Nucleation rate I

Nucleation rate $[m^{-3} s^{-1}] I = \beta n^*$

 n^* = the steady-state population of critical nuclei (m⁻³)

$$n^* = n_0 \exp\left(-\frac{\Delta G^*}{kT}\right)$$

 n_0 = the number of potential nucleation sites per unit volume ΔG^* = the critical free energy of nucleation

 β = the rate at which atoms join critical nuclei (s⁻¹), thereby making them stable, a diffusion-dependent term

$$\beta = \omega \exp(-Q/kT)$$

 ω = temperature independent term incorporating vibrational frequency and the area to which atoms can join the critical nucleus 52 Q = an activation energy for atomic migration

Nucleation rate I

 n^* = the steady-state population of critical nuclei (m⁻³)

Nucleation

Nucleation vs. Growth

Equilibrium transformation temperature

Rate

Nucleation vs. Crystal Growth (solution or melt)

Undercooling – cooling below the melting point relations between undercooling, nucleation rate and growth rate of the nuclei

large undercooling:	<u>many</u> small nuclei (spontaneous nucleation) growth rate small - high viscosity, slow diffusion
small undercooling:	<u>few</u> (evtl. small) nuclei growth rate high – fast diffusion close to the m.p.

Nucleation vs. Crystal Growth

Rate of nucleation Rate of growth

 $T_a =$ small undercooling, slow cooling rate

Fast growth, slow nucleation = Few coarse crystals

T_b = larger undercooling, rapid cooling rate Rapid nucleation, slow growth = many fine-grained crystals

T_c = very rapid cooling Nearly no nucleation = glass

DIRECT REACTION OF SOLIDS

NUCLEATION RATE

Nucleation requires structural similarity of reactants and products less reorganization energy = faster nucleation of product phase within reactants

MgO, Al₂O₃, MgAl₂O₄ example MgO (rock salt) and MgAl₂O₄ (spinel) similar ccp O²⁻ but distinct to hcp O²⁻ in Al₂O₃ phase

Spinel nuclei, matching of structure at MgO interface Oxide arrangement essentially continuous across MgO/MgAl₂O₄ interface Bottom line: structural similarity of reactants and products promotes nucleation and growth of one phase within another Lattice of oxide anions, mobile Mg^{2+} and Al^{3+} cations

Topotactic and epitactic reactions Orientation effects in the bulk and surface regions of solids Implies structural relationships between reagent and product

```
Topotaxy occurs in bulk, 1-, 2- or 3-D
Epitaxy occurs at interfaces, 2-D
```

DIRECT REACTION OF SOLIDS

Epitactic reactions

require 2-D structural similarity, lattice matching within 15% to tolerate oriented nucleation otherwise mismatch over large contact area, strained interface, missing atoms

Example: MgO/BaO, both rock salt lattices, cannot be lattice matched over large contact area

Lattice matched crystalline growth

Best with less than 0.1% lattice mismatch. Causes elastic strain at interface Slight atom displacement from equilibrium position. Strain energy reduced by misfit-dislocation Creates dangling bonds, localized electronic states, carrier scattering by defects, luminescence quenching, killer traps, generally reduces efficacy of electronic and optical devices, can be visualized by HR-TEM imaging

Topotactic reactions

More specific, require interfacial and bulk crystalline structural similarity, lattice matching

Topotaxy: involves lock-and-key ideas of self-assembly, molecule recognition, host-guest inclusion, clearly requires available space or creates space in the process of adsorption, injection, intercalation etc.

Surface structure and reactivity

Nucleation depends on actual surface structure of reacting phases.

Different Miller index faces exposed, atom arrangements different, different surface structures, implies distinct surface reactivities.

Example: MgO (rock salt)

{100} MgO alternating Mg²⁺, O²⁻ at corners of square grid {111} MgO, Mg²⁺ or O²⁻ hexagonal arrangement

Cubic (rocksalt) MgO crystal: different netplanes

Atoms located in (111) and (100) crystal planes for spherical and cuboid particles

Model particles = fcc structure of Pt 4 nm size

Dark grey = atoms located in (111)-surface Light orange = the (100) face

Surface Facet Reactivity

Electron tomography and electron energy loss spectroscopy (EELS) map the valency of the Ce ions in CeO_{2-x} nanocrystals in 3D. A facet-dependent reduction shell at the surface; {111} facets show a low surface reduction, whereas at {001} surface facets, the cerium ions are more reduced.

Work function of different crystal planes

Planar density on (111) plane in a Simple Cubic Structure:

- Number of atoms on (111) plane is $1/6 \times 3 = 0.5$
- Area of (111) plane (triangle DEF) is 1/2 x (√2a) x (0.866 x √2a) = 0.866a^{2 D} $PD = 0.5 \text{ atom } / 0.866a^2 =$ $= 0.577 / a^2$

Planar density on (100) plane in a **Body Centred Cubic Structure:**

• Number of atoms on (100) plane is 1

• Area of (100) plane (square section) is a x a = a^2 $PD = 1 \text{ atom } / a^2 = 1 / a^2$

y

Body Centered Cubic Structure:

- Number of atoms on (111) plane is
- $1/6 \times 3 + 1 = 1.5$
- Area of (111) plane (triangle DEG) is ½ x √2a

- PD = 1.5 atoms / 0.866a² =

 $= 1.732 / a^2$

68

Different crystal habits possible, depends on rate of growth of different faces, octahedral, cubic possible and variants in between

CRYSTAL GROWTH

Most prominent surfaces, slower growth Growth rate of specific surfaces controls morphology Depends on area of a face, structure of exposed face, accessibility of a face, adsorption at surface sites, surface defects

Play major role in reactivity, nucleation, crystal growth, materials properties (electronic, optical, magnetic, charge-transport, mechanical, thermal, acoustical etc)

DIRECT REACTION OF SOLIDS

Azide Method

 $3 \operatorname{NaN}_3 + \operatorname{NaNO}_2 \longrightarrow 2 \operatorname{Na}_2 O + 5 \operatorname{N}_2$ $5 \operatorname{NaN}_3 + \operatorname{NaNO}_3 \longrightarrow 3 \operatorname{Na}_2 O + 8 \operatorname{N}_2$

9 NaN₃ + 3 NaNO₂ + 2 ZnO \longrightarrow 2 Na₆ZnO₄ + 15 N₂ 8 NaN₃ + 4 NaNO₂ + Co₃O₄ \longrightarrow 3 Na₄CoO₄ + 14 N₂ 2 NaN₃ + 4 CuO \longrightarrow 2 NaCu₂O₂ + 3 N₂

Self-Sustained High-Temperature Synthesis (SHS)

Mixing Metal powders (Ti, Zr, Cr, Mo, W,) + other reactants

Pressing into pellets

Ignition by energy pulse (W wire)

S.S. reactor, under Ar

Exothermic reaction

Byproduct removal

DIRECT REACTION OF SOLIDS

SHS reactions:

●^{**} heterogeneous

 \bullet^{**} exothermic, high temperatures, $T_f = 1500 - 3000 \ ^{\circ}C$

●^{**} high thermal gradients

●^{*} redox

•* frontal mode, reaction wave velocity $u = 1 - 10 \text{ mm.s}^{-1}$

●^{**} metastable phases

State of the substance in the reaction front: solid $(T_f < T_m, p < p_0)$,,solid flame" liquid, melt $(T_f > T_m)$ gaseous

Thermite reaction $Zr + Fe_2O_3 \longrightarrow Zr_{1-x}Fe_xO_2 + Fe$ $Ti + C \longrightarrow TiC$ $Ti + B \longrightarrow TiB$

Self-Propagating Metathesis

Grinding of components in a glove box addition of NaCl, KCl or NH₄Cl as a heat sink, S.S. vessel, ignition by a resistively heated wire, reaction time 1 s, washing products with MeOH, water, drying

 $3 \operatorname{ZrCl}_4 + 4 \operatorname{Na}_3 P \longrightarrow 3 \operatorname{c-Zr} P + 12 \operatorname{NaCl} + P$

 $3 \text{ HfCl}_4 + 4 \text{ Li}_3 P \longrightarrow 3 \text{ c-HfP} + 12 \text{ LiCl} + P$

c-ZrP and c-HfP hard and chemically inert materials, hexagonal to cubic transitions: ZrP 1425 °C, HfP 1600 °C
Self-Propagating Metathesis

Silicon production

 $Na_2SiF_6 + 4 Na \longrightarrow 6 NaF + Si$

Hard materials production

 $TaCl_5 + Li_3N + NaN_3 + NH_4Cl \rightarrow c-TaN + LiCl + NaCl + N_2 + HCl$

 $CrCl_3 + Li_3N + NH_4Cl \longrightarrow Cr + Cr_2N + c-CrN$

 $CrI_3 + Li_3N \longrightarrow Cr_2N$

 $CrI_3 + Li_3N + NH_4Cl \longrightarrow c-CrN$

 $MoCl_5 + Li_3N \longrightarrow explosive$

 $MoCl_5 + Ca_3N_2 + NH_4Cl \longrightarrow cubic \gamma - Mo_2N$

Combustion Synthesis

Oxidizing reagents (metal nitrates) mixed with fuel (urea, glycine) by melting or in solution drying combustion ignited at 300-500 °C exothermic self-propagating non-explosive reaction (excess of fuel) reaction time 1 min, flame temperature 1000 °C product dry foam, crumbles to a fine powder.

 $Zn(NO_3)_2.6H_2O + CO(NH_2)_2 \longrightarrow ZnO + N_2 + CO_2 + H_2O$

Combustion Synthesis

Examples

 $ZnO(90\%) - Bi_2O_3 - Sb_2O_3$

Non-Ohmic behavior $I = (U/C)^a$ C, a = constants, a = 50 Voltage stabilization, surge absorption

Reaction front propagation: glycine-iron nitrate

Self-Propagating Metathesis

Combustion Synthesis

Examples

 $LiNO_3 + NH_4VO_3 + (NH_4)_2MoO_4 + glycine \rightarrow LiVMoO_6$

mixing 1:1:1 in aqueous solution, drying at 90 °C combustion at 250 °C calcination to LiVMoO₆ cathode material for Li-ion

Solution Combustion Synthesis

Yttrium Iron Garnet (YIG) Y₃Fe₅O₁₂ Y(NO₃)₃·6H₂O Fe(NO₃)₃·9H₂O citric acid monohydrate Solution in water Y:Fe = 3:5The solution evaporated at 85 °C stirrred until viscous gel Increasing the temperature up to 250 ° C ignition of the gel MN/CA ratio controls the size

Carbothermal Reduction

Acheson

SiO₂ + 3 C $\xrightarrow{2000 \text{ K}}$ 2 CO + SiC $\Delta \text{H} = 478 \text{ kJ}$ 3 SiO₂ + 6 C + 2 N₂ \longrightarrow 6 CO + Si₃N₄

$$C + SiO_{2} \longrightarrow SiO(g) + CO$$

$$SiO_{2} + CO \longrightarrow SiO + CO_{2}$$

$$C + CO_{2} \longrightarrow 2 CO$$

$$2 C + SiO \longrightarrow SiC + CO$$

Carbothermal Reduction

Borides

$$TiO_{2} + B_{2}O_{3} + 5 C \xrightarrow{1300 \text{ K}} 5 CO + TiB_{2}$$

$$2 TiO_{2} + B_{4}C + 3 C \xrightarrow{2300 \text{ K}} 4 CO + 2 TiB_{2}$$

$$Al_{2}O_{3} + 12 B_{2}O_{3} + 39 C \xrightarrow{1820 \text{ K}} 2 AlB_{12} + 39 CO$$

Carbides

$$2 \operatorname{Al}_{2}O_{3} + 9 \operatorname{C} \xrightarrow{2220 \operatorname{K}} \operatorname{Al}_{4}C_{3} + 6 \operatorname{CO}$$
$$2 \operatorname{B}_{2}O_{3} + 7 \operatorname{C} \xrightarrow{1820 \operatorname{K}} \operatorname{B}_{4}C + 6 \operatorname{CO}$$
$$WO_{3} + 4 \operatorname{C} \xrightarrow{970 \operatorname{K}} WC + 3 \operatorname{CO}$$

Nitrides

$$Al_2O_3 + N_2 + 3 C \xrightarrow{1970 \text{ K}} 2 \text{ AlN} + 3 CO$$
$$2 \text{ TiO}_2 + N_2 + 4 C \xrightarrow{1820 \text{ K}} 2 \text{ TiN} + 4 CO$$

81

Fusion-Crystallization from Glass

Fusion-Crystallization from Glass

Mixing powders Melting to glass: single phase, homogeneous (T, C), amorphous

Temperature limits:

mp of reagents volatility of reagents

Nucleation agent Homogeneous nucleation, few crystal seeds

Slow transport of precursors to seed Lowest possible crystallization temperature

Crystallizing a glass above its glass transition Metastable phases accessible, often impossible to prepare by other methods

Fusion-Crystallization from Glass

DIRECT REACTION OF SOLIDS Fusion-Crystallization from Glass

Fusion-Crystallization from Glass

Production of window glass

Abrasive grains

Al₂O₃ + MgO $\xrightarrow{2100 \text{ K}}$ melt, solidify, crush, size

Crystallizing an inorganic glass, lithium disilicate

 $Li_2O + 2SiO_2 + Al_2O_3 \xrightarrow{1300 \text{ K, Pt crucible}} Li_2Si_2O_5$

Li₂Si₂O₅ forms as a melt. Hold at 1100°C for 2-3 hrs. Homogeneous, rapid cooling, fast viscosity increase, quenches transparent glass

Li₂Si₂O₅, glass 500-700°C, T_g ~ 450°C from DSC \rightarrow Li₂Si₂O₅, crystals in 2-3 hrs., principle of crystallizing a glass above its glass transition

DIRECT REACTION OF SOLIDS Fusion-Crystallization from Glass

Fusion-Crystallization from Glass

Glass Ceramics polyxtalline materials made by controlled xtallization of glasses

Cooking utensils Li₂O/SiO₂/Al₂O₃(>10%) nucl. TiO₂ β-spodumene

Vacuum tube components Li₂O/SiO₂/Al₂O₃(<10%) nucl. P₂O₅ Li-disilicate, quartz

Missile radomes MgO/SiO₂/Al₂O₃ nucl. TiO₂ cordierite, cristobalite

Cements

5600 BC - the floor of a villa in Serbia, a red lime binder (calcium oxide). Lime obtained by burning gypsum, limestone or chalk

2589-2566 BC - Egypt, the Great Pyramid of Cheops, gypsum-derived binders

800 BC the Greeks, 300 BC the Romans, limestone-derived cements became widespread Vitruvius, De Architectura the Appian Way, the Coliseum, the Pantheon cements based on a mixture of natural and synthetic aluminosilicates with lime - pozzolan

1756 John Smeaton, lighthouse, a pozzolanic binder from lime, volcanic ash and copper slag, able to withstand the harsh coastal environment

1824 Joseph Aspdin, Leeds, England, developed and patented Portland cement.

Portland cement - made by heating at 1450°C chalk, shale, and clay or **limestone** in a kiln to form a partially fused mixture – clinker, which is then finely ground with gypsum

Cements

Hydraulic cements - materials that set and harden by reacting with water, produce an adhesive matrix, combined with other materials, are used to form structural composite materials.

Non-hydraulic cements - lime and gypsum plasters, set by drying out, must be kept dry, gain strength slowly by absorption of CO_2 to form calcium carbonate through carbonatation

Concrete - a mixture of cement (binding agent) and water with aggregate (varying amounts of coarse and fine sand and stone). Consumption of concrete - 2.5 tonnes per person per year.

Mortar - used to bind bricks together, made from cement but with finer grade of added materials.

Portland cement

Component	Formula	a	Phase	wt%
Tricalcium silicate	C3S	Ca_3SiO_5	Alite	50-70
B-dicalcium silicate	C2S	Ca_2SiO_4	Belite	15-30
Tricalcium aluminate	C2A	$Ca_3Al_2O_6$	Aluminate	5-10
Tetracalcium aluminoferrite	C4AF	$Ca_2(Al/Fe)O_5$	Ferrite	5-15
		2 , , , ,		87

Chemical Cement Nomenclature

S	SiO ₂	С	CaO
А	Al ₂ O ₃	F	Fe ₂ O ₃
Т	TiO ₂	М	MgO
K	K2O	Ν	Na ₂ O

- H₂O Η
- CO_2 Ē $\bar{\mathbf{S}}$
 - SO₃

C4AF CaO C3S C2S