
Reaction Setup

Powder mixing

High-energy ball-milling for several hours

Ball-to-powder ratio (20:1)

Vial (250 ml) and balls (d = 10-20 mm)

WC, stainless steel, zirconia

250 rotations per minute

Controlled atmosphere

Particles repeatedly subjected to deformation, cold welding, and fracture, homogenization on an atomic scale

On impact, high energy concentrated in a small spot, stress 200 MPa, duration of microseconds

Fragmentation, atomically clean surface exposed

Balance between fragmentation and coalescence

Grain size ~10 nm

Amorphization, product nucleation and crystallization

→ Phase Transitions (to denser structures)

Oxide	Before	$V, Å^3$	After	$V, Å^3$
GeO ₂	quartz	40.3	rutile	27.6
TiO ₂	anatase	34.1	rutile	31.2
ZrO ₂	baddaleyite	35.2	fluorite	32.8

V = volume per formula unit

→ Mechanical Alloying

$$Ni + Nb$$
 \longrightarrow $Nb_{40}Ni_{60}$ amorphous

→ Preparation of mixed oxides

 Al_2O_3 (corundum) + SiO_2 (xerogel) \longrightarrow mullite Al_2O_3 + La_2O_3 \longrightarrow $LaAlO_3$ 120 min Al_2O_3 + Mn_2O_3 \longrightarrow $LaMnO_3$ room temp., 180 min SnO_3 + P_2O_3 + P_2O_5 + Li_2O_3 \longrightarrow (Li_2O_2 (Sn_2BPO_6)4 in dry N_2

→ Preparation of chalcogenides

anodic material for lithium batteries

Fe (powder 4
$$\mu$$
m) + S (50 μ m) — FeS in Argon ZnCl₂ + Na₂S — ZnS + 2 NaCl CdCl₂ + Na₂S — CdS + 2 NaCl

→ Preparation of carbides, borides, nitrides, silicides

Nb + C (graphite)
$$\longrightarrow$$
 NbC (Fe impurities from abrasion)

Nb + C + Cu + Fe \longrightarrow NbC/Cu/Fe cermet

Ti + N₂ \longrightarrow TiN 60 h

Ti + C \longrightarrow TiC 35 h

Ti + 2 B \longrightarrow TiB₂ 15 h

TiO₂ + 2 Mg + C \longrightarrow TiC + 2 MgO (MgO removed by HCl)

WO₃ + 3 Mg + C \longrightarrow α -W + 3 MgO + C explosive

 α -W + 3 MgO + C \longrightarrow WC 50 h

(4-20 nm, MgO removed by HCl)

→Reactive milling

$$Na_2CO_3 + SeO_2 \longrightarrow Na_2SeO_3 + CO_2$$

$$2\text{In} + 3 \text{ urea.H}_2\text{O}_2 + \text{SnO}_2 \longrightarrow \text{In}_2\text{O}_3 + \text{SnO}_2 + 3 \text{ H}_2\text{O} + 3 \text{ urea}$$

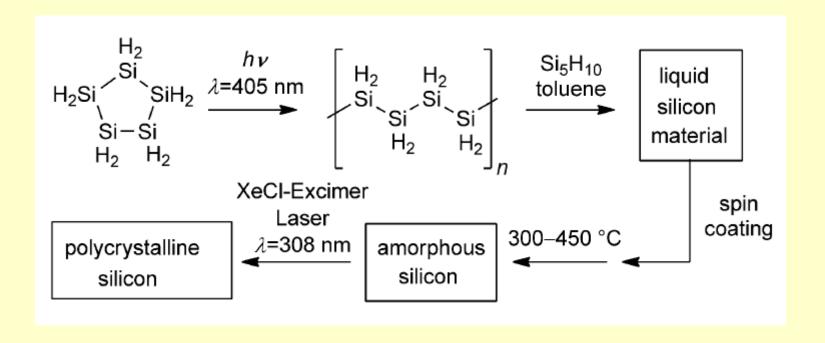
heating to 473 K for 4h to remove organics and calcination at 573-673 K in oxygen gives ITO

$$FeCl_2 + 2 CpNa \rightarrow 2 NaCl + Cp_2Fe$$

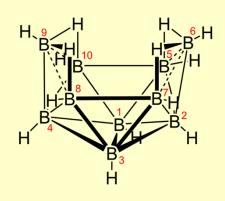
Preparation of: powders, monoliths, fibers, films, impregnation (PIP)

Example: SiC fibers

© polymer synthesis


$$Me_2SiCl_2 + MePhSiCl_2 \xrightarrow{Na} [-SiMe_2-SiMePh-]_n$$

- **©** melt spinning or drawing from solution gives continuous polymer fiber
- © curing in O₂, heat to 400 500 °C, thermoset, crosslinking to prevent melting
- © pyrolysis at 1000 1500 °C to polyxtalline β-SiC fiber


Cl-CH₂-SiCl₃

$$\begin{array}{c|c} \text{CI}_3\text{Si-CH}_2\text{-Cl} \\ \hline 1. \text{ Mg, Ether} \\ 2. \text{ LiAlH}_4 \\ \hline \text{H} & \text{CH}_2 & \text{CH}_2 \\ \text{CH}_2 & \text{CH}_2 \\ \text{CH}_2 & \text{CH}_2 \\ \text{H-Si-CH}_2]_{\text{L--}}[\text{Si-CH}_2]_{\text{Z}}\text{-[Si-CH}_2]_{\text{Y}}\text{-[Si-CH}_2]_{\text{X}}\text{-} \\ \text{H} & \text{H} & \text{CH}_2 \end{array}$$

$$(SiCH_4)_n$$

Nature 440, 783-786 (6 April 2006) doi:10.1038/nature04613

$$B_{10}H_{14} + en \longrightarrow polymer \xrightarrow{1300 \text{ K, NH}_3} BN \text{ powder}$$

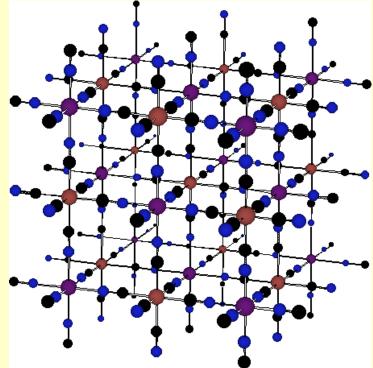
AIN

Al
$$\xrightarrow{\text{anodic dissolution}}$$
 Al(NHR)₃ \longrightarrow Al₂(NR)₃ polymeric gel

Thermolysis of Organometallic Coordination Polymers

$$(Me_3Sn)_nM(CN)_6$$
 n = 3,4; M = Fe, Co, Ru

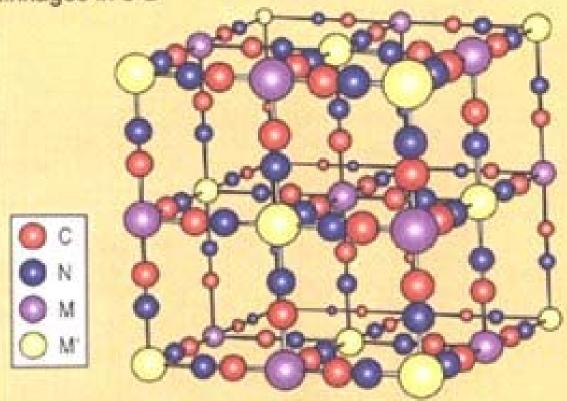
thermolysis in Ar or H₂ gives intermetallics FeSn₂, CoSn₂, Ru₃Sn₇ thermolysis in air gives oxides Fe₂O₃/SnO₂, Co₂SnO₄, RuO₂


Thermolysis of Organometallic Coordination Polymers

 $(Me_3Sn)_nM(CN)_6$ n = 3,4; M = Fe, Co, Ru

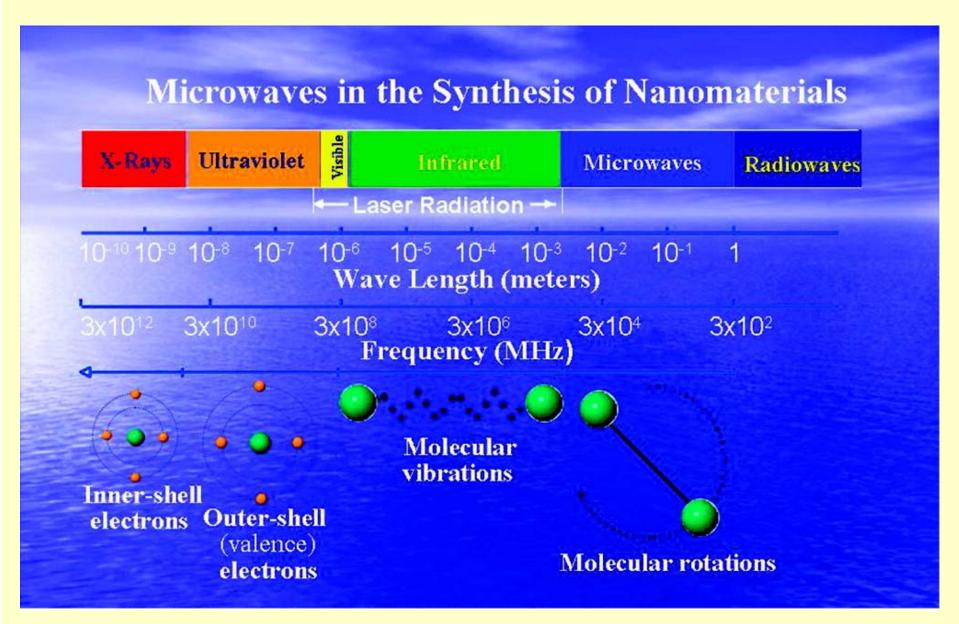
thermolysis in Ar or H₂ gives intermetallics

FeSn₂, CoSn₂, Ru₃Sn₇


thermolysis in air gives oxides Fe₂O₃/SnO₂, Co₂SnO₄, RuO₂

Prussian Blue structure

11


An idealised structure of Prussian Blue with M←C=N→M' linkages in 3-D

When M = Cr, M' = Ni material is a ferromagnet, T_c = 90K When M= V, M' = Mn material is a ferrimagnet, T_c = 125K When M= Cr, M' = V material is a ferrimagnet, T_c = 315K

Microwave radiation = electromagnetic radiation Microwaves: $\lambda=1$ mm to 1m, $\nu=0.3$ to 300 GHz Microwave ovens 2.45 GHz, $\lambda=12.24$ cm power up to 1 kW, pulses, magnetron, microwaveguide, microwave cavity

All kitchen microwave ovens and all microwave reactors for chemical synthesis operate at a frequency of 2.45 GHz to avoid interference with telecommunication and cellular phone frequencies.

The energy of the microwave photon in this frequency region is too low (10^{-5} eV) to break chemical bonds lower than the energy of Brownian motion at 298 K

Microwaves cannot induce chemical reactions

Microwave-enhanced chemistry

the heating of materials by "microwave dielectric heating" effects = the ability of a material (solvent or reagent) to absorb microwave energy and convert it into heat

Dielectric heating

electric dipole reorientation in the applied alternating field

the dipoles or ions aligning in the applied electric field applied field oscillates, the dipole or ion field attempts to realign itself with the alternating electric field energy is lost in the form of heat through molecular friction and dielectric loss

if the dipole does not have enough time to realign, or reorients too quickly with the applied field, no heating occurs

Resistive heating polarization current, a reorientation phase lag

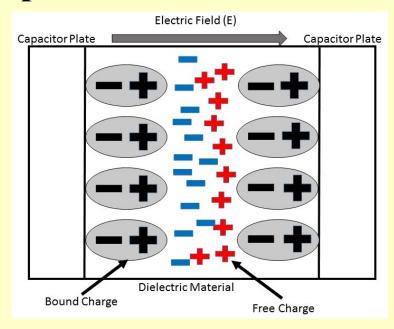
Joule heating ionic current, ionic conduction, ions drift in the applied field

Electronic transport metal powders, semimetallic and semiconducting materials

Rotational excitation: weak bonds (interlayer bonds in graphite and other layer materials

Eddy currents: metal powders, alternating magnetic fields Microwave absorption = f (frequency, temperature) Thermal runaway = increased dielectric loss at higher T

Dielectric Properties


Dipolar polarization, P

$$P = \varepsilon_0(\varepsilon_{\rm r} - 1)E$$

E = external electric field of strength E, potential (V)

 ε_0 = permittivity of free space

 ε_r = relative permittivity of a material

ε* permittivity is a complex quantity:

$$\varepsilon^* = \varepsilon_0 \varepsilon_r \quad \varepsilon^* = \varepsilon' + i \varepsilon''$$

 ϵ' = time-independent polarizability of a material in the presence of an external electric field

 ϵ'' = time-dependent component of the permittivity, quantifies the efficiency with which electromagnetic energy is converted to heat

Dielectric Properties

The ability of a substance to convert electromagnetic energy into heat at a given frequency and temperature

Loss factor tanδ

$$\tan \delta = \epsilon''/\epsilon'$$

ε" is the dielectric loss, the efficiency of radiation-to-heat conversion

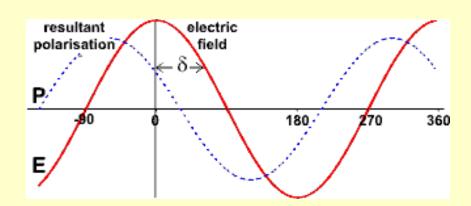
ε' is the dielectric constant, the ability of molecules to be polarized by the electric field

a high $tan\delta$ value required for efficient absorption and for rapid heating

Loss factors (tanδ) of different solvents (2.45 GHz, 20 °C)

Solvent	tanδ	Solvent	tanδ
ethylene glycol	1.350	DMF	0.161
ethanol	0.941	1,2-dichloroethane	0.127
DMSO	0.825	water	0.123
2-propanol	0.799	chlorobenzene	0.101
formic acid	0.722	chloroform	0.091
methanol	0.659	acetonitrile	0.062
nitrobenzene	0.589	ethyl acetate	0.059
1-butanol	0.571	acetone	0.054
2-butanol	0.447	tetrahydrofuran	0.047
1,2-dichlorobenzer	ne 0.280	dichloromethane	0.042
NMP	0.275	toluene	0.040
acetic acid	0.174	hexane	0.020

microwave absorbing properties


high	$tan\delta > 0.5$		
medium	tanδ 0.1–0.5		
low	$tan\delta < 0.1$		

Dielectric Heating

The applied field potential E of electromagnetic radiation

$$E = E_{max} \cdot cos(\omega \tau)$$

 E_{max} = the amplitude of the potential (V) ω = the angular frequency (rad s⁻¹) τ = the time (s)

If the polarization lags behind the field by the phase $(\delta, radians, phase lag)$ then the polarization (P, coulombs) varies as

$$P = P_{max} \cdot cos(\omega \tau - \delta)$$

P_{max} is the maximum value of the polarization

Dielectric Heating

The current (I, A) varies as $I = (dP/dt) = -\omega P_{max} \sin(\omega \tau - \delta)$

The power (*P*, watts) given out as heat is the average value of (current x potential).

P is zero if there is no lag (i.e. if $\delta = 0$), otherwise

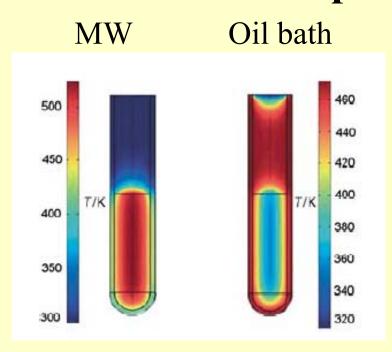
$$P = 0.5 P_{\text{max}} E_{\text{max}} \omega.\sin(\delta)$$

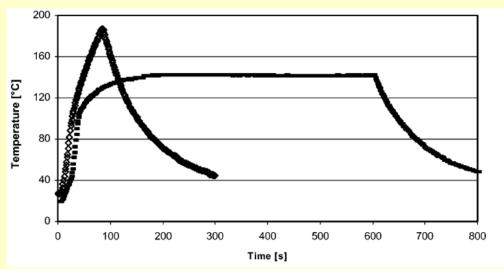
The penetration depth, D_p , is the distance into the sample at which the electric field is attenuated to 1/e of its surface value

$$D_p = \frac{\lambda \sqrt{e'}}{2\pi e''}$$

 λ = wavelength of the microwave radiation.

 D_p = several micrometers for metals and several tens of meters for low-loss polymers


Interaction of materials with microwaves:


#reflectors: metals, alloys (δ skin depth, large E gradients, discharges)

★ transmitters: quartz, zircon, glasses, ceramics (TM free), Teflon

★ absorbers: amorphous carbon, graphite, powdered metals, metal oxides, sulfides, halides, water

Temperature Gradients

Microwave heating profiles for pure water (■) 0.03 M sodium chloride solution (♦) at constant 150 W power

Solvent	T, °C	ε'	3
ethylene glycol	25	37	4
water	25	78	1

ε"	Skin, cm	tan 8	
49.95	0.55	1.35	
10.33	3.33	0.13	

Examples of Microwave-assisted syntheses

Si + C $\rightarrow \beta$ -SiC $\Delta G^{\circ}_{298} = -64 \text{ kJ/mol}$ silica crucible, 1 kW, 4-10 min, 900 °C, inert ambient (I₂), conventional process requires 1400 °C

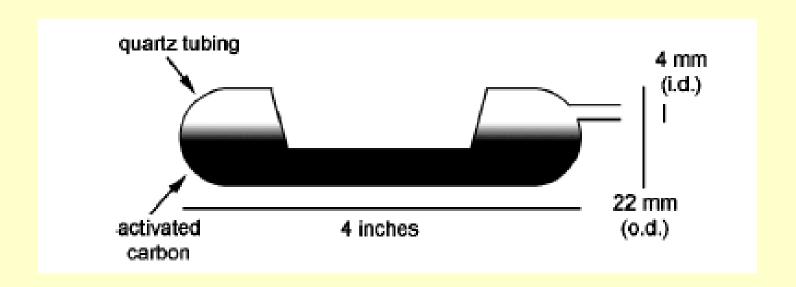
metal + chalcogenide → ME evacuated quartz ampoules, 5-10 min, 900 W, melting, light emission PbSe, PbTe, ZnS, ZnSe, ZnTe, Ag₂S

Mo + Si + graphite → MoSi₂ high mp, oxidation and carbidation resistance, metallic conductivity, heating elements and high-T engine parts

Mixed oxides $Y_2O_3 + BaO + CuO \longrightarrow YBa_2Cu_3O_{7-x}$ 200 W, 25 min

BaO + WO₃
$$\longrightarrow$$
 BaWO₃ 500 W, 30 min

Amorphous carbon is a secondary susceptor, does not react with reagents or products (carbothermal reduction)
C burns and initiates decomposition of carbonates or nitrates


$$BaCO_3 + TiO_2 + C \longrightarrow BaTiO_3 + CO_2$$

 $PbNO_3 + TiO_2 + C \longrightarrow PbTiO_3 + CO_2$

NaH₂PO₄.2H₂O good MW susceptor, rotational excitation of water, dehydrates to NaPO₃, melts, 700 °C in 5 min

Na₂HPO₄.2H₂O, KH₂PO₄ no MW heating

Microvawe-Active Elements, Natural Minerals, and Compounds (2.45 GHz, 1 kW)

			1	1	
element/ mineral/compound	time (min) of microvawe exposure	T, K	element/ mineral/compound	time (min) of microvawe exposure	T, K
Al	6	850	MnO_2	6	1560
C (amorphous, < 1 μm)	1	1556	NiO	6.25	1578
C (graphite, 200 mesh)	6	1053	V_2O_5	11	987
C (graphite, < 1 μm)	1.75	1346	WO_3	6	1543
Со	3	970	Ag_2S	5.5	925
Fe	7	1041	Cu_2S	7	1019
Mo	4	933	CuFeS ₂ (chalcopyrite)	1	1193
V	1	830	FeS ₂ (pyrite)	6.75	1292
W	6.25	963	MoS_2	7	1379
Zn	3	854	PbS	1.25	1297
TiB ₂	7	1116	CuBr	11	995
Co ₂ O ₃	3	1563	CuCl	13	892
CuO	6.25	1285	ZnBr ₂	7	847
Fe ₃ O ₄ (magnetite)	2.75	1531	ZnCl ₂	7	882

