Precursor Methods

Goals :

- decrease diffusion paths
- shorten reaction times
- decrease reaction temperatures

Intimate mixing of components in solution, precipitation, filtration, washing, drying, calcination

High degree of homogenization
Large contact area
Reduction of diffusion distances
Faster reaction rates
Lower reaction temperatures
Metastable phases, smaller grain size, larger surface area

Shaping to fibers, films, nanoparticles

Coprecipitation applicable to nitrates, acetates, oxalates, hydroxides, alkoxides, beta-diketonates

Requires:	similar salt solubilities
	similar precipitation rates
	no supersaturation
Washing:	water, organic solvents
Drying:	evaporation
	azeotropic distillation
	freeze-drying

Disadvantage: difficult to prepare high purity, accurate stoichiometric phases if solubilities do not match

Spinels

oxalates: $Zn(CO_2)_2/Fe_2[(CO_2)_2]_3/H_2O$ 1 : 1 mixing, H_2O evaporation, salts coprecipitation Solid-solution mixing on atomic scale, filter, calcine in air

 $Zn(CO_2)_2 + Fe_2[(CO_2)_2]_3 \rightarrow ZnFe_2O_4 + 4CO + 4CO_2$

Al₂O₃ Bayer Process

BaTiO₃

BaCl₂ + TiOCl₂ + 2 H₂C₂O₄ + 4 H₂O + Ln dopants BaTiO(C₂O₄)₂.4H₂O + 4 HCl filtration, washing, drying, calcination @ 730 °C

Spinel

Al(NO₃)₃ + Mg(NO₃)₂ + H₂O freeze-drying gives amorphous mixture, calcination @ 800 °C !!! low T

 $Mg(NO_3)_2 + 2 Al(NO_3)_3 \longrightarrow MgAl_2O_4 + 6 NO_x + (10-3x)O_2$ random

Ruby Ion exchange Al(NO₃)₃ + Cr(NO₃)₃ \longrightarrow Al(OH)₃ + Cr(OH)₃ sol

freeze drying gives solid (Al/Cr)(OH)₃ @ LN₂ temperature, 5 Pa anealing @ 950 °C for 2.5 h gives solid solution Al_{2-x}Cr_xO₃

Zirconia

 $ZrSiO_{4}(zircon) + NaOH \longrightarrow Na_{2}ZrO_{3} + Na_{2}SiO_{3} \xrightarrow{HCl}$ $ZrOCl_{2} \xrightarrow{OH', YCl_{3}} Zr(OH)_{4} / Y(OH)_{3} \xrightarrow{azeot. dist.} nano-Y/ZrO_{2}$

High-T_c Superconductors

 $La^{3+} + Ba^{2+} + Cu^{2+} + H_2C_2O_4 \longrightarrow ppt \xrightarrow{1373 \text{ K}} La_{1.85}Ba_{0.15}CuO_4$

Magnetic garnets, tunable magnetic materials

 $Y(NO_3)_3 + Gd(NO_3)_3 + FeCl_3 + NaOH \rightarrow Y_xGd_{3-x}Fe_5O_{12}$

Firing @ 900 °C, 18-24 hrs, pellets, regrinding, repelletizing, repeated firings, removes REFeO₃ perovskite impurity Isomorphous replacement of Y^{3+} for Gd^{3+} on dodecahedral sites, solid solution, similar rare earth ionic radii complete family accessible, 0 < x < 3, $2Fe^{3+}$ O_h sites, $3Fe^{3+}$ T_d sites, $3RE^{3+}$ dodecahedral sites

Oxalate Coprecipitation

 $LiMPO_4$ (M = Mn, Fe, Co, or Ni)

- olivine structure
- new cathode materials for lithium rechargeable batteries
- multicomponent olivine cathode materials LiMn_{1/3}Fe_{1/3}Co_{1/3}PO₄

Mn_{1/3}Fe_{1/3}Co_{1/3}(C₂O₄) ₃ 2H₂O

stoichiometric, homogeneously mixed transition metal oxalate precursor the differences in chemical behavior of Fe, Co, and Mn ions

- control of pH different solubilities of MC₂O₄ 2H₂O
- control of atmosphere Fe²⁺ get easily oxidized to Fe³⁺
- control of temperature and aging time FeC₂O₄·2H₂O and CoC₂O₄·2H₂O have temperature-dependent polymorphisms: monoclinic α (90 °C) and orthorhombic β (25 °C), MnC₂O₄·2H₂O forms only monoclinic

Solid state reaction of Mn_{1/3}Fe_{1/3}Co_{1/3}(C₂O₄)₃ 2H₂O and LiH₂PO₄

Pechini and Citrate Gel Method

Aqueous	solution	of metal	ions
---------	----------	----------	------

но Соон соон соон

Chelate formation with citric acid

Polyesterification with polyfunctional alcohol on heating

Further heating leads to resin, transparent glassy gel calcination provides oxide powder

Control of stoichiometry by initial reagent ratio

Complex compositions, mixture of metal ions

Good homogeneity, mixing at the molecular level

Low firing temperatures

Pechini and Citrate Gel Method

BaTiO₃ by conventional powder method at 1200 °C

 $Ba^{2+} + Ti(O^{i}Pr)_{4} + citric acid at 650 °C$

 $Sc_2O_3 + 6 \text{ HCOOH} \longrightarrow 2Sc(\text{HCOO})_3 + 3 \text{ H}_2\text{O}$ MnCO₃ + 2 HCOOH \longrightarrow Mn(HCOO)₂ + CO₂ + H₂O

added to citric acid, water removal, calcination @ 690 °C gives ScMnO₃ without citric acid only mixture of Sc₂O₃ and Mn₂O₃ is formed

Double Salt Precursors

Double salts of known and controlled stoichiometry such as: Ni₃Fe₆(CH₃COO)₁₇O₃(OH).12Py

Burn off organics 200-300 °C, then 1000 °C in air for 2-3 days Product highly crystalline phase pure $NiFe_2O_4$ spinel Good way to make chromite spinels, important tunable magnetic materials

Juggling the electronic-magnetic properties of the $\mathbf{O}_{\rm h}$ and $\mathbf{T}_{\rm d}$ ions in the spinel lattice

Chromite spinel	Precursor	Ignition T, °C
MgCr ₂ O ₄	$(NH_4)_2Mg(CrO_4)_2.6H_2O$	1100-1200
NiCr ₂ O ₄	(NH ₄) ₂ Ni(CrO ₄) ₂ .6H ₂ O	1100
MnCr ₂ O ₄	MnCr ₂ O ₇ .4C ₅ H ₅ N	1100
CoCr ₂ O ₄	CoCr ₂ O ₇ .4C ₅ H ₅ N	1200
CuCr ₂ O ₄	$(NH_4)_2Cu(CrO_4)_2.2NH_3$	700-800
ZnCr ₂ O ₄	$(NH_4)_2Zn(CrO_4)_2.2NH_3$	1400
FeCr ₂ O ₄	(NH ₄) ₂ Fe(CrO ₄) ₂	1150

Double Salt Precursors

Single Source Precursors

- Compounds containing desired elements in a proper stoichiometric ratio
- Easy chemical pathway for ligand removal

Known phases in Cr-P system: Cr₃P, Cr₂P, Cr₂P₇, CrP, CrP₂, CrP₄

Vegard's Law

Vegard law behavior:

A linear relationship exists between the concentration of the substitute element and a property of a solid-solution, e.g. the size of the lattice parameters.

Any property P of a solid-solution member is the atom fraction weighted average of the end-members

The composition of the A_{1-x}B_x alloy can be calculated from Vegard's law

The lattice parameter of a solid solution alloy *a* will be given by a linear dependence of lattice parameter on composition:

 $a(A_{1-x}B_x) = x a(B) + (1-x) a(A)$

Anion radius S^{2–} 1.84 Å Se^{2–} 1.98 Å

a hexagonal wurzite structure a cubic zinc blende a high pressure form with the NaCl structure

La_{1-x}Ce_xCrO₃

Molten salts (inert or reactive), oxides, metals MNO₃, MOH, (M = alkali metal) FLINAK: LiF-NaF-KF M_2Q_x (M = alkali metal, Q = S, Se, Te)

molten salts ionic, low mp, eutectics, completely ionized act as solvents or reactants, T = 250-550 °C enhanced diffusion, reduced reaction temperatures in comparison with powder method products finely divided solids, high surface area (SA) slow cooling to grow crystals separation of water insoluble product from a water soluble flux incorporation of the molten salt ions in product prevented by using salts with ions of much different sizes than the ones in the product (PbZrO₃ in a B₂O₃ flux)

Lux-Flood formalism oxide = strong base acid = oxide acceptor base = oxide donor A + OB \longrightarrow AO + B

$$Zr(SO_{4})_{2} + eut. (Li/K)NO_{3} \xrightarrow{700 \text{ K}} ZrO_{2}$$

$$Zr(SO_{4})_{2} + eut. (Li/K)NO_{2} \xrightarrow{540 \text{ K}} ZrO_{2}$$

$$ZrOCl_{2} + eut. (Na/K)NO_{3} \xrightarrow{520 \text{ K}} ZrO_{2} \text{ amorph.} \longrightarrow t- ZrO_{2}$$

$$ZrOCl_{2} + YCl_{3} + eut. (Na/K)NO_{3} \xrightarrow{720 \text{ K}} ZrO_{2}$$

$$BaCO_{3} + SrCO_{3} + TiO_{2} + eut. (Na/K)OH$$

$$\xrightarrow{570 \text{ K}} cubic-Ba_{0.75} Sr_{0.25}TiO_{3}$$

 $NH_4H_2PO_4 + (Na/K)NO_3 + M(NO_3)_2 \longrightarrow (Na/K)MPO_4$

4 SrCO₃ + Al₂O₃ + Ta₂O₅ ____ Sr₂AlTaO₆ 900 °C in SrCl₂ flux 1400 °C required for a direct reaction

 $K_2Te_x + Cu \longrightarrow K_2Cu_5Te_5$ K_2Te_x reactive flux, 350 °C

Electrolysis in molten salts

Reduction of TiO₂ pellets to Ti sponge in a CaCl₂ melt at 950 °C

O²⁻ dissolves in CaCl₂, diffuses to the graphite anode

insulating $TiO_2 \rightarrow TiO_{2-x}$ conductive

graphite anode anodic oxidation

 $2 O^{2-} \rightarrow O_2 + 4 e^{-}$

cathode TiO₂ pellet cathodic reduction

 $Ti^{4+} + 4e^- \rightarrow Ti$

Organic cations (containing N, P)

Inorganic anions: Cl⁻, AlCl₄⁻, Al₂Cl₇⁻, Al₃Cl₁₀⁻, PF₆⁻, SnCl₃⁻, BCl₃⁻, BF₄⁻, NO₃⁻, OSO₂CF₃⁻ (triflate), CH₃C₆H₄SO₃⁻, N(SO₂CF₃)₂⁻, PO₄⁻³⁻

Oldest known (1914) : EtNH₃⁺**NO**₃⁻ **mp 12 °C**

- → Liquids at room temperature or low mp
- → Thermal operating range from -40 °C to 400 °C
- → Higly polar, noncoordinating, completely ionized
- →Nonvolatile no detectable vapor pressure
- →Nonflamable, nonexplosive, nonoxidizing, high thermal stability
- → Electrochemical window > 4V (not oxidized or reduced)
- →Immiscible with organic solvents
- → Hydrophobic IL immiscible with water

Synthesis of Ionic Liquids

 $NR_3 + RCl \rightarrow [NR_4]^+ Cl^-$

Aluminates $[NR_4]^+ Cl^- + AlCl_3 \rightarrow [NR_4]^+ [AlCl_4]^-$

Metal halide elimination [NR₄]⁺ Cl⁻ + MA → MCl + [NR₄]⁺ A⁻

Reaction with an acid [NR₄]⁺ Cl⁻ + HA → HCl + [NR₄]⁺A⁻

Ion exchange [NR₄]⁺ Cl⁻ + Ion exchanger A → [NR₄]⁺ A⁻

Halogenoaluminate(III) Ionic Liquids

The most widely studied class of IL

High sensitivity to moisture – handling under vacuum or inert atmosphere in glass/teflon

 $RCl + AlCl_3 \leftrightarrows R^+ [AlCl_4]^-$

2 $[AlCl_4]^- \Leftrightarrow [Al_2Cl_7]^- + Cl^-$ autosolvolysis $K_{eq} = 10^{-16}$ to 10^{-17} at 40 °C

 $2 [Al_2Cl_7]^- \leftrightarrows [Al_3Cl_{10}]^- + [AlCl_4]^-$

Acidic: excess of AlCl3 as $[Al_2Cl_7]^ x(AlCl_3) > 0.5$ Basic: excess of Cl⁻ $x(AlCl_3) < 0.5$ Neutral: $[AlCl_4]^ x(AlCl_3) = 0.5$

Equilibria in Halogenoaluminate(III) IL

Halogenoaluminate(III) Ionic Liquids

2 $[AlCl_4]^- \Leftrightarrow [Al_2Cl_7]^- + Cl^-$ autosolvolysis $K_{eq} = 10^{-16}$ to 10^{-17} at 40 °C Acidic IL with an excess of $AlCl_3$

 $HCl + [Al_2Cl_7]^- \leftrightarrows H^+ + 2 [AlCl_4]^-$

Proton extremely poorly solvated = high reactivity

Superacid [EMIM]Cl/AlCl₃/HCl $H_0 = -19$ (HSO₃F: $H_0 = -15$)

Latent acidity

 $MCl + [Al_2Cl_7]^- \leftrightarrows M^+ + 2 [AlCl_4]^- \text{ buffered IL}$ $B + M^+ + [AlCl_4]^- \leftrightarrows MCl + B\text{-}AlCl_3$

Superacidity

Superacidic [EMIM]Cl/AlCl₃/HCl

log K_b in HF

Completely inorganic ionic liquids

Compound	mp (K)	Compound	mp (K)
Na ₁₃ [La(TiW ₁₁ O ₃₉) ₂]	253.0	Na ₁₃ [Tm(TiW ₁₁ O ₃₉) ₂]	260.2
Na ₁₃ [Ce(TiW ₁₁ O ₃₉) ₂]	263.0	Na ₁₃ [Yb(TiW ₁₁ O ₃₉) ₂]	267.2
Na ₁₃ [Pr(TiW ₁₁ O ₃₉) ₂]	253.0	Na ₅ [CrTiW ₁₁ O ₃₉]	261.5
Na ₁₃ [Sm(TiW ₁₁ O ₃₉) ₂]	256.0	Na ₅ [MnTiW ₁₁ O ₃₉]	253.0
Na ₁₃ [Gd(TiW ₁₁ O ₃₉) ₂]	265.1	Na ₅ [FeTiW ₁₁ O ₃₉]	257.6
Na ₁₃ [Dy(TiW ₁₁ O ₃₉) ₂]	265.2	Na ₆ [ZnTiW ₁₁ O ₃₉]	257.4
Na ₁₃ [Er(TiW ₁₁ O ₃₉) ₂]	261.0		

Melting Point of Ionic Liquids

Melting point is influenced by:

Cation – low symmetry, weak imtermolecular interactions, good distribution of charge Anion – increasing size leads to lower mp Composition – Phase diagram

Melting Point of Ionic Liquids

	Me ^{-N} N R X	-
R	Х	mp/°C
Me	Cl	125
Et	Cl	87
n-Bu	Cl	65
Et	NO_3	38
Et	$AlCl_4$	7
Et	BF_4	6
Et	CF_3SO_3	-9
Et	(CF ₃ SO ₃) ₂ N	-3
Et	CF_3CO_2	-14
n-Bu	CF ₃ SO ₃	16

Density of Ionic Liquids

The density of IL decreases as the bulkiness of the organic cation increases:

Viscosity of Ionic Liquids

The viscosity of IL depends on:

van der Waals interactions

H-bonding

	Anion [A]-	η[cP]
	CF ₃ SO ₃	90
$[N \bigoplus N] = [A]^{T}$	n-C4F9SO3-	373
	CF3COO-	73
	n-C ₃ F ₇ COO ⁻	182
	$(CF_3SO_2)_2N^-$	52

Solubility in/of Ionic Liquids

Variation of the alkyl group Increasing nonpolar character of the cation increases solubility of nonpolar solutes.

Water solubility depends on the anion water-soluble [BMIM] Br, CF₃COO, CF₃SO₃ Water-immiscilble [BMIM] PF₆ (CF₃SO₂)₂N

IL miscible with organic solvent IF their dielectric constant is above a certain limit given by the cation/anion combination

Polarity by $E_{(T)}(30)$ scale

[EtNH₃][NO₃] 0.95 between CF₃CH₂OH and water

[BMIM] PF₆ as methanol

Solubility in/of Ionic Liquids

Applications of Ionic Liquids

Electrodeposition of metals and alloys (also nanoscopic) Al, CoAl_x, CuAl_x, FeAl_x, AlTi_x

Semiconductors Si, Ge, GaAs, InSb, CdTe

Electrodeposition of a Bi-Sr-Ca-Cu alloy (precursor to SC oxides)

Melt of MeEtImCl at 120 °C

BiCl₃, SrCl₂, CaCl₂, CuCl₂ dissolve well

 Constituent
 BiCl₃
 SrCl₂
 CaCl₂
 CuCl₂

 Concentration
 0.068
 0.50
 0.18
 0.050

 (mol kg⁻¹ MeEtImCl)

Substrate Al -1.72 V vs the Ag/Ag⁺ reference electrode

Applications of Ionic Liquids

Biphasic solvent systems

Preparation of aerogels

 $2 \text{ HCOOH} + \text{Si}(\text{OMe})_4 \longrightarrow \text{ag-SiO}_2 + 2 \text{ MeOH} + 2 \text{ HCOOMe}$

Natural gas sweetening (H₂S, CO₂ removal)

Electrolytes in batteries or solar cells

Dissolving spent nuclear fuel (U^{4+} oxidized to U^{6+})

Extraction

Enyzme activity

Applications of Ionic Liquids

Olefin polymerization Ethene + TiCl₄ + AlEtCl₂ in acidic IL Ethene + Cp₂TiCl₂ + Al₂Me₃Cl₃ in acidic IL

 $Cp_2TiCl_2 + [cation]^+[Al_2Cl_7]^- \leftrightarrows [Cp_2TiCl]^+ + [cation]^+ + 2 [AlCl_4]^-$

Olefin hydrogenation Cyclohexene + H₂ + [RhCl(PPh₃)₃] (Wilkinson's catalyst)