

Membrane and Cell Wall

Katerina Dadakova, Department of Biochemistry

Figures adopted from Buchanan et al., Biochemistry & molecular biology of plants

Plant membrane

Plant membrane lipids

Plant membrane lipids

Plasma membrane

- Transport of molecules H⁺-ATPase, aquaporins,...
- Signal transduction receptors
- Cell wall synthesis cellulose synthase, callose synthase

Plasmodesma PM, plasma membrane ER, endoplasmic reticulum CW, cell wall

Membrane transport

- Nutrient acquisition
- Metabolite distribution
- Compartmentalization of metabolites
- Energy transduction
- Turgor generation
- Waste product excretion
- Signal transduction

Membrane transport systems:

- Pumps
- Channels
- Cotransporters

Transmembrane electrochemical potential

Electrochemical potential:

- concentration
- charge
- membrane voltage

H⁺ pumps

ABC-type pumps

A glutathione-conjugated xenobiotic and a chlorophyll catabolite

ATP-binding cassette transporter

Ion channels

Activity of channels in tonoplast. The prevalence of open state is influenced by membrane voltage. $O_{1,2}$, or ₃ is the number of channels open.

Ion channels are:

- passive
- selective (to some degree)
- regulated

Cotransporters

Transport process mechanisms

Aquaporins

Plant membranes are highly permeable for water

The direction of water transport across membranes is determined by hydrostatic and osmotic pressures.

Cell-to-cell transport

Intercellular transport can occur along apoplastic, symplastic, and transcellular routes

Long-distance transport follows two pathways: xylem and phloem

Cell wall

Cell wall sugars

Cell wall polysaccharides

Crosslinking glycans and pectin polymers

poly-α-1,4-D-Galacturonic acid, basic constituent of pectin

Secondary wall

Monolignols