0. Basics

0.1 Chemical conversion in the atmosphere - conceptually

The air / environment (geosphere): Is it a reactor ? It's a matter of reactions <u>and</u> transports and mixing ! mixing times:

- vertically lower few kilometers (boundary layer) 1h-1d, mixing with free troposphere 2-10 days
- around the globe on the same latitude (zonal transport) within 1-4 weeks

It's a matter of reactions <u>and</u> transports and mixing ! mixing times:

• around the globe on the same latitude (zonal transport) within 1-4 weeks

Atmospheric transport after the Fukushima Dai-ichi accident (Marzo, 2014)

0. Basics

0.1 Chemical conversion in the atmosphere - conceptually

The air / environment (geosphere): Is it a reactor ? It's a matter of reactions <u>and</u> transports and mixing ! mixing times:

- vertically lower few kilometers (boundary layer) 1h-1d, mixing with free troposphere 2-10 days
- around the globe on the same latitude (zonal transport) within 1-4 weeks
- from mid latitudes to the pole (meridional transport) within days to weeks, hemispheric mixing 2-6 months
- between hemispheres ≈1 year
- troposphere-stratosphere 1-3 years, mesosphere (>50 km) 5-8 years.

Substance concentration changes result from:

- (chemical) reactions
- (meteorological) transports and mixing
- Tools to understand:
- 3D transport models
- model parameters isolated in laboratory experiments
- significant ,ingredients' identified in the ,field'

Atmospheric pressure and composition

Pressure and temperature profiles in the atmosphere

Pressure decline with altitude

 $\rho = 1.225 \text{ mg/cm}, \text{ g} = 981 \text{ cm/s}^2, \text{ R} = 8.206 \text{ Pa cm}^3/\text{mol/K}$ $\rightarrow \Delta z/\Delta p = 8$ m/hPa at ground 16 m/hPa in 6km altitude "barometric step" $\mathbf{p}(\mathbf{z}) = \mathbf{p}_0 \, \mathrm{e}^{-\mathbf{z}\mathbf{g}/\mathbf{R}\mathbf{T}} \, (\Delta \mathbf{T}/\Delta \mathbf{z} = \mathbf{0}) \rightarrow \mathbf{p}(\mathbf{z},\mathbf{T}) \approx \mathbf{p}_0 \, \mathrm{e}^{-\mathbf{z}\mathbf{g}/\mathbf{R}\mathbf{T}}$, Standard' atmosphere (US Std 1962) $T[^{\circ}C]p[hPa] = M_{\alpha}[g/mol] N_{Lu}/V[molec/cm^3]$ km 0 1013 28.964 2.69×10^{19} 0 0 15 1013 28.964 2.55×10^{19} 25 1013 28.964 2.46×10^{19} 0 3 - 4.4 700 28.964 1.76x10¹⁹ 10 -49.9265 28.964 6.67×10^{18} $20 -56.5 55 28.964 1.38 \times 10^{18}$ $30 - 46.6 12 28.964 0.30 \times 10^{18}$

100 -63 0.00021 28.5 5.29x10¹²

Units for quantification of atmospheric trace substances

Ideal gas law: $pV = nRT = mRT/M_g$

Universal gas constant R = 0.082 at L/(mol K) = 8.314 J/(mol K) = N_Ak_B Avogadro's number N_A= 6.023×10^{23} molec/mol Boltzmann constant k_B = 1.38×10^{-23} J/K 1 at = 1013 hPa, 1 Pa = 1 N/m² = 1 J/m³ ,Molar' volume at T₀=273 K and p₀=101325 Pa: V = 22.414 L/mol \rightarrow ,Molar' mass M_{g air} \approx 28.9 g/mol Concentration c_i = m_i/V [µg/m³] (for gases: = density)

Mass mixing ratio $\mu_{m i} = c_i/c$ [, %, ppmm, ppbm] Partial pressure $p_i = n_i RT/V_i$ [Pa] Volume mixing ratio $\mu_{V i} = p_i/p = V_i/V$ [, %, ppmV, ppbV] billion = 10⁹ (Am., not Brit.)

Concentration $n_i/V = p_i/RT \text{ [mol/m^3]}$ Number density $N_i/V = n_iN_A/V = p_iN_A/RT \text{ [molec/cm^3]}$

More details: Schwartz & Warneck (1995): Units for use in atmospheric chemistry, Pure Appl. Chem. 67, 1377-1406

Chemical Composition of the Atmosphere

Constituent	Chemical Formula (sum)	Volume Mixing Ratio in Dry Air 10 ⁻¹³ _1!	Major Sources and Remarks
Nitrogen	N_2	78.084%	Biological
Oxygen	O_2	20.948%	Biological
Argon	Ar	0.934%	Inert
Carbon dioxide	CO_2	360 ppmv	Combustion, ocean, biosphere
Neon	Ne	18.18 ppmv	Inert
Helium	He	5.24 ppmv	Inert
Methane	CH_4	1.7 ppmv	Biogenic and anthropogenic
Hydrogen	H_2	0.55 ppmv	Biogenic, anthropogenic, and photochemical
Nitrous oxide	N_2O	0.31 ppmv	Biogenic and anthropogenic
Carbon monoxide	CO	50-200 ppby	Photochemical and anthropogenic
Ozone (troposphere)	O ₃	10-500 ppby	Photochemical
Ozone (stratosphere)	O_3	0.5-10 ppm	Photochemical
Nonmethane hydrocarbons	3	5-20 ppby	Biogenic and anthropogenic
Halocarbons (as chlorine)		3.8 ppby	85% anthropogenic
Nitrogen species	NO_{v}	10 ppt-1 ppm	Soils, lightning, anthropogenic
Ammonia	NH3	10 ppt-1 ppb	Biogenic
Particulate nitrate	NO_3^-	1 ppt-10 ppb	Photochemical, anthropogenic
Particulate ammonium	NH^{+}	10 ppt-10 ppb	Photochemical anthropogenic
Hydroxyl	OH^{4}	0.1 ppt-10 ppt	Photochemical
Peroxyl	HO ₂	0.1 ppt-10 ppt	Photochemical
Hydrogen peroxide	H ₂ O ₂	0.1 ppb-10ppb	Photochemical
Formaldehyde	CH_2O	0.1-1 pph	Photochemical
Sulfur dioxide	SO ₂	10 ppt-1 pph	Photochemical volcanic

Reaction types, kinetics Quantifying chemical transformations: Law of mass action

Reaction	(1)	$aA + bB \rightarrow$	cC + dD
		Reactants	Products
Back reaction	(-1)	$cC + dD \rightarrow$	aA + bB
Equilibrium	(1)	aA + bB ≓	cC + dD
or:	(1, -1)		

Law of mass action (dt.: Massenwirkungsgesetz):

The ratio of the product of the concentrations of the products and the product of the concentrations of the reactants (= educts) is constant for a given temperature and pressure in a homogeneous (i.e. single-phase) reaction (*Guldberg & Waage, 1867*):

 $K_1 = c_C^c c_D^d / (c_A^a c_B^b)$ $K_1 = equilibrium constant (dt.: Gleichgewichtskonstante)$

implications:

A reaction, A+B \rightarrow , will cease, when K₁ is achieved The rates of formation and decay of the products are equal when equilibrium is established, i.e. k₁ c_C^cc_D^d = k₋₁ c_A^ac_B^b and K₁ = k₁/k₋₁

Reaction types, kinetics Reaction rate coefficient k

Temperature dependence:

$$\label{eq:constant} \begin{split} -dc_i/dt &= k_T \; c_i \\ k_T &= A(T) \; e^{[\Delta E/(RT)]} \\ \text{Universal gas constant } R &= k_B \; N_A = 1.38 \times 10^{-23} \; J/K \times 6.023 \times 10^{23} \text{/mol} \end{split}$$

Providing the energy is sufficiently large, the temperature dependence of A is negligible, and k_T follows the Arrhenius expression:

 $k_{T} \ = A \ e^{[-E_{a}/(RT)]}$

with activation energy E_a Frequently used, too: van t'Hoff expression:

 $k_{\rm T} = B e^{[-E_a/R (1/T - 1/T_{\rm ref})]},$

The two expressions are equal via: $A = B e^{[E_a/(RT_{ref})]}$

Homogeneous gas-phase reactions

Reactions can be unimolecular, bi- or termolecular.

```
The rate law of a reaction of the general form
          aA + bB \rightarrow cC + dD
Is defined as
Rate (dt.: Rate) = -dc_A/dt/a = -dc_B/dt/b = dc_C/dt/c = dc_D/dt/d
example:
2 NO + O_2 \rightarrow 2 NO_2
Rate = -dc<sub>NO</sub>/dt/2 = -dc<sub>O2</sub>/dt = dc<sub>NO2</sub>/dt/2
```

Second order

Usually: bimolecular

 $A + B \rightarrow C + D$

 $A + B \rightarrow C$; A, B, C, D molecules or radicals *example*:

 $\begin{array}{l} O + O_2 \rightarrow O_3 \\ NO + O_3 \rightarrow NO_2 + O_2 \end{array}$

Reaction rate: 2^{nd} order $(1+1=2) dc_C/dt = -dc_A/dt = -dc_B/dt = k c_A^{-1} c_B^{-1}$ Reaction rate coefficient: $k^{(2)}$

 $k = A \exp \left[-(E_a/R)T\right]$

Arrhenius expression, preexponential factor A, activation energy E_a k(T¹) \rightarrow slope $-E_a/R$, intercept ln A, $E_a/R > 0 \leftrightarrow$ faster at higher T

The reaction order is given by the sum of the exponentials, n+m+..., of the concentration terms in the rate law of the form $-dc_A/dt = k c_A^n c_B^m (n = \text{zero or integer or fraction}^*)$ It is determined empirically.

* ,overall' reactions only

$CH_3Cl + OH \rightarrow CH_2Cl + H_2O$	$R_{\rm C14} = 2.1 \times 10^{-12} \exp(-1150/T)$
$CH_3CCl_3 + OH \rightarrow CH_2CCl_3 + H_2O$	$R_{\rm C15} = 1.8 \times 10^{-12} \exp(-1550/T)$
$CF_2Cl_2 + O(^1D) \rightarrow CF_2Cl + ClO$	$R_{ m C16} = 1.4 imes 10^{-10}$
$CFCl_3 + O(^{1}D) \rightarrow CFCl_2 + ClO$	$R_{ m C17} = 2.3 imes 10^{-10}$
$\mathrm{CCl}_4 + \mathrm{O}(^1\mathrm{D}) \mathrm{CCl}_3 + \mathrm{ClO}$	$R_{\rm C18} = 3.3 \times 10^{-10}$
$ClO + ClO \xrightarrow{M} Cl_2O_2$	$R_{\rm C19} = f(K_0, K_\infty), \ K_0 = 1.9 \times 10^{-32} [M] (300/T)^{3.9}, \ K_\infty = 7.0 \times 10^{-32} [M] (300/T)^{3.9}$
$Cl_2O_2 \xrightarrow{M} ClO + ClO$	$R_{\rm C20} = R_{\rm C19}/(3.0 \times 10^{-27} \exp(8450/T))$
Odd nitrogen	
$N + O_2 \rightarrow NO + O(^{3}P)$	$R_{\rm N1} = 1.5 \times 10^{-11} \exp(-3600/T)$
$N + NO \rightarrow N_2 + O(^3P)$	$R_{\rm N2} = 3.4 \times 10^{-11}$
$N + OH \rightarrow NO + H$	$R_{\rm N3} = 5.3 \times 10^{-11}$
$N + HO_2 \rightarrow NO + OH$	$R_{ m N4} = 2.0 imes 10^{-10}$
$HO_2NO_2 \xrightarrow{M} NO_2 + HO_2$	$R_{\rm N5} = R_{\rm N16} / (2.1 \times 10^{-27} \exp(10900/T))$
$HO_2NQ_2 + OH \rightarrow NO_2 + H_2O + O_2$	$R_{N0} = 1.2 \times 10^{-12} \exp(380/T)$
$N_2O_5 \rightarrow NO_2 + NO_3$	$R_{\rm N7} = R_{\rm N18/}(4.0 \times 10^{-27} \exp(10920/T))$
$NO + O_3 \rightarrow NO_2 + O_2$	$R_{\rm N8} = 2.0 \times 10^{-12} \exp(-1400/T)$
$NO + ClO \rightarrow NO_2 + Cl$	$R_{\rm N9} = 6.4 \times 10^{-12} \exp(290/T)$
$NO + HO_2 - NO_2 + OH$	$R_{\rm NH0} = 3.7 \times 10^{-12} {\rm Cap}(250/T)$
$NO + CH_3O_2 \rightarrow NO_2 + CH_3O$	$R_{\rm N11} = 4.2 \times 10^{-12} \exp(180/T)$

k(T)

 $\begin{aligned} Example\\ NO + O_3 \rightarrow NO_2 + O_2 \end{aligned}$

 $\mathbf{k} = \mathbf{A} \, \mathbf{e}^{[-(\mathbf{E}_{a}/\mathbf{R})\mathbf{T}]}$

Arrhenius expression, preexponential factor A, activation energy E_a k(T¹) \rightarrow slope m = $-E_a/R$, intercept ln A, $E_a/R > 0 \leftrightarrow$ faster at higher T A = 2×10⁻¹² cm³/molec/s E/R = -1400 K

→ $k_{298 \text{ K}} = 1.8 \times 10^{-14} \text{ cm}^3/\text{molec/s}$ $k_{230 \text{ K}} = 0.45 \times 10^{-14} \text{ cm}^3/\text{molec/s}$

Quasi steady state approximation

Lindemann-Hinshelwood mechanism:

$(1+2) \quad A + M \rightarrow B + M$

Here, M stands for any molecule or atom (i.e. N₂, O₂,...), not transformed but required to absorb excess energy, e.g. of an activated intermediate state:

(1) $A + M \rightarrow A^* + M$ (-1) $A^* + M \rightarrow A + M$ (2) $A^* \rightarrow B$ $dc_{A^*}/dt = k_{-1}^{(2)}c_{A^*}c_{M}$ $dc_{B^*}/dt = k_{2}^{(1)}c_{A^*}$

A* in steady state:

$$\begin{aligned} dc_{A*}/dt &= k_1^{(2)}c_Ac_M - k_{-1}^{(2)}c_{A*}c_M - k_2^{(1)}c_{A*} = 0 \\ c_{A*} &= k_1^{(2)}c_Ac_M/(k_{-1}^{(2)}c_M + k_2^{(1)}) \\ dc_B/dt &= k_2^{(1)}k_1^{(2)}c_Ac_M/(k_{-1}^{(2)}c_M + k_2^{(1)}) \end{aligned}$$

If (-1) much faster than (2):

$$\begin{split} &k_{-1}{}^{(2)}c_{A}{}^{*}c_{M} >> k_{2}{}^{(2)}c_{A}{}^{*}, \text{ then } \\ &k_{-1}{}^{(2)}c_{M}^{} + k_{2}{}^{(1)} \approx k_{-1}{}^{(2)}c_{M}^{} \text{ and } \\ &dc_{B}^{}/dt = k_{2}{}^{(1)} k_{1}{}^{(2)}c_{A}^{}/k_{-1}{}^{(2)} \end{split}$$

the overall process (1+2) is first order in c_A . Shifts to second order for $c_M \rightarrow 0$ (i.e., low pressure):

$$dc_{\rm B}/dt = k_2^{(1)} k_1^{(2)} c_{\rm A} c_{\rm M}/k_2^{(1)}$$

$Cl + CH_4(+O_2) \rightarrow HCl + CH_3O_2$ $Cl + HO_2 \rightarrow HCl + O_2$ $-Cl + HO_2 \rightarrow CO + OH$	$R_{ m C6} = 1.1 imes 10^{-1} \ R_{ m C7} = 1.8 imes 10^{-1} \ R_{ m C7} = 4.1 imes 10^{-1}$
First order (but	not uni-m
if $c_B >> c_A$	
A + B -	\rightarrow produce
-dc _B /dt	≈0
Odd nitrogen	
$N + O_2 \rightarrow NO + O(^{3}P)$	$R_{\rm N1} = 1.5 \times 10^{-10}$
$N + NO \rightarrow N_2 + O(^{\circ}P)$	$R_{\rm N2} = 3.4 \times 10^{-10}$
$N + OH \rightarrow NO + H$	$R_{\rm N3} = 5.3 \times 10^{-10}$
$HO_2NO_2 \xrightarrow{M} NO_2 + HO_2$	$R_{N4} = 2.0$ $R_{N5} = R_{N16}/(2.1)$
$HO_2NO_2 \rightarrow HO_2 \rightarrow HO_2 \rightarrow H_2O_2 \rightarrow O_2$	$R_{\rm N5} = R_{\rm N16} / (2.1)$
$N_2O_5 \xrightarrow{M^2} NO_2 + NO_3$	$R_{\rm N7} = R_{\rm N18/}(4.0$
$NO + O_3 \rightarrow NO_2 + O_2$	$R_{ m N8}=2.0 imes10^-$
$NO + ClO \rightarrow NO_2 + Cl$	$R_{ m N9}=6.4 imes10^{-1}$
$NO + HO_2 \rightarrow NO_2 + OH$	$R_{ m N10} = 3.7 imes 10$
$NO + CH_3O_2 \rightarrow NO_2 + CH_3O$	$R_{\rm N11} = 4.2 \times 10^{\circ}$
$NO + NO_3 \rightarrow 2NO_2$	$R_{\rm N12} = 1.5 \times 10^{\circ}$
$NO_2 + O(^{3}P) \rightarrow NO + O_2$	$R_{\rm N13} = 6.5 \times 10^{-10}$
$NO_2 + ClO \rightarrow ClONO_2$	$R_{\rm N14} = f(K_0, K_\infty)$
$NO_2 + O_3 \rightarrow NO_3 + O_2$	$R_{\rm N15} = 1.2 \times 10^{\circ}$
$NO_2 + HO_2 \xrightarrow{M} HO_2 NO_2$	$R_{\rm N16} = f(K_0, K_\infty)$
$NO_2 + OH \rightarrow HNO_3$ $NO_2 + NO_2 \rightarrow N_2O_2$	$K_{N17} = J(K_0, K_\infty)$ $P_{max} = f(V, V)$
$NO_2 + NO_3 \rightarrow N_2O_5$ $HNO_2 + OH \rightarrow H_2O + NO_2$	$K_{\rm N18} = J(K_0, K_{\infty})$ $R_{\rm N10} = K_1 + K_2$
$111003 \pm 011 \rightarrow 1120 \pm 1003$	$K_{N19} = K_1 + K_2$
$CONO_2 + O(^{3}P) \rightarrow CO + NO_2$	$R_{N20} = 2.9 \times 10^{-1.1}$

Example: thermic dissociation $HOONO_2 \rightarrow HO_2 + NO_2$ Reaction rate $dc_C/dt = -dc_A/dt = k^{(1)}c_A$: $HO_2 + O(^{3P}) \rightarrow OH + O_2$ $HO_2 + O(^{3P}) \rightarrow OH + O_2$ $HO_2 + O(^{3P})$

 $R_{\rm H14} = 1.6 \times 10$

 $OH + O_3 \rightarrow HO_2 + O_2$

Example
(1, -1)
$$O + O_2 = O_3^*$$

(2) $O_3^* + M \to O_3$
 $c_{O3^*} = k_1 c_O c_{O2}/(k_{-1} + k_2 c_M)$
 $dc_{O3}/dt = k_2 c_{O3^*} c_M$
 $dc_{O3}/dt = k_1 k_2 c_O c_{O2} c_M / (k_{-1} + k_2 c_M) = (k_1 k_2 c_M / (k_{-1} + k_2 c_M)) c_O c_{O2} k^{(2)}$
High pressure limit, $k_{\infty}^{(2)}$: $k_{-1} \approx 0 \Rightarrow k_{\infty} = k_1$
Low pressure limit, $k_0^{(2)}$: $c_M \to 0 \Rightarrow k_0 = k_1 k_2 / k_{-1}$
 $NO_2 + HO_2 + M \to HO_2NO_2 + M$
 $k_{288 K/1000 hPa} = 1.9 \times 10^{-12} cm^3/molec/s$
 $k_{208 K/500 hPa} = 1.5 \times 10^{-12} cm^3/molec/s$
 $k_{200 K/500 hPa} = 3.0 \times 10^{-12} cm^3/molec/s$

 $\begin{array}{l} A+B \rightarrow C+D \\ & \text{is } 2^{nd} \text{ order or} -\text{in case } dc_B/dt \approx 0 \text{ - pseudo-1}^{st} \text{ order} \end{array}$

 $\begin{array}{l} A+B+M \rightarrow C+D+M \\ & \text{is } 2^{nd} \text{ order or} -\text{in case } dc_B/dt \approx 0 \text{ - pseudo-1st order or} \\ & -\text{if } p << 1000 \text{ hPa - between } 2^{nd} \text{ and } 3^{rd} \text{ order} \end{array}$

The unit of a homogeneous gas-phase rate is [molec/cm³/s].

A 1st or pseudo-1st order rate law reads: $-dc_A/dt = dc_C/dt = k^{(1)} c_C$, with $k^{(1)}$ [1/s]. A 2nd order rate law reads: $-dc_A/dt = dc_C/dt = k^{(2)} c_C c_D$, with $k^{(2)}$ [cm³/molec/s]. A 3rd order rate law reads e.g.:

 $-dc_A/dt = k^{(3)} c_C^2 c_D$, with $k^{(3)} [cm^6/molec^2/s]$.

Photochemical reactions Absorption of radiation by molecules in the atmosphere

Energy ranges, correspondence between energy and wavelength

- $\lambda = c/\nu$ with frequency ν
- $\Delta E = hc/\lambda = hc\omega$ Planck relationship (wavelength λ , wavenumber ω , Planck's constant h = 6.626 x 10⁻³⁴ Js)

Commonly used energy units:

```
(kJ mol^{-1})
    \times 0.2390 = \text{kcal mol}^{-1}
    \times 0.0104 = eV
    \times 83.59 = \text{cm}^{-1}
(\text{kcal mol}^{-1})
    \times 4.184 = \text{kJ mol}^{-1}
    \times 0.04336 = eV
    \times 349.8 = \text{cm}^{-1}
(cm^{-1})
    \times 1.196 \times 10^{-2} = \text{kJ mol}^{-1}
    \times 2.859 \times 10^{-3} = \text{kcal mol}^{-1}
    \times 1.240 \times 10^{-4} = eV
(eV)
    \times 96.49 = kJ mol<sup>-1</sup>
    \times 23.06 = \text{kcal mol}^{-1}
    \times 8.064 \times 10^3 = \text{cm}^{-1}
```

Energy ranges, correspondence between energy and wavelength

 $\lambda = c/\nu$ $\Delta E = hc/\lambda = hc\omega$

Planck relationship

(wavelength λ , wavenumber ω , Planck's constant h = 6.626×10^{-34} Js

Name	Typical wavelength or range of wavelengths (nm)	Typical range of frequencies ν (s ⁻¹)	Typical range of wavenumbers ω (cm ⁻¹)	Typical range of energies (kJ einstein ⁻¹) ^a
Radiowave	$\sim 10^8 - 10^{13}$	$\sim 3 \times 10^{4} - 3 \times 10^{9}$	10^{-6} -0.1	$\sim 10^{-3} - 10^{-8}$
Microwave	$\sim 10^{7} - 10^{8}$	$\sim 3 \times 10^{9} - 3 \times 10^{10}$	0.1 - 1	$\sim 10^{-2} - 10^{-3}$
Far-infrared	$\sim 10^{5} - 10^{7}$	$\sim 3 imes 10^{10} - 3 imes 10^{12}$	1 - 100	$\sim 10^{-2} - 1$
Near-infrared	$\sim 10^3 - 10^5$	$\sim 3 \times 10^{12} - 3 \times 10^{14}$	$10^{2} - 10^{4}$	$\sim 1 - 10^2$
Visible				
Red	700	$4.3 imes 10^{14}$	1.4×10^{4}	1.7×10^{2}
Orange	620	$4.8 imes 10^{14}$	1.6×10^{4}	$1.9 imes 10^2$
Yellow	580	$5.2 imes 10^{14}$	1.7×10^{4}	2.1×10^{2}
Green	530	$5.7 imes 10^{14}$	1.9×10^{4}	2.3×10^{2}
Blue	470	$6.4 imes 10^{14}$	2.1×10^{4}	2.5×10^{2}
Violet	420	$7.1 imes 10^{14}$	2.4×10^{4}	$2.8 imes 10^2$
Near-ultraviolet	400-200	$(7.5-15.0) \times 10^{14}$	$(2.5-5) \times 10^4$	$(3.0-6.0) \times 10^2$
Vacuum ultraviolet	~ 200-50	$(1.5-6.0) \times 10^{15}$	$(5-20) \times 10^4$	$\sim (6.0-24) \times 10^2$
X-Ray	~ 50-0.1	$\sim (0.6 - 300) \times 10^{16}$	$(0.2-100) \times 10^{6}$	$\sim 10^3 - 10^6$
γ-Ray	≤ 0.1	$\sim 3 \times 10^{18}$	$\geq 10^8$	$> 10^{6}$

^{*a*} For kcal einstein⁻¹, divide by 4.184 (1 cal = 4.184 J).

The rate of photochemical reactions Absorption

 $ln(I_0/I) = \sigma Nd$ $I/I_0 = e^{(-\sigma Nd)}$

Beer-Lambert law

absorption cross section σ (cm², <u>default: base e</u>) molecule concentration N (cm⁻³), depth of absorptive layer d (cm) optical depth OD = σ Nd

Caution: Most measurements are made to the base 10 (log(I₀/I) = σ_{10} Nd) $\Rightarrow \times 2.303$ to reach base e

Photolysis

Most important class of photochemical reactions: Photodissociations

Unimolecular

$$A + h\nu \rightarrow B + C$$

A, B, C, D molecules or radicals example:

 $O_3 + h\nu \rightarrow O_2 + O(^3P)$

Reaction rate coefficient j (photolysis rate): $dc_C/dt = -dc_A/dt = j c_A$ Ground state, A /excitation state, A*:

```
A + hv \rightarrow A^*

Example:

O + hv \rightarrow O^*

i.e. O({}^{3}P) + hv \rightarrow O({}^{1}D)
```

The photolysis rate

The photolysis rate, j (s⁻¹), in $dc_A/dt = j c_A$ is given by:

$$j = \int_{\lambda} \phi(\lambda) \sigma(\lambda) L(\lambda) d\lambda$$

- quantum yield $\phi(\lambda)$ ($\),$
- absorption cross section σ (cm²),
- actinic flux L(λ) (cm⁻² s⁻¹)

L is the total intensity of effective light (direct + scattered + reflected, spherically integrated). $\widehat{\tau}_{g}_{1.2 \ 10^8}$

(adopted from: Jacobson, 2005)

The actinic flux $L(\lambda)$ is a function of the solar zenith angle, cloudiness, aerosol concentration, and surface albedo.

$$\frac{dn_A}{dt} = -n_A \int_{\lambda} \phi(\lambda) \sigma(\lambda) \left(\int_{0}^{2\pi} \int_{0}^{\pi} L(\lambda, \theta, \varphi) \sin \theta \, d\theta \, d\varphi \right) d\lambda$$

Typical j-values for midlatitude noontime equinox conditions range from ~1 \cdot 10⁻⁵ s-1 for j_{O(1D)} to ~0.2 s⁻¹ for j_{NO3}. The actinic flux under these conditions is about 2 \cdot 10¹⁴ photons cm⁻² s⁻¹ at 315-320 nm, and 7 \cdot 10¹⁴ photons cm⁻² s⁻¹ at 360-365 nm.

Spherical coordinate system: Radial distance r, polar angle θ, azimuthal angle φ L is measured using a (2π) radiometer or by measuring the photolytic decay (so-called chemical actinometry). Its value can be estimated via tabulated values of ϕ and σ for intervals of λ and estimates of L(λ) for given conditions.

Fig. 3 Theoretical diurnal variation of the J[NO₂] and J[O₃] values for midsummer and midwinter at 40° N latitude near sea level. (Calvert, 1985)

Example j_{03} : (1) Quantum yield $\phi_i(\lambda)$ for $i = O_3 + h\nu \rightarrow O(^1D) + O_2(^3\Sigma_g^{-1})$

TABLE 4.6Parameterization of Quantum Yields for
 $O(^{1}D)$ Production from O_{3} Photolysis in the 306- to

329-nm Region at Various Temperatures^a

Wavelength			1.5
(nm)	A	В	Ļ
306	0.80	9.84	⊤ \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
307	0.78	1.44	
308	0.87	53.1	Ŏ` ^{I,} U ∏ Ĭ Į
309	0.76	73.9	[⁺] ở
310	1.31	305.5	
311	2.37	600	- Xie
312	5.8	925.9	♥ 05L
313	11.4	1191	c:0
314	20.1	1423	
315	26.4	1514	
316	26.8	1512	
317	26.8	1542	م م لیــــــ
318	28.33	1604	270
319	30.6	1604	
320	44.4	1866	
321	50.2	1931	
322	27.8	1882	
323	74.1	2329	
324	868	3085	
325	0.37	689	•
326	0.24	619	
327	0.068	258	
328	26.16	2131	
329	0.15	470	
329	0.15	470	

^{*a*} Using the quantum yield expression recommended by Talukdar *et al.*, 1998: $\phi = 0.06 + Ae^{-B/T}$.

$\phi_{O3 \to O(1_D)}(310-320 \text{ nm}) \approx 0.2$

Data src.: Finlayson-Pitts & Pitts, 1998

Example j_{O3} : (2) Absorption cross section $\sigma(\lambda, T)$ of O₃

TABLE 4.3 Ozone Absorption Cross Sections (Base e)^a

	$10^{20}\sigma$ (cm ²	molecule ⁻¹)	1			· ab E · ·	T 1
Wavelength (nm)	T = 226 K	T = 298 K	Wavelength (nm)	IABLE 4.4 Ozor	ne Absorption Cross Sect	tions ^{w,o} as a Function of	I emperature Averaged
185.0	64.37	65.37	262.0		over the opect	ai filtervais ollown	
186.0	62.59	61.87	263.0				
187.0	56.55	56.59	264.0	Wavelength		Parameters	
189.0	54.63	54.24	266.0		-	1	
190.0	51.63	51.14 48.80	267.0	range (mm)	a	D	С
192.0	45.95	46.06	269.0	1			
193.0 194.0	43.12	43.36	270.0 271.0	277 778-281 690	4.0293×10^{2}	$+4.3819 \times 10^{-2}$	0
195.0	38.27	38.64	272.0	201 (00, 205 714	$2777(\times 10^{2})$	10.3015×10^{-2}	0
196.0	36.42	36.73	273.0	281.690-285.714	2.7776×10^{-2}	$+6.3125 \times 10^{-2}$	0
197.0	33.33	33.49	274.0	285.714-289.855	1.8417×10^{2}	-9.6665×10^{-2}	2.1026×10^{-4}
199.0	32.13	32.09	276.0	289 855-294 118	11300×10^2	-1.0700×10^{-1}	3.2697×10^{-4}
200.0	31.45	31.54 31.15	277.0 278.0	207.055 274.110	(5007 × 10	1.0700×10^{-2}	22677×10^{-4}
202.0	31.56	31.79	279.0	294.118-298.507	6.5087×10	-8.0018×10^{-2}	$2.26/9 \times 10^{-4}$
203.0	32.55	32.51	280.0 281.0	298.507-303.030	3.6161×10	-6.7156×10^{-2}	3.3314×10^{-4}
205.0	36.23	35.85	282.0	303 030-307 692	1.9615×10	-44193×10^{-2}	2.0338×10^{-4}
206.0	38.87	38.55	283.0	207.002.212.5	1.0150 + 10	-2.0021×10^{-2}	2.0550×10^{-4}
207.0	46.84	46.40	285.0	307.692-312.5	1.0459×10	-2.8831×10^{-2}	1.3909×10^{-4}
209.0	51.88	51.18	286.0	312.5-317.5	5.4715	-2.0092×10^{-2}	9.8870×10^{-5}
210.0	65.28	64.02	288.0	317 5-322 5	2,7569	-1.0067×10^{-2}	2.9515×10^{-5}
212.0	73.12	71.94	289.0	222.5	1.2507	5 7512 × 10 ⁻³	1.1099×10^{-5}
213.0	82.58 92.55	81.04 90.96	290.0	322.3-321.3	1.3527	$=5.7513 \times 10^{-5}$	1.1088×10^{-5}
215.0	104.1	102.3	292.0	327.5-332.5	6.9373×10^{-1}	-2.9792×10^{-3}	3.1038×10^{-6}
216.0	131.4	114.6	293.0 294.0	332.5-337.5	3.2091×10^{-1}	-1.9502×10^{-3}	5.6456×10^{-6}
218.0	146.4	143.9	295.0	227 5 242 5	1.4484×10^{-1}	11005×10^{-3}	29919×10^{-6}
219.0	163.8	160.1	296.0	337.3-342.3	1.4464×10^{-2}	$=1.1023 \times 10^{-1}$	2.8818 × 10
221.0	200.0	198.2	298.0	342.5-347.5	7.5780×10^{-2}	-5.7359×10^{-4}	1.6055×10^{-6}
222.0	221.7	220.0	299.0 300.0				
224.0	268.8	268.4	301.0	2			20 2
225.0	296.3	294.3	302.0	${}^{a}\sigma(\mathcal{O}_{3},T)=a+l$	$b(T - 230) + C(T - 230)^2$; T is in K; $\sigma(O_3)$ is in u	units of 10^{-20} cm ² mole-
227.0	354.2	351.3	303.0	cule ⁻¹ (base e)			
228.0	385.7	382.9	305.0		$1 M_{-1} = (1090)$		
229.0	416.4	414.1	306.0 307.0	From Molina and	1 Molina (1986).		
231.0	485.9	481.4	308.0				
232.0	523.0	518.1	309.0	10.04 17.45			
234.0	1	1					
235.0	Exa	mple					
237.0	L'AU.	mpro.					

Example: $\sigma_{O3}(310-320 \text{ nm}) \approx 60 \times 10^{-20} \text{ cm}^2/\text{molec for } \text{T} = 298 \text{ K}$

939.6	933.3	320.0	2.859	3.243
975.2	971.7	321.0	1.368	2.041
1007	993.2	322.0	2.117	2.435
1042	1033	323.0	1.529	1.983
1058	1047	324.0	0.7852	1.250
1079	1071	325.0	1.486	1.727
1124	1112	326.0	0.7276	1.105
1134	1124	328.0	1.158	1.300
1123	1114	330.0	0.2854	0.4923
1165	1155	332.0	0.2415	0.4347
1149	1140	334.0	0.3788	0.5343

238.0 239.0 240.0 241.0

242.0 243.0 244.0 245.0 246.0247.0 248.0 249.0 250.0

251.0 252.0 253.0 Data src.: Finlayson-Pitts & Pitts, 1998

(3) Actinic flux – determined by radiation absorption in the atmosphere

Actinic flux $L(\lambda)$ - Example: For z = 15 km and solar zenith angle of 40°: $L_{310-320 \text{ nm}} = (1.69+2.08+$ $+2.35+2.88+2.95) \times 10^{14} \text{ cm}^{-2} \text{ s}^{-1}$ $\approx 12 \times 10^{14} \text{ s}^{-1}$

Order of magnitude estimate of $j_{O3\rightarrow O^*}$ for a selected wavelength interval:

(1-3) $j_{O3\rightarrow O^*}(310-320 \text{ nm}) \approx$ $\approx 0.2 \times 60 \times 10^{-20} \times 12 \times 10^{14} \text{ s}^{-1} \approx$ $\approx 10^{-4} \text{ s}^{-1}$

Tropospheric chemistry Tropospheric ozone and hydrocarbon chemistry Ozone in the Atmosphere

Src: WMO: Scientific Assessment of Ozone Depletion 2006, Geneva 2007

Tropospheric O₃: Significance

Toxicology:

• concentrations > 120-150 μ g/m³ are relevant, at least for sensitive persons. No epidemiological evidences.

• Significant loss of physical performance at higher concentrations, i.e. \approx 400 µg/m³ (EU, 1992: 180 µg/m³ warning, 360 µg/m³ dangerous)

Climate:

• absorption in the atmospheric ,window' region near $\lambda = 9.6 \ \mu m \rightarrow$ radiative forcing +0.35±0.15 W m⁻² since 1850

Ecotoxicology:

• toxic to plants (uptake through stomatae prevails, radical formation); sensitive crops (potato, wheat, rye, barley) and trees (larch, pine)

• for same dosis damage is highest under peak concentrations, synergistic effects with NO_2 and SO_2

Trends of ozone - stratospheric and tropospheric

36-59°N, 1996 vs. 1970

(WMO, 1998, after Logan & Megretskaia) http://ozone.unep.org/

Tropospheric ozone temporal trends

Background stations

Mauna Loa Mace Head

(courtesy of Parrish et al., 2009)

Mace Head, IRL (Derwent, 2004)

Tropospheric ozone temporal trends

Ground stations

⁽courtesy of Barnes et al., 2011)

Tropospheric ozone trends

Surface and lower tropospheric ozone trends beginning 1950-1979 through 2010

Surface and lower tropospheric ozone trends beginning 1980-1989 through 2010

Surface and lower tropospheric ozone trends beginning 1990-1999 through 2010

(EDGARv4.1; Cooper et al., 2016)

Ozone formation in CO oxidation

Ozone formation in the troposphere (1) Why is CO not accumulating in urban air? \rightarrow , discovery' of the OH radical

CO volume mixing ratio in the lower troposphere: 100-200 ppbv

(1) $CO + OH \rightarrow CO_2 + H$ Chemical fate of OH globally: $\approx 2/3$ reacts with CO (2) $H + O_2 \rightarrow HO_2$ Sum (1-2): $CO + O_2 + OH \rightarrow HO_2 + CO_2$

(3) $HO_2 + NO \rightarrow OH + NO_2$ (4) $NO_2 + hv (< 420 nm) \rightarrow NO + O$ (5) $O + O_2 + M \rightarrow O_3 + M$ Sum (1-5): $CO + 2 O_2 \rightarrow CO_2 + O_3$

k = 220×10^{-12} cm³/molec/s j $\approx 5 \times 10^{-3}$ /s k⁽¹⁾ $\approx 10^{5}$ /s

(6) $O_3 + NO \rightarrow O_2 + NO_2$ Sum (1-6): $CO + O_2 + NO \rightarrow CO_2 + NO_2$ $k^{(1)} \approx 10^{-2/s}$ Ozone formation in the troposphere Leighton relationship

(4) NO_2 + hv (< 420 nm) \rightarrow NO + O $j_4 \approx 5 \times 10^{-3}/\text{s}$ (5) $\operatorname{O} + \operatorname{O}_2 + \operatorname{M} \rightarrow \operatorname{O}_3 + \operatorname{M}$ $k_5^{(1)} \approx 10^{5}/\text{s}$ (6) $\operatorname{O}_3 + \operatorname{NO} \rightarrow \operatorname{O}_2 + \operatorname{NO}_2$ $k_6^{(2)} \approx 1 \times 10^{-14} \text{ cm}^3/\text{molec/s}$ ozone, titration' by NOx

 $dc_{O3}/dt = 0 = k_5 c_O c_{O2} c_M - k_6 c_{NO} c_{O3}$ hence: $c_{O3} = k_5 c_O c_{O2} c_M / (k_6 c_{NO})$

equilibrium within 2 min quasi-constant ozone level (f(j_{NO2}))

 c_{O} available from: $dc_{O}/dt = 0 = j_{4} c_{NO2} - k_{5} c_{O} c_{O2} c_{M}$ (hence: $c_{O} = j_{4} c_{NO2} / (k_{5} c_{O2} c_{M}))$

combined: $c_{O3} = j_4 c_{NO2} / (k_6 c_{NO})$ or: $(c_{O3} c_{NO}) / c_{NO2} = \text{constant}$ holds as long as there are no other O₃ loss reactions than (6)

Ozone formation in the troposphere

Ozone depends on the background level, on NO_x and on the ratio NO_2/NO upon emission:

(4) $NO_2 + hv \rightarrow NO + O$ (5) $O + O_2 + M \rightarrow O_3 + M$

Ozone formation in synthetic atmosphere

 $NO_x + HC_x + Light \rightarrow partly oxygenated HC_x + O_3$
Ozone formation from *hydrocarbons*, HC_x , and NO_x

(1a) $\operatorname{RCH}_3 + \operatorname{OH} \rightarrow \operatorname{RCH}_2 + \operatorname{H}_2 O$ (1b) $\operatorname{RCH}_2 + O_2 + M \rightarrow \operatorname{RCH}_2 OO + M$ (2) $\operatorname{RCH}_2 OO + NO \rightarrow \operatorname{RCH}_2 O + NO_2$ (3) $\operatorname{RCH}_2 O + O_2 \rightarrow \operatorname{RCHO} + \operatorname{HO}_2$

(4) $NO_2 + hv (< 430 \text{ nm}) \rightarrow NO + O$ (source: NO_{r}) (5) $O + O_2 + M \rightarrow O_3 + M$ Sum (1-5): $RCH_3 + OH + 3 O_2 \rightarrow RCHO + H_2O + HO_2 + O_3$ = catalyzed by NO and light Sum (4-5): $NO_2 + O_2 + hv \rightarrow NO + O_3$ (6) $HO_2 + NO \rightarrow OH + NO_2$ = OH recycled Sum (1-6): $RCH_3 + NO + 3O_2 \rightarrow RCHO + H_2O + NO_2 + O_3$

= catalyzed by OH and light

2 main pathways: CO or VOC oxidation

(courtesy: Möller, 2003)

HC_x: alkanes, example methane

- Although slow, CH_4 is a major chemical sink for OH (globally \approx 1/3 of OH reacts with CH_4).
- The so formed ozone is the major contribution to the background ozone.
- It increases with increasing methane emissions.

```
(1) CH_4 + OH \longrightarrow CH_3 + H_2O(slow: \tau_{CH4} \approx 8 a)
(2) CH_3 + O_2 + M \longrightarrow CH_3OO + M
(3) CH_3OO + NO \longrightarrow CH_3O + NO_2
(4) CH_3O + O_2 \longrightarrow HCHO + HO_2
Sum:
CH_4 + OH + 2 O_2 \longrightarrow HCHO + H_2O + HO_2
NO_2 + O_2 + hv \longrightarrow NO + O_3
```

 $HC_x = alkanes: branching 1) C atom position attacked, 2) alkoxy radical$

(1a) $CH_3CH_2CH_2CH_3 + OH \rightarrow CH_3CH \cdot CH_2CH_3 + H_2O$ yd=85% $CH_3CH \cdot CH_2CH_3 + O_2 + M \rightarrow CH_3CH(OO \cdot)CH_2CH_3 + M$ (2a) $CH_3CH(OO \cdot)CH_2CH_3 + NO \rightarrow CH_3CH(O \cdot)CH_2CH_3 + NO_2$ (3aa) $CH_3CH(O \cdot)CH_2CH_3 + O_2 \rightarrow CH_3C(O)CH_2CH_3 + HO_2yd=60\%$ (3ab) decomposition : $\rightarrow CH_3C \cdot O + \cdot CH_2CH_3 + HO_2yd=40\%$

 $CH_2CH_3 + O_2 \rightarrow CH_3CH_2OO$ (4ab) CH_2CH_2OO + NO \rightarrow CH_2CH_2O + NO

(1b) $CH_3CH_2CH_2CH_3 + OH \rightarrow CH_2CH_2CH_2CH_3 + H_2O$ yd=15% $CH_3CH_2CH_2CH_2 + O_2 + M \rightarrow CH_3CH_2CH_2CH_2OO + M$ (2b) $CH_2CH_2CH_2CH_2O + NO \rightarrow CH_3CH_2CH_2CH_2O + NO_2$ (3ba) $CH_3CH_2CH_2CH_2O + O_2 \rightarrow CH_3CH_2CH_2CHO + HO_2$ yd=? (3bb) isomerisation: $\rightarrow CH_2CH_2CH_2CH_2OH + HO$ yd=?

 $\begin{array}{l} \cdot \mathrm{CH}_{2}\mathrm{CH}_{2}\mathrm{CH}_{2}\mathrm{CH}_{2}\mathrm{CH}_{2}\mathrm{OH} + \mathrm{O}_{2} \rightarrow \cdot \mathrm{OOCH}_{2}\mathrm{CH}_{2}\mathrm{CH}_{2}\mathrm{CH}_{2}\mathrm{OH} \\ (4\mathrm{bb}) \cdot \mathrm{OOCH}_{2}\mathrm{CH}_{2}\mathrm{CH}_{2}\mathrm{CH}_{2}\mathrm{CH}_{2}\mathrm{OH} + \mathrm{NO} \rightarrow \cdot \mathrm{OCH}_{2}\mathrm{CH}_{2}\mathrm{CH}_{2}\mathrm{CH}_{2}\mathrm{OH} + \mathrm{NO}_{2} \\ (5\mathrm{bb}) \cdot \mathrm{OCH}_{2}\mathrm{CH}_{2}\mathrm{CH}_{2}\mathrm{CH}_{2}\mathrm{CH}_{2}\mathrm{OH} + \mathrm{O}_{2} \rightarrow \mathrm{CH}(\mathrm{O})\mathrm{CH}_{2}\mathrm{CH}_{2}\mathrm{CH}_{2}\mathrm{OH} + \mathrm{HO}_{2} \\ \mathrm{Sum:} \ \mathrm{CH}_{3}\mathrm{CH}_{2}\mathrm{CH}_{2}\mathrm{CH}_{3} + \mathrm{OH} + 2.8 \ \mathrm{O}_{2} \rightarrow \\ 0.6 \ \mathrm{CH}_{3}\mathrm{CH}_{2}\mathrm{CH}_{2}\mathrm{CHO} + 0.8 \ \mathrm{CH}_{2}(\mathrm{OH})\mathrm{CH}_{2}\mathrm{CHO} + \mathrm{H}_{2}\mathrm{O} + \mathrm{HO}_{2} + 1.4 \ \mathrm{NO}_{2} \end{array}$

Alkoxy radicals: reactivity overview

	$k^{(1)} (10^3 \text{ s}^{-1})$		
RO•	decomposition	H -abstraction	isomerization
		by O ₂	
CH ₃ CH ₂ CH ₂ CH ₂ O [•]	0.6	200	pprox 0
CH ₃ CH ₂ CH ₂ CHO [•] CH ₃	17	40	200
CH ₃ CH ₂ CHO [•] (CH ₂) ₂ CH ₃	34	40	200
CH ₃ CHO [•] (CH ₂) ₃ CH ₃	28	40	2000
$CH_3C(CH_3)_2CH_2O^{\bullet}$	9.8	24	≈ 80

Nomenclature:

Saturated and unsaturated C chains: alkanes (*dt: Alkane*), alkenes and alkynes (*dt: Alkene, Alkine*) Partly oxygenated hydrocarbons: ROH alcohols (*dt: Alkohole*), carbonyls: RCHO aldehydes (*dt: Aldehyde*) and R_2CO ketones (*dt: Ketone*), RCOOH and R(COOH)₂ monoand dicarboxylic acids (*dt: Mono- und Dicarbonsäuren*) Multifunctional partly oxygenated hydrocarbons: RCHOHCHO α -hydroxyaldehydes, RCHOHCOOH α hydroxyacids, ...

HC_x : alkene OH reaction, example C_3 , i.e. propene

Alkenes are more reactive toward OH than alkanes: $k \le 10^{-10} \text{ cm}^3 \text{ molec}^{-1} \text{ s}^{-1}$ The higher substituted radical is more stable, hence, formed preferentially: (1a) CH₃CH=CH₂ + OH \rightarrow CH₃CH·CH₂OH addition, yd=66% CH₃CH·CH₂OH + O₂ + M \rightarrow CH₃CH(OO·)CH₂OH + M (2a) CH₃CH(OO·)CH₂OH + NO \rightarrow CH₃CH(O·)CH₂OH + NO₂ (3aa) CH₃CH(O·)CH₂OH + O₂ \rightarrow CH₃C(O)CH₂OH + HO₂ yd=3% (3ab) decomposition: \rightarrow CH₃C·O + ·CH₂OH yd=97% (4ab) ·CH₂OH + O₂ \rightarrow HCHO + HO₂

 $\begin{array}{ll} (1b) \ CH_3CH=CH_2+OH & \rightarrow CH_3CH(OH)CH_2 \cdot \ addition, \ yd=34\% \\ CH_3CH(OH)CH_2 \cdot +O_2+M \rightarrow CH_3CH(OH)CH_2(OO \cdot) + M \\ (2b) \ CH_3CH(OH)CH_2(OO \cdot) + NO \rightarrow CH_3CH(OH)CH_2O \cdot + NO_2 \\ (3ba) \ CH_3CH(OH)CH_2O \cdot +O_2 \rightarrow CH_3CH(OH)CHO + HO_2 \ yd=90\% \\ (3bb) \ decomposition : & \rightarrow CH_3CH(OH) \cdot + HCHO \ yd=10\% \\ (4bb) \ CH_3CH(OH) \cdot +O_2 & \rightarrow CH_3CHO + HO_2 \end{array}$

Sum

(1-4) $CH_3CH=CH_2 + OH + 2.8 O_2 \rightarrow 0.02 CH_3C(O)CH_2OH + 0.65 HCHO + 0.3 CH_3CH(OH)CHO + 0.03 CH_3CHO + H_2O + HO_2 + NO_2$

HC_x: alkene OH reaction

• Most alkenes react with OH <u>addition</u> to the double bond (positive p dependence of k_{OH}); only for the small alkenes the addition complex does not react further.

• H <u>abstraction</u> is more likely for large and branched alkenes.

• After the O₂ addition step (\rightarrow ROO·), decomposition is the most probable path for \leq C₄ while isomerisation dominates for > C₄

(yields 0.04 for C_4 but 0.6 for C_8 ; Kwok et al., 1996)

Example n-butene: (1) $CH_3CH_2CH=CH_2 + OH$ \rightarrow CH₃CH₂CH(OH)CH₂· addition \rightarrow CH₂CH₂CH(OH)CH₂OO·+ M $CH_{3}CH_{2}CH(OH)CH_{2} + O_{2} + M$ (2) $CH_3CH_2CH(OH)CH_2OO + NO$ \rightarrow CH₂CH₂CH(OH)CH₂O· + NO₂ (3) isomeris.: $CH_3CH_2CH(OH)CH_2O$. \rightarrow ·CH₂CH₂CH(OH)CH₂OH (4) \cdot CH₂CH₂CH(OH)CH₂OH + O₂ \rightarrow ·OOCH₂CH₂CH(OH)CH₂OH $(5) \cdot OOCH_2CH_2CH(OH)CH_2OH + NO$ \rightarrow ·OCH₂CH₂CH(OH)CH₂OH + NO₂ (6) $\cdot OCH_2CH_2CH(OH)CH_2OH + O_2$ \rightarrow CH(O)CH₂CH(OH)CH₂OH + HO₂ Sum: $CH_3CH_2CH=CH_2 + OH + 2 NO + 3 O_2 \rightarrow$ $CH(O)CH_2CH(OH)CH_2OH + H_2O + HO_2 + 2 NO_2$ °он — dihydroxycarbonyl OH

	1 or 2 addition 66%
(1a) $CH_2 = C(CH_3)CH = CH_2 + OH$	\rightarrow HOCH ₂ C·(CH ₃)CH=CH ₂
	\rightarrow ·CH ₂ C(OH)(CH ₃)C=CH ₂
	$+ O_2 + NO$
	$\rightarrow \rightarrow \rightarrow$
(4aa) decomposition:	\rightarrow HCHO + CH ₃ C(O)CH=CH ₂ yd \approx 30%
	methyl vinyl ketone
(4ab) isomerisation:	\rightarrow HC(O)CH(CH ₃)CH=CHOH yd \approx 5%
	γ-hydroxy-(2-methyl)butenal
	3 or 4 addition 34 %
(1b) $CH_2 = C(CH_3)CH = CH_2 + OH$	3 or 4 addition 34% \rightarrow CH ₂ =C(CH ₃)CH·CH ₂ OH A_3C
(1b) $CH_2 = C(CH_3)CH = CH_2 + OH$	3 or 4 addition \rightarrow CH ₂ =C(CH ₃)CH·CH ₂ OH \rightarrow CH ₂ =C(CH ₃)CHOHCH ₂ ·
(1b) $CH_2 = C(CH_3)CH = CH_2 + OH$	3 or 4 addition \rightarrow CH ₂ =C(CH ₃)CH·CH ₂ OH \rightarrow CH ₂ =C(CH ₃)CHOHCH ₂ · $+ O_2 + NO$
(1b) $CH_2 = C(CH_3)CH = CH_2 + OH$	3 or 4 addition \rightarrow CH ₂ =C(CH ₃)CH·CH ₂ OH \rightarrow CH ₂ =C(CH ₃)CHOHCH ₂ · $+ O_2 + NO$ $\rightarrow \rightarrow \rightarrow$
(1b) $CH_2 = C(CH_3)CH = CH_2 + OH$ (4ba) decomposition:	3 or 4 addition \rightarrow CH ₂ =C(CH ₃)CH·CH ₂ OH \rightarrow CH ₂ =C(CH ₃)CHOHCH ₂ · $+ O_2 + NO$ $\rightarrow \rightarrow \rightarrow$ \rightarrow HCHO + CH ₂ =C(CH ₃)CHO yd $\approx 20\%$
(1b) CH ₂ =C(CH ₃)CH=CH ₂ + OH (4ba) decomposition:	3 or 4 addition \rightarrow CH ₂ =C(CH ₃)CH·CH ₂ OH \rightarrow CH ₂ =C(CH ₃)CHOHCH ₂ · $+ O_2 + NO$ $\rightarrow \rightarrow \rightarrow$ \rightarrow HCHO + CH ₂ =C(CH ₃)CHO yd $\approx 20\%$ \downarrow CH ₃ methacrolein
 (1b) CH₂=C(CH₃)CH=CH₂ + OH (4ba) decomposition: (4bb) 5-ring closure: 	3 or 4 addition \rightarrow CH ₂ =C(CH ₃)CH·CH ₂ OH \rightarrow CH ₂ =C(CH ₃)CHOHCH ₂ · $+ O_2 + NO$ $\rightarrow \rightarrow \rightarrow$ \rightarrow HCHO + CH ₂ =C(CH ₃)CHO yd $\approx 20\%$ \rightarrow° \rightarrow° yd < 5%

Ozone formation from *hydrocarbons*, HC_x , and NO_x

(1a) $\operatorname{RCH}_3 + \operatorname{OH} \rightarrow \operatorname{RCH}_2 + \operatorname{H}_2 \operatorname{O}$ (1b) $\operatorname{RCH}_2 + \operatorname{O}_2 + \operatorname{M} \rightarrow \operatorname{RCH}_2 \operatorname{OO} + \operatorname{M}$ (2) $\operatorname{RCH}_2 \operatorname{OO} + \operatorname{NO} \rightarrow \operatorname{RCH}_2 \operatorname{O} + \operatorname{NO}_2$ (3) $\operatorname{RCH}_2 \operatorname{O} + \operatorname{O}_2 \rightarrow \operatorname{RCHO} + \operatorname{HO}_2$

```
(4) NO_2 + hv (< 430 \text{ nm}) \rightarrow NO + O

(5) O + O_2 + M \rightarrow O_3 + M

Sum (1-5):

RCH_3 + OH + 3 O_2 \rightarrow RCHO + H_2O + HO_2 + O_3

= catalyzed by NO and light

Second option for NO:

NO + O_3 \rightarrow NO_2 + O_2
```

= catalyst reacts with product

HC_x : OH reactivity, products overview

HC _x	k _{OH}	oxygenated	No. of 1	NO conv	verted
	10^{-12}cm^3	intermediates	initial	from	total
	molec ⁻¹ s ⁻¹	formed		carbon	yls
	(298 K)			(dep. ne	eglected)
Alkanes:					
CH_4	0.006	НСНО	1	1	2
CH ₃ CH ₃	0.25	CH ₃ CHO	2	4	6
CH ₃ CH ₂ CH ₃	1.1			5	0
CH ₃ CH ₂ CH ₂ CH ₃	2.4	Lifetime with respect to OH rea			
CH ₃ CH(CH ₃)CH	₃ 2.2	$k_{OH}^{(2)} = 0.01 \times 10^{-12} \text{ cm}^3 \text{molec}^{-1} \text{s}^{-1} \approx k_{OH}^{(1)}$	$l = 1 \times 10^{-8} \text{s}^{-1} - 2$	$\tau_{OH} = 4 \text{ n}$	nonths
$CH_3(CH_2)_3CH_3$	4.0	$k_{OH}^{(2)} = 1 \times 10^{-12} \text{ cm}^3 \text{molec}^{-1} \text{s}^{-1} \approx k_{OH}^{(1)} = 1$	$1 \times 10^{-6} \mathrm{s}^{-1} \rightarrow \tau_{\mathrm{C}}$	$_{\rm H} = 12 \rm day$	/S
		$k_{OH}^{(2)} = 50 \times 10^{-12} \text{ cm}^3 \text{ molec}^{-1} \text{ s}^{-1} \approx k_{OH}^{(1)} =$	$5 \times 10^{-5} \mathrm{s}^{-1} \rightarrow 1$	o _H = 6 hou	urs
Alkenes:					
CH ₂ =CH ₂	8.5	2 HCHO	2	2	4
CH ₂ =CHCH ₃	26	HCHO, CH ₃ CHO	2	5	7
CH ₂ =CHCH ₂ CH ₂	3 31	HCHO, CH ₃ CH ₂ CHO	2	8	10
cis-CH ₂ CHCHCH	56	2 CH ₂ CHO	2	8	10
	.3 .50	3			10
trans-CH ₃ CHCHC	² 3 50 2H ₃ 64	$2 CH_3 CHO$	2	8	10

Ozone formation efficiency of various hydrocarbons

Characterisation of VOCs according to their *photochemical ozone creation potential*, POCP:

POCP : = $\Delta m_{O3} / \Delta F_{VOCi}$ under defined conditions (ozone formation during several days, NO_x poor) (*Carter, 1994; EK, 1994*)

	POCP
C_2H_4	100
CH_4	0.7
C ₆ H ₆	18.9
CH ₃ OH	12.3
HCHO	42.1

Tropospheric ozone: Dependence on $HC_x(VOC)$ and NO_x

emission reductions perspectives

Emission ratio of road transport source

Example critical levels for natural and agroecosystems

Losses of harvested wheat > 5%, if accumulated dose exceeding 40 ppbv > 3000 ppbv h; similar: SOMO35 [ppbv d] – in 2000:

WHO air qual. Index SOMO35:= daily max of (8-h running average -35ppbv ,bckgrd') added over 365 d

> in 2030 under CLE (= current legislation)

CTM 2000 GCM SSTs 1990s IIASA MFR 2030, maximum feasible

IIASA CLE 2030, current legislation scenario

in 2030 under MFR (= maximum feasible reduction) (Dentener et al., 2006)

meteorology

CTM 2000 GCM SSTs 1990s

CTM 2000 GCM SSTs 1990s

NO_x, SO₂, and NH₃^a

simulation

S2-CLE/CLEc

S1-B2000

S3-MFR

904.1

728.7

1760

145.5

104.4

84.8 141.1 117.6)E

35.8

76.0

84.8

120E

150E

(c)

HC_x , oxygenated, halogenated HC_x , and hetero atom organics OH reactivity overview

KOH COH 1

Chemical residence time of organic substances in the atmosphere

Ozone formation in CO oxidation

Ozone formation in the troposphere (1) Why is CO not accumulating in urban air? \rightarrow , discovery' of the OH radical

CO volume mixing ratio in the lower troposphere: 100-200 ppbv

(1) $CO + OH \rightarrow CO_2 + H$ Chemical fate of OH globally: $\approx 2/3$ reacts with CO (2) $H + O_2 \rightarrow HO_2$ Sum (1-2): $CO + O_2 + OH \rightarrow HO_2 + CO_2$

(3) $HO_2 + NO \rightarrow OH + NO_2$ (4) $NO_2 + hv (< 420 nm) \rightarrow NO + O$ (5) $O + O_2 + M \rightarrow O_3 + M$ Sum (1-5): $CO + 2 O_2 \rightarrow CO_2 + O_3$

k = 220×10^{-12} cm³/molec/s j $\approx 5 \times 10^{-3}$ /s k⁽¹⁾ $\approx 10^{5}$ /s

(6) $O_3 + NO \rightarrow O_2 + NO_2$ Sum (1-6): $CO + O_2 + NO \rightarrow CO_2 + NO_2$ $k^{(1)} \approx 10^{-2/s}$

Ozone formation from *hydrocarbons*, HC_x , and NO_x

(1a) $\operatorname{RCH}_3 + \operatorname{OH} \rightarrow \operatorname{RCH}_2 + \operatorname{H}_2 O$ (1b) $\operatorname{RCH}_2 + O_2 + M \rightarrow \operatorname{RCH}_2 OO + M$ (2) $\operatorname{RCH}_2 OO + NO \rightarrow \operatorname{RCH}_2 O + NO_2$ (3) $\operatorname{RCH}_2 O + O_2 \rightarrow \operatorname{RCHO} + \operatorname{HO}_2$

(4) $NO_2 + hv (< 430 \text{ nm}) \rightarrow NO + O$ (source: NO_{r}) (5) $O + O_2 + M \rightarrow O_3 + M$ Sum (1-5): $RCH_3 + OH + 3 O_2 \rightarrow RCHO + H_2O + HO_2 + O_3$ = catalyzed by NO and light Sum (4-5): $NO_2 + O_2 + hv \rightarrow NO + O_3$ (6) $HO_2 + NO \rightarrow OH + NO_2$ = OH recycled Sum (1-6): $RCH_3 + NO + 3O_2 \rightarrow RCHO + H_2O + NO_2 + O_3$

= catalyzed by OH and light

Tropospheric ozone formation from CO, CH_4 : other products HCHO, H_2O_2 , HNO₃ (radical sink reactions)

Sinks of tropospheric ozone Hydrocarbon and CO chemistry in the absence of NO_x

Degradation of RH in NO-poor areas

```
(1) \operatorname{RCH}_3 + \operatorname{OH}^{\cdot} \to \operatorname{RCH}_2^{\cdot} + \operatorname{H}_2\operatorname{O}

(2) \operatorname{RCH}_2^{\cdot} + \operatorname{O}_2 + \operatorname{M} \to \operatorname{RCH}_2\operatorname{OO}^{\cdot} + \operatorname{M}

(3a) \operatorname{NO}_2 + \operatorname{hv} \to \operatorname{NO} + \operatorname{O}

(4a) \operatorname{O} + \operatorname{O}_2 + \operatorname{M} \to \operatorname{O}_3 + \operatorname{M}

(3b) \operatorname{RCH}_2\operatorname{OO}^{\cdot} + \operatorname{NO} + \operatorname{O}_3 \to \operatorname{RCH}_2\operatorname{O}^{\cdot} + 2\operatorname{O}_2

(4b) \operatorname{RCH}_2\operatorname{O}^{\cdot} + \operatorname{O}_2 \to \operatorname{RCHO} + \operatorname{HO}_2^{\cdot}
```

Sum (1-4): $RCH_3 + OH + O_3 \rightarrow RCHO + H_2O + HO_2$.

 \rightarrow Ozone loss. The threshold NO level for formation vs. loss is 5-10 pptv near the ground and ≈ 20 pptv near the tropopause

Degradation of methane in NO-poor areas

(1) $CH_4 + OH \rightarrow CH_3 + H_2O$ (2) $CH_3 + O_2 + M \rightarrow CH_3OO + M$ (3) $CH_3OO + HO_2 \rightarrow CH_3OOH + O_2$ (4a) $CH_3OOH + hv (< 330nm) \rightarrow CH_3O' + OH'$ (5) $CH_3O' + O_2 \rightarrow HCHO + HO_2'$ Sum (1-5): $CH_4 + O_2 \rightarrow HCHO + H_2O$ (4b) $CH_3OOH + OH \rightarrow HCHO + H_2O + OH \rightarrow HCHO + HCH$ Sum (1-4b): $CH_4 + OH + HO_2 \rightarrow HCHO + 2 H_2O$ \rightarrow neutral with regard to ozone

Much of the CH_3OOH is washed out ($\tau \approx week$) \rightarrow no oxidation to HCHO and CO, radical sink: Sum (1-3): $CH_4 + OH + HO_2 \rightarrow CH_3OOH + H_2O$

Degradation of CO in NO-poor areas

(1) $\operatorname{CO} + \operatorname{OH}^{\bullet} \longrightarrow \operatorname{CO}_2 + \operatorname{H}^{\bullet}$ (2) $\operatorname{H}^{\bullet} + \operatorname{O}_2 + \operatorname{M} \longrightarrow \operatorname{HO}_2 + \operatorname{M}$ (3a) $\operatorname{HO}_2^{\bullet} + \operatorname{O}_3 \longrightarrow \operatorname{OH}^{\bullet} + 2 \operatorname{O}_2$ Sum (1-3a): $\operatorname{CO} + \operatorname{O}_3 \longrightarrow \operatorname{CO}_2 + \operatorname{O}_2$

(3b) $HO_2 + HO_2 \rightarrow H_2O_2 + O_2$ Sum (1-3b): $CO + OH + HO_2 \rightarrow CO_2 + H_2O_2$

(Model results MOZART2; Horowitz et al., 2003)

NO_x distribution: NO_x-poor ?

 \rightarrow Most regions of the planetary boundary layer are above the NO_x threshold.

Radical sources

Radical source ozone

(1a) $O_3 + hv (320-800 \text{ nm}) \rightarrow O_2 + O_3$ $(-1a) O + O_2 \rightarrow O_3$ net effect: none (1b) $O_3 + hv (310-336 \text{ nm}) \rightarrow O_2 + O^*$ $E(^{m}T)$ with element E, multiplicity m = 2s + 1 (singulett, dublett, triplett, ...), term symbol T (total orbital angular momentum number $L=0 \rightarrow S, L=1 \rightarrow P, L=2 \rightarrow D$) s = spin angular momentum quantum number **Example E = O:** Ground state O: $O(^{3}P)$ Excited state O*: O(¹D) (there is also another excited state O*: **O**(¹**S**) formed from **O**₂ with $\lambda < 133$ nm) $+ \mathbf{M} \rightarrow \mathbf{O} + \mathbf{M}$ (**2ba**) $k = 26 \times 10^{-12} \text{ cm}^3/\text{molec/s} (N_2)$ $k = 40 \times 10^{-12} \text{ cm}^3/\text{molec/s} (O_2)$ net effect: none + $H_2O \rightarrow 2 OH$ · k = 220×10⁻¹² cm³/molec/s $(2bb) O^*$ net effect: radical formation

Radical distributions - temporal

0

Berlin, Germany, 20.-21.7.98

(*Barnes et al.*, 2007)

Radical distributions – spatial: OH

Zonally and monthly averaged data (10⁵ cm⁻³; *Spivakovsky et al.*, 2000)

Fig. 1. Annual mean OH concentrations near the earth's surface, calculated with a chemistry-transport model (Lelieveld et al., 2002). The units are 10^6 radicals/cm³. These results refer to OH in the boundary layer at low and middle latitudes where mean OH concentrations exceed 10^5 radicals/cm³.

(Lelieveld et al., 2002; Krol et al., 2003)

Common acronyms for hydrogen compounds: $HO_x := HO' + HO_2' + H' + CH_3O' + CH_3OO' + HOCH_2OO'$ $odd-H := HO_x + 2 H_2O_2 + 2 CH_3OOH + HNO_2 + HNO_4$

another powerful OH source reaction: Photolysis of nitrous acid

Observations field: night-time accumulation (Perner & Platt, 1979)

Day-time sink: $HNO_2 + hv (\lambda = 300-405 \text{ nm}) \rightarrow OH^{\bullet} + NO$

HNO₂: Significance

Efficient radical source, in particular in winter and in high latitudes (before visible sunrise in the UV)

 $dc_{OH}/dt [*10^{6}/cm^{3}/s] =$ • from HNO₂ peak 34±6 (09:00h) from ozone 23±4 (12:00h) in urban California (Winer & Biermann, 1994)

• Integral (06:00-18:00 h) from HNO₂ 58±9, HCHO 33±8, O₃ 38±6 in urban Italy (Acker et al., 2006)

Toxicology:

• Precursor of carcinogenic substances, i.e. nitrosamines, RNHNO

 HO_2 : Pernitric acid $HOONO_2$ – relevant in the upper troposphere

(1)
$$NO_2 + HO_2 + M \rightleftharpoons HNO_4 + M$$

(2) $2 HO_2 \rightleftharpoons H_2O_2 + O_2$
 $K_{10} = 1.8 \times 10^{-31} [M] (T/300)^{-3.2} cm^3 molec^{-1} s^{-1}$
 $K_{1\infty} = 4.7 \times 10^{-12} (T/300)^{-1.4} cm^3 molec^{-1} s^{-1}; F_c = 0.6$
 $K_{-10} = 4.1 \times 10^{-5} [M] e^{-10650/T} s^{-1}$
 $K_{-1\infty} = 4.8 \times 10^{15} [M] e^{-11170/T} s^{-1}; F_c = 0.6$
(kinetic data taken from Atkinson et al., 2004)

Re-call: 1.3 Combinations of thermic reactions - Quasi steady state approximation 3. between 2nd and 3rd order: In the range of pressures and temperatures in the upper troposphere and stratosphere (c_M small) many reactions are in the region between 2nd and 3rd order reactions:

$$k = \frac{k_0 M}{1 + k_0 M/k_{\infty}} F_C^{(1 + \log(k_0 M/k_{\infty})^2)^{-1}} \qquad F_C \approx 0.6$$

$ \begin{array}{l} NO_{2} + HO_{2} + M \rightarrow HO_{2}NO_{2} + M \\ K_{0}, k_{\infty} = low, high pressure limiting rate cons \\ F_{C} = broadening factor of falloff curve betwee atmospheric pressures \\ NO + HO_{2} \rightarrow NO_{2} + OH \\ NO + HO_{2} \rightarrow NO_{2} + OH \\ NO + HO_{2} \rightarrow NO_{2} + OH \\ NO + HO_{2} \rightarrow NO_{2} + CH_{3}O \\ NO + NO_{3} \rightarrow 2NO_{2} \\ NO + NO_{3} \rightarrow 2NO_{2} \\ NO + NO_{3} \rightarrow 2NO_{2} \\ NO_{2} + OI \rightarrow NO_{2} + OH \\ NO_{2} + OI \rightarrow NO_{2} + CH_{3}O \\ NO_{2} + OI^{2} + OI^{2} \\ NO_{2} + OI^{2} \rightarrow NO_{2} + CH_{3}O \\ NO_{3} \rightarrow 2NO_{2} \\ NO_{2} + OI^{2} \rightarrow NO_{2} + CH_{3}O \\ NO_{3} \rightarrow NO_{3} \rightarrow O2 \\ NO_{2} + OI^{2} \rightarrow NO_{3} + NO_{3} \\ NO_{2} + OI^{2} \rightarrow NO_{3} \\ NO_{2} \\ NO_{3} = I^{2}(O,K_{\infty}), K_{0} = I^{2}(O,K_{\infty}), K_{0} = I^{2}(I^{2}(I)^{2}) \\ NO_{3} \\ I^{2}(I^{2}(I)^{2}) \\ I^{2}(I^{2}(I)^{2}(I)^{2}) \\ I^{2}(I^{2}(I)^{2}(I)^{2}(I)^{2}(I)^{2}(I)^{2}(I)^{2}) \\ I^{2}(I^{2}(I)^{2}(I)^{2}$	$k_0(T) = k_0^{300K} \left(\frac{T}{200K}\right)^{-n},$	$k\infty(T) = k^{300K} \left(\frac{T}{1} \right)^{-m}$
$ \begin{array}{llllllllllllllllllllllllllllllllllll$	(300K)	$NO_2 + HO_2 + M \rightarrow HO_2NO_2 + M$
$ \begin{array}{llllllllllllllllllllllllllllllllllll$	$k_0, k_{\infty} = low, high pressure limiting$	rate const $K_0 = k_0(T)c_M$, $n = -3.2$
atmospheric pressures NO + HO ₂ \rightarrow NO ₂ + OH NO + HO ₂ \rightarrow NO ₂ + OH NO + HO ₂ \rightarrow NO ₂ + OH NO + CH ₃ O ₂ \rightarrow NO ₂ + CH ₃ O NO + NO ₃ \rightarrow 2NO ₂ NO + NO ₄ \rightarrow 0.7 × 10 ⁻¹² exp(25 R _{N11} = 4.2 × 10 ⁻¹² exp(27 R _{N12} = 1.5 × 10 ⁻¹¹ exp(17) R _{N13} = 6.5 × 10 ⁻¹² exp(12) NO ₂ + O ₃ \rightarrow NO ₃ + O ₂ NO ₂ + O ₃ \rightarrow NO ₃ + O ₂ NO ₂ + HO ₂ \xrightarrow{M} HO ₂ NO ₂ NO ₂ + O ₃ \xrightarrow{M} HO ₂ NO ₂ NO ₂ + O ₃ \xrightarrow{M} HO ₂ NO ₂ NO ₂ + NO ₃ \xrightarrow{M} NO ₂ NO ₂ + NO ₃ \xrightarrow{M} N ₂ O ₅ HNO ₃ + OH \rightarrow HO ₃ NO ₂ + OH \rightarrow HO ₃ NO ₃ + OH	F_{C} = broadening factor of falloff cur	rve betwee $K_{\infty} = k_{\infty}(T), m = -1.4 \rightarrow$
$ \begin{array}{llllllllllllllllllllllllllllllllllll$	atmospheric pressures	$k_{288 \text{ K/1000 hPa}} = 1.9 \times 10^{-12} \text{ cm}^3/\text{molec/s}$
$ \begin{array}{llllllllllllllllllllllllllllllllllll$	110 + 010 + 1102 + 01 $1000 + 0.1 m = 0.1 m$	$k_{288 \text{ K/500 hPa}} = 1.5 \times 10^{-12} \text{ cm}^3/\text{molec/s}$
$\begin{array}{llllllllllllllllllllllllllllllllllll$	$NO + HO_2 \rightarrow NO_2 + OH$ $R_{N10} = 3.7$	$\times 10^{-12} \exp(25)$ $\times 10^{-12} \exp(18)$
$ \begin{array}{llllllllllllllllllllllllllllllllllll$	$NO + CH_3O_2 \rightarrow NO_2 + CH_3O$ $NO + NO_3 \rightarrow 2NO_2$ $R_{N12} = 1.5 \times 10^{-1}$	× 10 ⁻¹¹ exp(17 $k_{230 \text{ K/500 hPa}} = 2.3 \times 10^{-12} \text{ cm}^3/\text{molec/s}$
$ \begin{split} & \text{NO}_2 + \text{O}_3 \rightarrow \text{NO}_3 + \text{O}_2 \\ & \text{NO}_2 + \text{HO}_2 \stackrel{\text{M}}{\to} \text{HO}_2 \text{NO}_2 \\ & \text{NO}_2 + \text{HO}_2 \stackrel{\text{M}}{\to} \text{HO}_2 \text{NO}_2 \\ & \text{NO}_2 + \text{OH} \stackrel{\text{M}}{\to} \text{HNO}_3 \\ & \text{NO}_2 + \text{OH} \stackrel{\text{M}}{\to} \text{HNO}_3 \\ & \text{NO}_2 + \text{OH} \stackrel{\text{M}}{\to} \text{HNO}_3 \\ & \text{NO}_2 + \text{NO}_3 \stackrel{\text{M}}{\to} \text{N}_2 \text{O}_5 \\ & \text{HNO}_3 + \text{OH} \rightarrow \text{H}_2 \text{O} + \text{NO}_3 \\ & \text{HNO}_3 + \text{OH} \rightarrow \text{H}_2 \text{O} + \text{NO}_3 \\ \end{split} $	$\begin{array}{ll} \text{NO}_2 + \text{O}({}^3\text{P}) \text{NO} + \text{O}_2 \\ \text{NO}_2 + \text{ClO} \text{M} \\ \text{ClONO}_2 \end{array} \qquad \begin{array}{ll} R_{\text{N13}} = 6.5 \times R_{\text{N14}} \\ R_{\text{N14}} = f(K_0) \\ R_{\text{N14}} = f(K_0)$	$ \sum_{K_0, K_\infty}^{\times 10^{-12} \exp(12)} k_{230 \text{ K/1000 hPa}} = 3.0 \times 10^{-12} \text{ cm}^3/\text{molec/s} $
$\begin{array}{llllllllllllllllllllllllllllllllllll$	$\begin{array}{ll} NO_2 + O_3 \rightarrow NO_3 + O_2 \\ NO_2 + HO_2 \xrightarrow{M} HO_2 NO_2 \end{array} \qquad $	$ = \frac{10^{-13} \exp(-2430/T)}{K_0 = 1.8 \times 10^{-31} [M] (300/T)^{3.2}, \ K_{\infty} = 4.7 \times 10^{-12} (300/T)^{1.4} $
$\frac{1002 + 1003}{1002 + 1003} \rightarrow \frac{10205}{100} = \frac{100071}{100071}, K_{\infty} = 1.5 \times 10^{-100} (30071)$ $\frac{1002 + 1003}{100071}, K_{\infty} = 1.5 \times 10^{-100} (30071), K_{\infty} = 1.9 \times 10^{-33} [M] \exp(7257)$	$NO_2 + OH \xrightarrow{M} HNO_3 \qquad \qquad R_{NH7} = f(K)$ $NO_2 + NO_2 \qquad \qquad M N_2O_2 \qquad \qquad P_{HH7} = f(K)$	$K_{0}(K_{\infty}), K_{0} = 2.6 \times 10^{-30} [M] (300/T)^{3.2}, K_{\infty} = 2.4 \times 10^{-11} (300/T)^{1.3}, K_{\infty} = 2.4 \times 10^{-11} (300/T)^{1.3}, K_{\infty} = 1.5 \times 10^{-12} (300/T)^{0.7}$
	$HNO_2 + OH \rightarrow H_2O + NO_2 \qquad \qquad R_{N10} = K_1 + K_2 + K$	$K_{\infty}^{(1)}$, $K_{0}^{(2)} = 2.2 \times 10^{-11} [\mu I](500/T)^{-1}$, $K_{\infty}^{(2)} = 1.5 \times 10^{-10} (500/T)^{-1}$ + $K_{2}^{(1)}(1 + K_{2}/K_{3})$, $K_{1}^{(2)} = 7.2 \times 10^{-15} \exp(785/T)$, $K_{2}^{(2)} = 1.9 \times 10^{-33} [M] \exp(725/T)$

 HO_2 : Pernitric acid $HOONO_2$ – relevant in the upper troposphere

(1) $NO_2 + HO_2 + M \rightleftharpoons HNO_4 + M$								
(2) $2 \operatorname{HO}_2 \rightleftharpoons \operatorname{H}_2 \operatorname{O}_2 + \operatorname{O}_2$								
$k_{10} = 1.8 \times 10^{-31} \text{ [M] } (\text{T}/300)^{-3.2} \text{ cm}^3 \text{ molec}^{-1} \text{ s}^{-1}$ $k_{10} = 4.7 \times 10^{-12} (\text{T}/300)^{-1.4} \text{ cm}^3 \text{ molec}^{-1} \text{ s}^{-1}; \text{ F}_c = 0.6$ $k_{10} = 4.1 \times 10^{-5} \text{ [M] } \text{ s}^{-10650/\text{T}} \text{ s}^{-1}$								
$k_{-10} = 4.1 \times 10^{5} \text{ [M] e}^{-1000 \text{ [N]}} \text{ s}^{-1} \text{ s}^{-1}; F_{c} = 0.6$ $(1 \text{ institution between the form Additional and a 2004)}$								
	T		1				(UNIO)	
Examples		p	h	τ	$\mu(NO_2)$	$\mu(HO_2)$	$\mu(HNO_4)$	1
	(K)	(hPa)	(km)	(HNO_4)	(nmol/m	ol)(pmol/r	nol)(pmol/m	ol)
	230	300	9	6 d	0.01	1	54	
					0.05	1	270	
	270	700	3	9 min	0.02	0.4	0.08	
					0.2	0.4	0.8	
	273	1000	0	5 min	1	3	25	
					30	3	750	
	293	1000	0	25 s	1	3	1.7	
					30	10	165	

→ high solubility (acid): changes NO_x phase distribution and residence time → NO_x reservoir compound **Formation of peroxyacetyl nitrate**

 $(1) CH_{3}C(O)CH_{3} + OH^{\bullet} \rightarrow CH_{3}C(O)CH_{2}^{\bullet} + H_{2}O \\CH_{3}C(O)CH_{2}^{\bullet} + O_{2} + M \rightarrow CH_{3}C(O)CH_{2}OO^{\bullet} + M \\(2) CH_{3}CH(O)CH_{2}OO^{\bullet} + NO \rightarrow CH_{3}C(O)CH_{2}O^{\bullet} + NO_{2} \\(3) CH_{3}C(O)CH_{2}O^{\bullet} \rightarrow HCHO + CH_{3}C^{\bullet}(O) \\(4) CH_{3}C^{\bullet}(O) + O_{2} \rightarrow CH_{3}C(O)OO^{\bullet} \\(5) CH_{3}C(O)OO^{\bullet} + NO_{2} \rightarrow CH_{3}C(O)OONO_{2} \\(4) CH_{3}C(O)OO^{\bullet} + NO_{2} \rightarrow CH_{3}C(O)OONO_{2} \\(5) CH_{3}C(O)OO^{\bullet} \\(5) CH_{3}C(O)OO^{\bullet} + NO_{2} \rightarrow CH_{3}C(O)OONO_{2} \\(5) CH_{3}C(O)OO^{\bullet} \\(5) CH_{3}C(O)OO^{\bullet$

Peroxyacetyl nitrate (PAN): thermally labile

 $\begin{array}{ll} +\Delta T \\ \rightleftharpoons & (O)OONO_2 \end{array} \stackrel{+\Delta T}{\rightleftharpoons} & CH_3C(O)OO \cdot + NO_2 \\ -\Delta T & k = 1.95 \times 10^{16} \, e^{-13543/T} \, s^{-1}; \\ & \tau = 2 \, \text{years} \ @ 243K \\ & \tau = 2 \, \text{days} \ @ 273K \\ & \tau = 45 \, \min \ @ 298 \, \text{K} \end{array}$

 $\rightarrow NO_x \text{ reservoir compound} \leftrightarrow \text{changes NO}_x \text{ effective residence time} \\ \rightarrow \text{delayed ozone formation}$

PAN sink reactions: (-6) thermal decomposition $\rightarrow CH_3C(O)OO^{\circ} + NO_2$ (7a) $CH_3C(O)OO^{\circ} + NO \rightarrow CH_3^{\circ} + CO_2 + NO_2$ (7b) $+ HO_2 \rightarrow CH_3C(O)OOH + O_2$ (8b) $CH_3C(O)OOH + h\nu \rightarrow CH_3^{\circ} + CO_2 + OH$

Peroxyacetyl nitrate - occurrence

- 1) in the cold
- 2) in photochemical smog and in plumes of urban areas

Rural Scotland (McFadyen & Cape, 2005)

3) ... even in plumes of whole regions:

Nitrate radical

 NO_2 oxidation by ozone: NO_3 formation The adduct N_2O_5 – a thermically labile NO_3 reservoir

[pptv]

(1) $\operatorname{NO}_2 + \operatorname{O}_3 \rightarrow \operatorname{NO}_3 + \operatorname{O}_2$ $k_1 = 3.2 \times 10^{-17} \text{ cm}^3 \text{ molec}^{-1} \text{ s}^{-1}$

-ΔT

Equilibrium:

$$c_{N205} / (c_{N02} c_{N03}) = K = k_2 / k_{-2}$$

 $\rightarrow \rm N_2O_5$ not measurable, but can be inferred from $\rm c_{\rm NO2}$ and $\rm c_{\rm NO3}$

Nitrate radical - sinks

Day-time: Rapid photolysis of NO₃

in clouds, on wet particles:

(2b)
$$\operatorname{NO}_3 \rightleftharpoons \operatorname{NO}_3_{(aqu)}$$

 $\operatorname{NO}_3_{(aqu)} + 2 \operatorname{H}_2O(1) \rightarrow \operatorname{NO}_3_{(aqu)} + OH_{(aqu)} + \operatorname{H}_3O_{(aqu)}^+$

(3)
$$N_2O_5 + 2 H_2O(1) \rightarrow 2 NO_3^{-}_{(aqu)} + 2 H_3O^{+}_{(aqu)}$$

Examples	r.h.	μ_{NO2}	μ_{NO3}	$ au_{NO3}^{het}$	$ au_{N2O5}^{het}$	Yield	Production
						OH	dc _{OH (aqu)} /dt
	(%)	(nmol /mol)	(nmol /mol)	(s)	(S)	(%)	(molec cm ⁻³ s ⁻¹)
Marit. aerosol	60	1	0.042	1960	1890	8.0	9.1x10 ⁴
	90	1	0.020	840	320	1.9	4.3x10 ⁴
Continental aer.	60	10	0.90	5800	4200	3.3	32 x10 ⁴
	90	10	0.70	4500	3800	1.4	12 x10 ⁴
Coastal fog	> 96	1	1.8x10 ⁻⁵	24	6.3	0.8	1.9x10 ⁴
Radiation fog	> 96	10	1.1x10 ⁻⁵	14	3.7	0.13	2.0x10 ⁴
NO₃ chemistry: alkanes, example butane

Degradation of hydrocarbons during the night

(1a) $CH_3CH_2CH_2CH_3 + NO_3 \rightarrow CH_3CH CH_2CH_3 + HNO_3$

further similar to chemistry upon OH attack:

(2a) $CH_3CH \cdot CH_2CH_3 + O_2 + M \rightarrow CH_3CH(OO \cdot)CH_2CH_3 + M$ (3a) $CH_3CH(OO \cdot)CH_2CH_3 + NO \rightarrow CH_3CH(O \cdot)CH_2CH_3 + NO_2$ (4aa) $CH_3CH(O \cdot)CH_2CH_3 + O_2 \rightarrow CH_3C(O)CH_2CH_3 + HO_2$ (4ab) decomposition: $\rightarrow CH_3CO + \cdot CH_2CH_3$

NO₃ chemistry: alkenes, example propene

Preferential is the addition to the higher substituted radical (like OH reaction): (1) $CH_3CH=CH_2 + NO_3$: $\rightarrow CH_3CH(ONO_2)C\cdot H_2$

 $k = 9.5 \times 10^{-15} cm^{3}/molec/s$

 $+ NO_{2}$

diferent from chemistry upon OH attack, as adducts differ:

(2a) $CH_3CH(ONO_2)C \cdot H_2$

methylepoxide

(2b) $CH_3CH(ONO_2)CH_2 + O_2 \rightarrow CH_3CH(ONO_2)C(OO)H_2$

NO₃ reactivity towards hydrocarbons: overview

HC _x	k _{NO3}
	10 ⁻¹⁵ cm ³ molec ⁻¹ s ⁻¹
Alkanes:	
CH ₄	< 0.001
CH ₃ CH ₃	0.0014
CH ₃ CH ₂ CH ₃	0.017
CH ₃ CH ₂ CH ₂ CH ₃	0.046
$CH_3CH(CH_3)_2$	0.11
CH ₃ (CH ₂) ₃ CH ₃	0.087
Alkenes:	
$CH_2 = CH_2$	0.21
CH ₂ =CHCH ₃	9.5
CH ₂ =CHCH ₂ CH ₃	14
cis-CH ₃ CH=CHCH ₃	350
trans-CH ₃ CH=CHCH ₃	390
$CH_2 = C(CH_3)_2$	330
α-pinene	590
β-pinene	210