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4 Trace substance mass budgets, surface cycling:
Emissions, deposition, re-volatilisation
4.1 Mass budget equation, residence time
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dm;/dt = sources — sinks = E; = S; = E; — (K gegrad™ * Ki gep™) M= my/t

[0/s]
dei/dt = Ej — S; = Fj /N - (K gegrad™ + Ki gept?) Ci = Cil Tair [9/m?/s]
» Chemical loss processes of i are 15t order in c;
« Source processes of i are 0™ order in c;
Depositional loss processes are here expressed as 1%t order in c; for simplicity
For dm,/dt = 0, the system is called to be chemically in a steady state




Variability and atmospheric residence time:
dmi/dt = (Fi in * E) (F| out T S)

with: Fiins Fiout = Fluxes over boundary
E., S; = internal sources and sinks
m = M /Mg air <X > mtrop
Mg i Mga,r— molar masses (M,;, = 29 g/mol)
<x;> = spatial average of mixing ratio

Myop = Mass of tropospheric air = 4.25x 101 t

Si= (Z; ki@ N;/V + jW) NV = kD NV
with: k (2) J,(l)— rate coefflc:lents photoly5|s rates
N /V N;/V = reaction partner number concentrations
kD= tropospheric average chemical sink rate coefficient
If well mlxed or almost well mixed: advective losses F; .
Fiouwt ~ Mi= ke m;; with: ke = empiric parameter

dmJ/dt=F;;, + E; + (kg + k(%) m,

T, = (ke + kyM)L; with: 1, = residence time (not equal to but < ,lifetime /)
assuming (in 1t approx.) that k() # f(m,), i.e. no chemical feedbacks
leading to N;/V = f(N;/V)



Averaging over long times (> mixing times)
steady state-assumption holds: dm./dt = <F,; > + <E;> - (k. + k,Y) m; ~ 0

Ni/V = <N/V>+ (N/V)“(x,y, z, t);
with:  <N,/VV> = temporally and spatially mean number concentration

(Ni/V) = local and temporal number concentration
X, Y, Z = space coordinates

Empiric finding (Junge, 1974) for the
relative standard deviation 0’

5, = 6 *((N/V)*) / <NJV> =0.14/ 1,

with: o;*((N;/V)‘) = absolute
standard deviation of (N.,/V)*

— The residence time, t;, can be inferred
from variability, as o; = f(t;)
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4.2 Emissions

Example: non-methane hydrocarbons (NMHC)

Global budget (Tg/a)

Natural 1150  terrestrial vegetation
2 marine biosphere

Anthropogenic 120 of which are:

52 % transport
7 % fossil fuels, stationary
5 % chemical, petrochemical industries
9 % oil and gas production

27 % solvents

(Ehhalt, 1986; Guenther et al., 1996)



Global Model results
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Global distributions CO (ppbv) @ 970 and 510 hPa, monthly mean

CO @ 510 mb, JAN
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Distributions — spatial, seasonal

Regional distribution CO (ppbv) @ 300 m 60°N/90°E (ZOTTO)
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(courtesy of Chi & Andreae 2013)
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Biomass burning

Example of the spatial
distribution of nighttime

4 active fires given by the
Bl ATSR satellite sensor

~ example of burnt area
~ provided by the GBA-

2000 product
(Tansey et al., 2008)




Halogenated SOCs and multicompartmental substances
Introduction: concerns persistence, bioaccumulation and

effects

Many (most) semivolatile and persistent organic substances are accumulating in high
latitudes (despite source distribution). Example a-hexachlorocyclohexane (a-HCH)
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FIGURE 2. Variation in the concentration of o-HCH in the upper
water column with latitude: o-HCH {ng L™') = 0.0206 x latitude +
0.72 (r2 = 0.11).

N-S gradient in the Bering and Chukchi Seas
(Jantunen & Bidleman, 1995)



Decreasing trends in air and water not necessarily followed in
organisms:
Bioaccumulation along food chains
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6.2.2.2 SOCs surface exchange
6.2.2.2.1 Air-sea exchange

= volatilisation and dry deposition of (gaseous) molecules
- gas flux through interface F = -v,,, (C,, - C,;) = -Vg, (Cgi - C4) [MoOl/m?/s]

with c,; = ¢,/ Ky,
- all physics hidden in v; equilibrium established at the interface itself



Two film model (or: two film theory of gas absorption)
- existence of 2 stagnant layers on either side of the interface = transition zone from
fully turbulent to molecular conditions

- provide resistance additively R, = R, + R, & 1/v,, = 1/v,, + 1/(v,K

aw)

(Liss & Slater, 1974; Schwarzenbach et al., 2002)
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(courtesy of M. Tsapakis)



Henry's law constant Ky (L bar mol-1)

1

Two film model (followed)

- there is a water-phase and an air-phase
controlled regime existing

-1, = 1lv,, + 1/(v, K,,) means that in the
water-phase controlled regime the overall transfer
velocity is independent, in the air-phase related
regime linearly dependent of K_,. This
asymmetry, however, is only related to the
decision to relate all concentrations to the
reference phase water.
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Schematic of overall air-water exchange velocity v,,, as a function of the air-water

partition coefficient K.

Symmetry as equally frequent renewed surfaces are assumed (not realistic).

overall transfer velocity Vg, (6m s=1)



F= 'kmtw (Cw - Cwi) = 'kmta (Cai - Ca) [mOI/mZ/S]
defined positive for flux from air to water

Cai = Kaw Cwi
with actual bulk (C,, C,) and equilibrium (C,,;, C,;) concentrations in water and air

F =K et [Cy - CaRgT/(CWH(T,S))] : salinity s, H [Pa m3/mol]),
R, = 8.206 m3Pa/K/mol

H(T,s) = RyT Ky (T:8) = RyT Ky (T) % 10K ; Setschenow constant K, [L/mol]
K, =0.04 log K,,, + 0.114 (Ni & Yalkowsky, 2003)

Resistance by boundary layers:
reciprocal transfer coefficients (,piston velocity® Ky, K¢ g [M/S])

R = Ukt net = LKppw + Ry T/ (K e H(TSS)) [S/M]
consideration of 1 side sufficient for most gases



However:
Stagnant film model (which ignores non-diffusive mass transport) implies F =
(D/z) Ac with diffusion layer thickness z (can be estimated). F ~ D is not really true.

Other existing conceptual models of air-sea mass exchange:

- Surface renewal model (interface periodically renewed by turbulence eddies)
implies F = 2(D/t_m)*>Ac ~ D°>. However, the model is not useful, as the
characteristic surface renewal time,t,, is not known or experimentally accessible.

- Turbulent fluid flow based model

- Turbulence enhancement by bubbles model: bubbles are created by breaking waves
(u>13 m/s)

- Surface film effects: no direct inhibition but indirect (hydrodynamic: wave
dampening (3.6 <u < 13 m/s), suppression of surface renewal...) effects

These conceptual models are not predictive / fail as they are limited to individual
processes which in reality combine

(review: Johnson, 2000)



Henry's law constant K. _ (L bar mol’’)
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Result of lab and field measurements: v, is positively correlated with wind speed,
faster for u;;> 10 m s

— Parameterisations in models are empirically based.

Wind dependence:

- 3 linear regimes for the piston velocity k,, (Liss & Merlivat, 1986)

- quadratic K, co,(u) = 0.31 u? (Sc/660)%° cm/s (Wanninkhoff, 1992)



Empiric relationships to for H,O, CO,, and derived for unknown molecule i:

Kmtamzo =0.83cm st — Ky, o =0.83 (18/M)> cm st ; molecular mass M,
(g/mol)
Kmtw coz = 0.0056 cm s — K, ,; = 0.0056 (44/M;)*> cm s

(Atlas & Giam, 1986)
Kntanzo = 0.2 Ujg + 0.23— Koy o = (Dyi/ Dy H20) "8 Vg H20

(Mackay & Yeun, 1983)

Kmtw = 36% (0.2 Uy + 0.3) x (D; o/Dyyp0 5)*°* 5 wind velocity in 10 m height u,,
Kot o= 0.01x (0.45 u 4t%) x (S¢i/SCcp,)°  ; Schmidt number Sc:=v /D

Kinematic viscosity v := fluid viscosity w/fluid density p
(Murphy, 1995)



\olatilisation rate v determined by sea surface temperature t, wind speed u and

concentration in seawater c. Here: p(T), H(T), K,,» K,.(T) and c of DDT
Coefficients of determination R? (linear correlation) used to find out which of the parameters
explains most of the variance of the volatilisation rate.
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Model experiment with transient hlstorlc emissions 1950-1990

(Stemmler & Lammel, 2011)

Net-deposition = Deposition — Volatilisation (kg/m?/s)
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(Stemmler & Lammel, 2009)



