Introduction to Computational Quantum Chemistry

Lesson 6: Frequency calculations and IR spectra

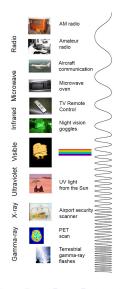
Martin Novák (NCBR)

Frequency calculations

October 3, 2017 1 / 24

Frequency calculations

- Hessian matrix eigenvalues
- Second derivatives with respect to molecular geometry
- All positive values (curvature) local minimum
- Imaginary (negative) values "nth order saddle point"


$$H(f) = \begin{bmatrix} \frac{\partial^2 f}{\partial x_1^2} & \frac{\partial^2 f}{\partial x_1 \partial x_2} & \cdots & \frac{\partial^2 f}{\partial x_1 \partial x_n} \\ \frac{\partial^2 f}{\partial x_1 \partial x_2} & \frac{\partial^2 f}{\partial x_2^2} & \cdots & \frac{\partial^2 f}{\partial x_2 \partial x_n} \\ \vdots & \vdots & \ddots & \vdots \\ \frac{\partial^2 f}{\partial x_n \partial x_1} & \frac{\partial^2 f}{\partial x_n \partial x_2} & \cdots & \frac{\partial^2 f}{\partial x_n^2} \end{bmatrix}$$

 If optimizer finds saddle point instead of a minimum, move atoms "in vibration's direction"

Martin Novák (NCBR)

• • • • • • • • •

- Uses infrared electromagnetic radiation
- Excites vibrational states
- Molecular dipole must change during excitation
- Energy reported in cm^{-1} (wavenumbers)
- Typical range of experiment is 400-4000 cm⁻¹

- Wavenuber states how many waves (amplitudes) of the radiation is in one centimeter
- Therefore higher wavenumber equals to higher energy radiation

$$E = h\nu = \frac{hc}{\lambda} \tag{1}$$

$$\tilde{\nu} = \frac{1}{\lambda}$$
 (2)

$$\tilde{\nu} = \frac{E}{hc} \tag{3}$$

Normal modes of vibrations

- Two types of molecular vibrations:
 - Stretching
 - Bending
- Molecule of N-atoms has
 - 3N 6 degrees of freedom (non-linear)
 - 3N-5 degrees of freedom (linear)
- Water:

symmetrical stretching

asymmetrical stretching

scissoring (bending)

• CO₂

asymmetrical stretching

<->-→

< ロ > < 同 > < 回 > < 回 >

symmetrical stretching

scissoring (bending in the plane of the paper)

Martin Novák (NCBR)

Frequency calculations

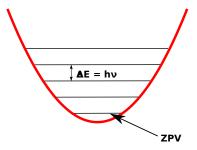
October 3, 2017 5 / 24

Characteristic frequencies

Bending is less demanding than stretching

Group	Туре	Value	Intensity		
-O-H (HB)	Stretch	3200-3600	Strong, broad		
-O-H (Free)	Stretch	3500-3700	Strong, sharp		
-C-H	Stretch	2850-3000	Strong		
-C-H	Bend	1350-1480	Variable		
=C-H	Stretch	3010-3100	Medium		
=C-H	Bend	675-1000	Strong		
C=O	Stretch	1670-1820	Strong		
C=C (alkene)	Stretch	1620-1680	Variable		
C=C (aromatic)	Stretch	1400-1600	Medium-Weak		

- Simplest approximation: Atoms connected with springs
- Hook's law: Frequency of vibration is given by mass and force constant


$$\tilde{\nu} = \frac{1}{2\pi c} \sqrt{\frac{k}{m}}$$

$$E = \frac{1}{2} k x^{2}$$
(4)

Energy is quantized

$$E = (n+1/2)h\nu\tag{6}$$

- Photon has energy $h\nu$
- Transitions to next energy levels
- Overtones: Transitions to further levels (less intensive)
- Combination bands: 2 or more simultaneous excitations

- Bonded atoms behave as anharmonic oscilators
- This causes the higher energy levels to be closer
- For diatomic oscilator:

$$\tilde{\nu} = \frac{1}{2\pi c} \sqrt{\frac{f(m_1 + m_2)}{m_1 m_2}}$$

where

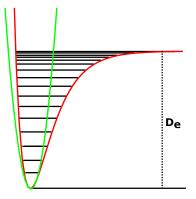
• f is the force constant of the bond

Task:

- Calculate the absorption energy (in wavenumbers) for following groups:
 - C-H, C=O and C≡N
- Use these force constants:
 - Single bond: $f = 5 \cdot 10^5 dyn \cdot cm^{-1}$
 - Double bond: $f = 10 \cdot 10^5 dyn \cdot cm^{-1}$
 - Triple bond: $f = 15 \cdot 10^5 dyn \cdot cm^{-1}$
 - $1dyn = 1g \cdot cm \cdot s^{-2}$
- Compare them to typical experimental values:
 - C-H: 2850-3000
 - C=O: 1670-1820
 - C≡N: 2000-2300

4 3 5 4 3

Harmonic vs. Anharmonic oscilator


• Harmonic: Quadratic potential:

• $V(r) = k(r - r_0)^2$

• Anharmonic: Morse potential:

•
$$V(r) = D_e (1 - e^{-a(r-r_0)})^2$$

- Scaling factors for various levels of theory available in literature
- Merrick, J.P. et al. J. Phys. Chem. A 2007, 111, 11683.

- Perform following calculations:
 - Use Gaussian for optimization of CH₃F, CH₃⁷⁹Br and, CH₃⁸¹Br
 - Harmonic and anharmonic frequency calculations
 - Use Def2-SVPD basis set
 - Run the calculations in serial
- Run everything using batch system

- Keyword gen instead of basis set specification
- EMSL Basis Set Exchange: https://bse.pnl.gov/bse/portal
- Select desired atoms and basis set
- Specify "Gaussian94" format
- Put the basis set after molecular specification
- BE AWARE
 - $\bullet\,$ Missing atomic basis set \to WARNING
 - Extra atomic basis set \rightarrow ERROR

- Use this syntax: job1
 blank line
 -link1- job2
 blank line
- Logfiles are appended into 1 huge file
- Everything goes well:

Normal termination of Gaussian 09 at Tue Jul 1 04:34:16 2014.

A 10

- %chk=checkpoint.chk
- %nprocshared=ncpu
- %mem=memory
- How to find out available resources:
 - pnodes

Gaussian resources

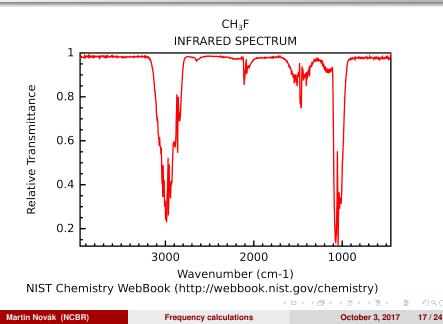
Site name Batch server	s :									
	ncb									
Node Group		stude								
Connon prope				cgrou	ips gr_s	studer				
Node name								Share		Extra propertie
wolf02 wolf03 wolf04 wolf06 wolf06 wolf08 wolf10 wolf10 wolf11 wolf11 wolf11 wolf11 wolf15 wolf16 wolf15 wolf19 wolf20 wolf21 wolf22				0/ 0	5G/ 5G/ 7G/ 7G/		805G			
				0/0						
				1/1				θK		
				1/1			3706			
wolf06				1/ 1						
WOLTO/				17.1			3716		0K	
WOLT08				11.1	16/		371G 371G	өк өк	OK OK	
wollf10				17.1			3716		OK OK	
wolf10				- 11 1			3716		8K	
wolf12				- 17 1					θĸ	
wolf13				6/ 6			806G		6K	
wolf14				0/ 0					ØK	
wolf15				1/ 1			806G			
wolf16				1/1			8066		0K	
				1/1			8066			
wolf18				1/1			5G 4G			
wolf19				1/1						
				1/1			110G 371G			
wolf21				1/ 1			3716			
wolf22 wolf23				1/ 1 0/ 0						
wotr25				0/ 0			5G 792G			
Total number Total number Free CPUs		node								
Total number		CPUs					nber o	f GPUs		
Free CPUs						e GPUs				
Node Group		conne	ode							
Connon prope	rti	es: R	1018	cgrou						
Node name wolf30 wolf31 wolf32 wolf33 wolf34 wolf36 wolf36 wolf38 wolf38 wolf39 wolf40		CPU		GPUs	Rend					Extra propertie
				0/0						hyperthreading
				0/ 0	19G/					hyperthreading
				- 0 / 6						hyperthreading
				0/ 0						hyperthreading
wolf34				0/ 0				θK	ØK	hyperthreading
WOLT35				07 0	23G/	23G	3700	0K	0K	hyperthreading
WOLT30				0/ 0	23G/	236	3696	8K	0K	hyperthreading
WOLT 37				27 0	236/	236	3546	OK	OK	hyperthreading
wolf 38				0/ 0	236/	236	3090	OK	OK	hyperthreading
wo cr 39				2/ 2	236/ 156/	23G 15G	3400 366G	0K 0K 0K 0K 0K 0K 0K 0K 0K	OK OK	hyperthreading

Martin Novák (NCBR)

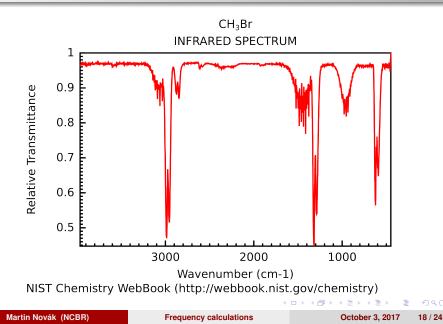
Frequency calculations

October 3, 2017 15 / 24

э


< 注 > < 注 >

Evaluation of results


- Thermodynamic corrections to electronic energy
- Frequencies can be visualized from logfile in GaussView
- Anharmonic vibrations are generally closer to experiment but require much more resources
- Calculate the RMSD of vibrations using the prepared scripts
- Structure of result.dat:
 - Sort the frequencies from lowest to highest wavenumber
 - One number per line
 - Group the degenerate modes together (calculate average)
 - Average the CH₃ ⁷⁹Br and CH₃ ⁸¹Br results
- awk -f script.awk result.dat

< ロ > < 同 > < 回 > < 回 >

Experimental spectra of CH₃F

Experimental spectra of CH₃Br

- Developed at University of Karlsruhe and Forschungszentrum Karlsruhe GmbH
- More UNIX-like approach to solve problems:
 - Several independent modules
 - x2t and t2x
 - define
 - o dscf
 - jobex
 - aoforce
- RI and MARIJ approximations of Coulombic terms in DFT \rightarrow insanely fast code (not for hybrids)

・ 同 ト ・ ヨ ト ・ ヨ

- Build a molecule and save it in xyz format
- x2t molecule.xyz > coord
- define
 - Interactive program
 - Prepares the control file containing all job specifications
 - Basis sets and initial guess
- jobex
 - Performs optimization of geometry
- aoforce
 - Runs frequency calculations
 - Cannot do anharmonic frequencies

define

- First two items can be skipped
- Molecular geometry:
 - a coord Reads in the geometry
 - ired Generates internal coordinates
 - Proceed to next stage
- Basis set:
 - b all def2-SVP Assign this basis set to all atoms
 - * Proceed to next stage
- Method
 - eht Perform initial guess from Extended Hückel Theory
 - Accept all defaults

4 三 ト・4

define - cont.

- Method
 - dft Enter the DFT submenu
 - on Use DFT
 - func b-lyp Select the functional
 - grid m5 Increase the gridsize to m5
 - * Exit the submenu
 - ri Enter the RI submenu
 - m Assign memory for RI
 - 2000 As much as possible
 - on Use RI
 - Exit the submenu
 - dsp Use dispersion correction
 - on Use Grimme D3 correction
 - Exit the submenu
 - marij Multipole-Accelerated RI-J
- End the define session

- For running TM in parallel mode use the parallel build
- module add turbomole:7.02:x86_64:para
- Infinity selects it by default if ncpu > 1

mnovak@wolf

#!/usr/bin/env infinity-env module add turbomole:7.02 jobex -ri -c 1024 > dft.out aoforce > freq.out

A (1) > A (2) > A

File	Contens
dft.out	Optimization procedure
energy	Energies of steps
gradient	Gradients of steps
mos	Molecular orbitals
freq.out	Output from aoforce program

Martin Novák (NCBR)