CG920 Genomics

Lesson 2
Genes Identification
Jan Hejátko

Functional Genomics and Proteomics of Plants,
Mendel Centre for Plant Genomics and Proteomics, Central European Institute of Technology (CEITEC), Masaryk University, Brno hejatko@sci.muni.cz, www.ceitec.muni.cz

MINISTERSTVO ŠKOLSTVÍ
MLADEZE A TELOVYCHOVY

INVESTICE DO ROZVOJE VZDĚLÁVÁNI

Literature

- Literature sources for Chapter 02:
- Plant Functional Genomics, ed. Erich Grotewold, 2003, Humana Press, Totowa, New Jersey
- Majoros, W.H., Pertea, M., Antonescu, C. and Salzberg, S.L. (2003) GlimmerM, Exonomy, and Unveil: three ab initio eukaryotic genefinders. Nucleic Acids Research, 31(13).
- Singh, G. and Lykke-Andersen, J. (2003) New insights into the formation of active nonsensemediated decay complexes. TRENDS in Biochemical Sciences, 28 (464).
- Wang, L. and Wessler, S.R. (1998) Inefficient reinitiation is responsible for upstream open reading frame-mediated translational repression of the maize R gene. Plant Cell, 10, (1733)
- de Souza et al. (1998) Toward a resolution of the introns earlyylate debate: Only phase zero introns are correlated with the structure of ancient proteins PNAS, 95, (5094)
- Feuillet and Keller (2002) Comparative genomics in the grass family: molecular characterization of grass genome structure and evolution Ann Bot, 89 (3-10)
- Frobius, A.C., Matus, D.Q., and Seaver, E.C. (2008). Genomic organization and expression demonstrate spatial and temporal Hox gene colinearity in the lophotrochozoan Capitella sp. I. PLoS One 3, e4004

INVESTICE DO ROZVOJE VZDĚLÁVÁNÍ

Outline

- Forward and reverse genetics approaches
- Differences between the approaches used for identification of genes and their function
- Identification of genes ab initio
- Structure of genes and searching for them
- Genomic colinearity and genomic homology
- Experimental identification of genes
- Constructing gene-enriched libraries using methylation filtration technology
- EST libraries
- Forward and reverse genetics

Outline

- Forward and reverse genetics approaches
- Differences between the approaches used for identification of genes and their function

Forward vs. reverse genetics

Revolution in understanding word ,,gene"

„classical" genetics approaches

3

$?$

1
„reverse genetics" approaches
5‘TTATATATATATATTAAAAAATAAAATAAAA GAACAAAAAAGAAAATAAAATA....3‘

.. aat tca agt cgt gga gac tac act.

Identification of the role of ARR21 gene

- Hypothetical signal transducer in two-component system of Arabidopsis

INVESTICE DO ROZVOJE VZDĚLÁVÁNÍ

Identification of the role

of ARR21 gene

Identification of the role of ARR21 gene

- Hypothetical signal transducer in two-component system of Arabidopsis
- Mutant identified by searching in databases of insertional mutants (SINS-sequenced insertion site) using BLAST

INVESTICE DO ROZVOJE VZDĚLÁVÁNÍ

Identification of the role of $A R R 21$ gene - isolation of insertional

 mutant- Searching in databases of insertional mutants (SINS)

```
Insert_SINS: 01_09_64
Query: 80 tectagcgttcatgagcgtaccatacttgacaanagagaacgtagccagceatttacagg 139
```



```
Sbjet: 58319 tectagegttcatgagcgtaccatacttgacaagagagaacgtagceagceatttacagg 58378
Arr 21: 1830
Insert SINS: 01 09 64
Query: - 140 tttgā̄atctcttgtcaaaaatgtttttggattttactgt 179
    |||||||||||||||||||||||||||||||||
Sbjct: 58379 tttgatatctcttgtcaaaaatgtttttggattttactgt 58418
Arr 21: 1890
```

- Localization of dSpm insertion in genome sequence of ARR21 using sequenation of PCR products

Identification of the role of $A R R 21$ gene

> - Hypothetical signal transducer in two-component system of Arabidopsis

- Mutant identified by searching in databases of insertional mutants (SINS-sequenced insertion site) using BLAST
- Expression of $A R R 21$ in wild-type and inhibition of expression of $A R R 21$ in insertional mutant confirmed at the RNA level

INVESTICE DO ROZVOJE VZDĚLÁVÁNÍ

Identification of the role of $A R R 21$ gene - analysis of expression

Wild type

insertional mutant

INVESTICE DO ROZVOJE VZDĚLÁVÁNÍ Tato prezentace je spolufinancována

Evropským sociálním fondem a státním rozpočtem České republiky

Identification of the role of ARR21 gene

- Hypothetical signal transducer in two-component system of Arabidopsis
- Mutant identified by searching in databases of insertional mutants (SINS-sequenced insertion site) using BLAST
- Expression of ARR21 in wild-type and inhibition of expression of ARR21 in insertional mutant confirmed at the RNA level
- Phenotype analysis of insertional mutant

Identification of the role of $A R R 21$ gene - phenotype analysis of mutant

- Analysis of sensitivity to plant growth regulators
- 2,4-D a kinetin
- ethylene
- Light of various wavelengths
- No alterations - nor in flowering, nor in number of seeds

MINISTERSTVO ŠKOLSTV
MLADEŻE A TËLOVY̌CHOVY
MLADEŻE A TĚLOVYCHOVY
INVESTICE DO ROZVOJE VZDÉLÁVÁNÍ

Identification of the role of $A R R 21$ gene－causes of absence of the phenotype

－Functional redundance within the gene family？

INVESTICE DO ROZVOJE VZDĚLÁVÁNÍ

Identification of the role of $A R R 21$ gene - homology of $A R R$ genes

Identification of the role of $A R R 21$ gene - causes of absence of the phenotype

- Functional redundance within the gene family?
- Phenotype only in very specific conditions (?)

Identification of the role of $A R R 21$ gene - summary

- Gene ARR21 identified by comparative analysis of Arabidopsis genome
- Based on sequence analysis, its function was predicted
- Site-specific expression of ARR21 gene was proved at the RNA-level
- Identification of gene function by insertional mutagenesis in case of ARR21 in development of Arabidopsis was not successful, probably because of functional redundation within the gene family

INVESTICE DO ROZVOJE VZDĚLÁVÁNÍ

Outline

- Forward and reverse genetics approaches
- Differences between the approaches used for identification of genes and their function
- Identification of genes ab initio
- Structure of genes and searching for them

Structure of genes

RNA splicing

MINISTERSTVO ŠKOLSTVÍ
MLÁDEŽE A TĚLOVÝCHOVY
investice do rozvoje vzdělávání

Identification of genes ab initio

- Omitting 5' a 3' UTR
- Identification of translation start (ATG) and stop codon (TAG, TAA, TGA)
- Finding donor (typically GT) and acceptor (AG) splice sites
- Many ORFs are not true coding sequences - in Arabidopsis, there are on average approximately 350 milion ORFs in every 900 bp of sequence(!)
- Using various statistic models (e.g. Hidden Markov Model - HMM, see recommended literature, Majoros et al., 2003) to evaluate and score the weight of identified donor and acceptor sites

Splice site prediction

- Programs for splice site prediction
(specifity approximately 35%)
\square GeneSplicer (http://www.tigr.org/tdb/GeneSplicer/gene spl.html)
\square SplicePredictor (http://deepc2.psi.iastate.edu/cgi-bin/sp.cgi)

Splice site prediction

BCB @ ISU	Bioinformatics 2 Go	Download	Help	Tutorial	References

SplicePredictor

- a method to identify potential splice sites in (plant) pre-mRNA by sequence inspection using Bayesian statistical models
(click here to access the older method using logitlinear models)

Sequences should be in the one-letter-code ($\{a, b, c, g, h, k, m, n, r, s, t, u, w, y\}$), upper or lower case; all other characters are ignored during input. Multiple sequence input is accepted in FASTA format (sequences separated by identifier lines of the form ">SQ;name_of_sequence comments") or in GenBank format.

Paste your genomic DNA sequence here:
GAGGAGGCACAAAATGACGAATATACAAAATGATCTTAAACAGCTAAACTATATTGGACATTTTTTCGATCTCAGATATA AAAGATTTCATTCAATATAATACTTGGATAAATACTCTTATTATTTTTCTTTAGTTTATTAAAAAAAACCTCTAATAAAT ACGAGTTTAAGTCCACAAAATCGCTTAGACTAAAATACACCATATAATTTCAAACGATAAAGTTTACAAAAGTAATATCC AAGTATCTCATAGTCAACATATATATAGTAATAATTAGTTGACGTATAAGAAAATAAAAATAAATAAATTAGTATCTTAT TTTGGGTGGTGCTGACTGGTGACTGGTGACTGCAGAATGCTCGGCAAATGGAACCATATCCCAAGACATGGGTTTTAGAT
... or upload your sequence file (specify file name):
Browse..
... or type in the GenBank accession number of your sequence:

MINISTERSTVO ŠKOLSTVÍ, MLÁDEŻE A TĚLOVY̌CHOVY

investice do rozvoje vzdělávání
Tato prezentace je spolufinancována
Evropským sociálním fondem
a státním rozpočtem České republiky

Splice site prediction

What do the output columns mean?
SplicePredictor. Version of February 13, 2005

Date run: Wed Nov 9 11:30:14	2005
Species:	Homo sapiens
Model:	
Prediction cutoff (2 $\ln [\mathrm{ClF}]):$	3.00
Local pruning: Bayesian	
Non-canonical sites:	on
	not scored

Sequence		$1:$	your-sequence, from	1 to 94					
Potential		splice	sites						
t	q	10 c	sequence	P	c	rho	gamma	*	$\mathrm{P} * \mathrm{R} * \mathrm{G} *$
A	<--	75	ttttttcgatctcAGat	0.973	7.16	0.000	0.000	7	$\left(\begin{array}{lll}5 & 1\end{array}\right)$
A	<--	134	attatttttctttAGtt	0.999	14.86	0.000	0.000	7	$\left(\begin{array}{lll}5 & 1 & 1\end{array}\right)$
A	<--	500	gattttgttgtttAGtc	0.977	7.48	0.000	0.000	7	$\left(\begin{array}{lll}5 & 1 & 1\end{array}\right)$
A	<--	780	tctgttattgtatAGct	0.986	8.56	0.000	0.000	7	$\left(\begin{array}{lll}5 & 1 & 1\end{array}\right)$
A	<--	848	tattttttgaaatAGat	0.968	6.80	0.000	0.000	7	$\left(\begin{array}{lll}5 & 1\end{array}\right)$
A	<--	1051	caatttattttaAGaa	0.930	5.19	0.000	0.000	7	$\left(\begin{array}{lll}5 & 1 & 1\end{array}\right)$
A	<--	1213	ttatttattttttagt	0.998	12.14	0.000	0.000	7	$\left(\begin{array}{lll}5 & 1\end{array}\right)$
A	<--	1373	tttcctctctcacAGga	0.999	13.17	0.000	0.000	7	$\left(\begin{array}{lll}5 & 1\end{array}\right)$
A	<--	1487	tttatatattgatAGtg	0.883	4.04	0.000	0.000	7	$\left(\begin{array}{lll}5 & 1\end{array}\right)$
A	<--	1581	atgtgttgcttgtAGga	0.982	8.03	0.000	0.000	7	$\left(\begin{array}{lll}5 & 1 & 1\end{array}\right)$
A	<--	1781	ggttgtgcgaaatAGgg	0.886	4.10	0.000	0.000	7	$\left(\begin{array}{lll}5 & 1\end{array}\right)$
A	<--	2440	taattaaaatttAGat	0.939	5.46	0.000	0.000	7	$\left(\begin{array}{lll}5 & 1 & 1\end{array}\right)$
A	<--	2479	catctaaaattttAGat	0.942	5.59	0.000	0.000	7	$\left(\begin{array}{lll}5 & 1 & 1\end{array}\right)$
D	-->	2546	aagGTagta	0.909	4.61	0.885	1.903	15	$\left(\begin{array}{lll}5 & 5\end{array}\right)$
A	<--	2572	tttttttttggcAGca	0.930	5.16	0.000	0.000	7	$\left(\begin{array}{lll}5 & 1 & 1\end{array}\right)$
A	<----	2763	ctcaatttcacaaAggt	0.873	3.86	0.185	0.000	11	$\left(\begin{array}{lll}5 & 5 & 1\end{array}\right)$
A	<----	2782	tttcgttttcattAGcg	0.952	5.98	0.220	0.000	11	$\left(\begin{array}{lll}5 & 5 & 1\end{array}\right)$
A	---	3022	tttgtttgtactaAGct	0.956	6.16	0.221	0.000	11	$\left(\begin{array}{lll}5 & 5 & 1\end{array}\right)$
A	<----	3048	ctttgcaatacatAgga	0.973	7.15	0.229	0.000	11	$\left(\begin{array}{lll}5 & 5\end{array}\right)$
A	<--	3171	cgtcgtcatttatAGta	0.988	8.74	0.000	0.000	7	$\left(\begin{array}{lll}5 & 1 & 1\end{array}\right)$
	<---	3284	cttttattatcaaAGad	0.993	10.03	0.000	0.006	8	$\left(\begin{array}{l}5 \\ 1\end{array} 2\right)$
	<----	3451	aatgcttcctcgtAGaa	0.916	4.77	0.293	0.065	12	$\left(\begin{array}{l}5 \\ 5\end{array} 2\right)$
	--->	3649	cacGTatta	0.933	5.25	0.000	1.848	11	(515

GGCTTACGGACTCTATAACAAAGATTTTACTCTACTAACAAAAATAATAATGGTACTAAACAAACATGATTGGAAGAAGGGAAACGTTATGTATCCTATATTTAAGTATGTACAAGGATTAAAATAAAA

4020 |

Identification of genes ab initio

- Programs for splice site prediction
(specifity approximately 35%)
\square GeneSplicer (http://www.tigr.org/tdb/GeneSplicer/gene spl.html)
\square SplicePredictor (http://deepc2.psi.iastate.edu/cgi-bin/sp.cgi)
\square NetGene2 (http://www.cbs.dtu.dk/services/NetGene2/)

Splice site prediction

CENTERFO RBIOLOGI CALSEQU ENCEANA LYSIS CBS		[17040		cus	cess		2.3
			Mesura		以あ\%		Efr
							Fi
		GAKThy	Damber		(4)	[09	\%
			cas		Terelas		R.3
							47

NetGene2 Server

The NetGene2 server is a service producing neural network predictions of splice sites in human, C. elegans and A. thalial
Instructions
Output format
Abstract
Performanc

SUBMISSION

Submission of a local file with a single sequence:
File in FASTA format \quad Browse...
(e) Human
C. elegans
A. thaliana

Clear fields Send file

Submission by pasting a single sequence:

Sequence name

CHuman
C. elegans
(O) A. thaliana

Sequence
GAGGAGGCACAAAATGACGAATATACAAAATGATCTTAAACAGCTAAACTATATTGGACATTTTTTCGATC TCAGATATA
AAAGATTTCATTCAATATAATACTTGGATAAATACTCTTATTATTTTTCTTTAGTTTATTAAAAAAAACCT
CTAATAAAT
ACGAGTTTAAGTCCACAAAATCGCTTAGACTAAAATACACCATATAATTTCAAACGATAAAGTTTACAAAA
Clear fields Send file

NOTE: The submitted sequences are kept confidential and will be erased immediately after processing

Splice site prediction

RNA splicing and adaptation

- Divergencies at splice site recognition in plants in practice example of developmental plasticity of (not only) plants
- Identification of mutant with point mutation (transition $\mathrm{G} \rightarrow \mathrm{A}$) exactly at the splice site at the 5' end of the 4th exon

ATAAGAAGAACGACAACGTCCAATTGTGACAACGAACCAGGAGGATCGACGCCT TTTTGTTGAAACAATTTCCGGAACAGACCTTTAAATCT TT TGT TA GATTTCCAAGATTACTACTT TCGTCAATATAGTAAAAGAACACTTCTAAAAAAACGACGTCGACACACTTCAAACATGGAAAAG

RNA splicing and adaptation

- Identification of mutant with point mutation (transition $\mathrm{G} \rightarrow \mathrm{A}$) exactly at the splice site at the $5^{\text {d }}$ end of the 4th exon
- Analysis by RT PCR proved the presence of a fragment shorter than cDNA should be after the typical splicing event

RNA splicing and adaptation

- Divergencies at splice site recognition in plants in practice example of developmental plasticity of (not only) plants
- Identification of mutant with point mutation (transition $\mathrm{G} \rightarrow \mathrm{A}$) exactly at the splice site at the $5^{\text {d }}$ end of the 4th exon
- Analysis by RT PCR proved the presence of a fragment shorter than cDNA should be after the typical splicing event
- Sequenation of this fragment then suggested alternative splicing with the closest possible splice site in exon 4

RNA splicing and adaptation

- Divergencies at splice site recognition in plants in practice example of developmental plasticity of (not only) plants
- Identification of mutant with point mutation (transition $\mathrm{G} \rightarrow \mathrm{A}$) exactly at the splice site at the $5^{\text {d }}$ end of the 4th exon
- Analysis by RT PCR proved the presence of a fragment shorter than cDNA should be after the typical splicing event
- Sequenation of this fragment then suggested alternative splicing with the closest possible splice site in exon 4

- Existence of similar defense mechanisms was proven in different organisms as well (e.g. Instability of mutant mRNA with early stop codon formation (> 50-55 bp before typical stop codon) in eukaryotes, see recommended literature - Singh and Lykke-Andersen, 2003

INVESTICE DO ROZVOJE VZDĚLÁVÁNÍ

Identification of genes ab initio

- Programs for exon prediction
- 4 types of exons (according to location in the gene):
- initial
- internal
- terminal
- single
- Programs predict splice sites and they take into account the structure of the type of exon as well
- initial:
\square Genescan (http://genes.mit.edu/GENSCAN.html)
\square GeneMark.hmm (http://opal.biology.gatech.edu/GeneMark/)
- internal:
\square MZEF (http://rulai.cshl.org/tools/genefinder/)

Identification of genes ab initio

The New GENSCAN Web Server at MIT
Identification of complete gene structures in genomic DNA

```
M,
?. For information about Genscan, click here
```

This server provides access to the program Genscan for predicting the locations and exon-intron
his server provides access to the program Genscan for predicting the
tructures of genes in genomic sequences from a variety of organisms.
This server can accept sequences up to 1 million base pairs (1 Mbp) in length. If you have trouble with
he web server or if you have a large number of sequences to process, request a local copy of the
he web server or if you have a large number of sequences to process, request a local copy of the
rogram (see instructions at the bottom of this page) or use the GENSCAN email server. If your browse
rogram (see instructions at the bottom of this page) or use the GENSCAN email server. If your browse
e.g., Lynx) does not support file upload or multipart forms, use the older version.
Drganism: Arabidopsis \square Suboptimal exon cutoff (optional): 0.10
equence name (optional): CKI1
rint options: Predicted peptides only $\quad \square$
Jpload your DNA sequence file (one-letter code, upper or lower case, spaces/numbers ignored):
Browse...
Pr paste your DNA sequence here (one-letter code, upper or lower case, spaces/numbers ignored):

To have the results mailed to you, enter your email address here (optional):

Identification of genes ab initio

GENSCANW output for sequence CKI1

Explanation Gn.Ex : gene number, exon number (for reference) Type : Init = Initial exon (ATG to 5^{\prime} splice site) Intr = Internal exon (3' splice site to 5^{\prime} splice site) Term = Terminal exon (3' splice site to stop codon) Sngl = Single-exon gene (ATG to stop) Prom = Promoter (TATA box / initation site) PlyA = poly-A signal (consensus: AATAAA) S : DNA strand (+ = input strand; - = opposite strand) Begin : beginning of exon or signal (numbered on input strand) End : end point of exon or signal (numbered on input strand) Len : length of exon or signal (bp) Fr : reading frame (a forward strand codon ending at x has frame $x \bmod 3$). For example, if nucleotides $1,2,3$ of the sequence are read as a codon, that's called reading frame 0 . If $2,3,4$ are read as a codon, that's reading frame 1 . If $3,4,5$ are read as a codon, that's reading frame 2 , and so on. This information, together with the starting and ending positions of the exon, is sufficient to give the amino acid sequence encoded by the exon. Another use of the reading frame is that if you see two adjacent predicted exons separated by a relatively short intron which share the same reading frame, it may be worth looking at the possibility that the intervening intron is not correct, i.e. that the two exons plus the intervening intron might form one long exon (assuming there are no inframe stops in the intron, of course). Ph : net phase of exon (exon length modulo 3). For example, an exon of length 15 bp has net phase 0 since 15 is divisible by 3 , an exon of length 16 bp has net phase 1 because 16 divided by 3 leaves a remainder of 1 , an exon of length 17 bp has net phase 2 , and an exon of length 18 bp has net phase 0 again. The point of this is that exons whose net phase is 0 can be omitted from the gene without disrupting the reading frame: such exons are candidates for being either 1) incorrect, or 2) alternatively spliced. I/Ac : initiation signal or 3' splice site score (tenth bit units; x 10). If below zero, probably not a real acceptor site. Do/T : 5' splice site or termination signal score (tenth bit units; x 10) If below zero, probably not a real donor site. CodRg : coding region score (tenth bit units) \mathbf{P} : probability of exon (sum over all parses containing exon). This quantity is close to the actual probability that the predicted exon is correct. Tscr : exon score (depends on length, I/Ac, Do/T and CodRg scores).

Comments The SCORE of a predicted feature (e.g., exon or splice site) is a log-odds measure of the quality of the feature based on local sequence properties. For example, a predicted 5^{\prime} splice site with score > 100 is strong; $50-100$ is moderate; $0-50$ is weak; and below 0 is poor (more than likely not a real donor site). The PROBABILITY of a predicted exon is the estimated probability under GENSCAN's model of genomic sequence structure that the exon is correct. This probability depends in general on global as well as local sequence properties, e.g., it depends on how well the exon fits with neighboring exons. It has been shown that predicted exons with higher probabilities are more likely to be correct than those with lower probabilities.

What are the suboptimal exons?

Under the probabilistic model of gene structural and compositional properties used by GENSCAN, each possible "parse" (gene structure description) which is compatible with the sequence is assigned a probability. The default output of the program is simply the "optimal" (highest probability) parse of the sequence. The exons in this optimal parse are referred to as "optimal exons" and the translation products of the corresponding "optimal genes" are printed as GENSCAN predicted peptides. (All the data in our J Mol Biol paper and on the other GENSCAN web pages refer exclusively to the optimal parse/optimal exons.) Of course, the optimal parse does not always correspond to the actual (biological) parse of the sequence, that is, the actual set of exons/genes present. In addition, there may be more than one parse which can be considered "correct", for example, in the case of a gene which is alternatively transcribed, translated or spliced. For both of these reasons, it may be of interest to consider "suboptimal" ("near-optimal") exons as well, i.e. exons which have reasonably high probability but are not present in the optimal parse.

Specifically, for every potential exon E in the sequence, the probability $P(E)$ is defined as the sum of the probabilities under the model of all possible "parses" (gene structures) which contain the exact exon E in the correct reading frame. (This quantity is calculated as described on the GENSCAN exon probability page.) Given a probability cutoff C, suboptimal exons are those potential exons with $\mathrm{P}(\mathrm{E})>\mathrm{C}$ which are not present in the optimal parse.

Suboptimal exons have a variety of potential uses. First, suboptimal exons sometimes correspond to real exons which were missed for whatever reason by the optimal parse of the sequence. Second, regions of a prediction which contain multiple overlapping and/or incompatible optimal and suboptimal exons may in some cases indicate alternatively spliced regions of a gene (Burge \& Karlin, in preparation). The probability cutoff C used to determine which potential exons qualify as suboptimal exons can be set to any of a range of values between 0.01 and 1.00 . The default value on the web page is 1.00 , meaning that no suboptimal exons are printed. For most applications, a cutoff value of about 0.10 is recommended. Setting the value much lower than 0.10 will often lead to an explosion in the number of suboptimal exons, most of which will probably not be useful. On the other hand, if the value is set much higher than 0.10 , then potentially interesting suboptimal exons may be missed.

INVESTICE DO ROZVOJE VZDĚLÁVÁNÍ

Identification of genes ab initio

GENSCAN predicted genes in sequence 02:56:23

Regulation of translation

- Functional purpose of splicing in untranslated regions - important regulation part of genes
- Translational repression by short ORFs in 5، UTR
- Identified e.g. in maize (Wang and Wessler, 1998, see recommended literature for additional info.)
- In case of CKI1 there was an attempt to prove this mechanism of regulation using transgenic lines carrying uid A under control of two versions of promoter (unconfirmed so far)

OP Vzdělávání
ro konkurenceschopnost
INVESTICE DO ROZVOJE VZDĚLÁVÁNÍ

Regulation of translation

- Functional purpose of splicing in untranslated regions - important regulation part of genes
- In case of CKI1 there was an attempt to prove this mechanism of regulation using transgenic lines carrying uidA under control of two versions of promoter (unconfirmed so far)

OP Vzdělávání
pro konkurenceschopnost
INVESTICE DO ROZVOJE VZDĚLÁVÁNÍ

Gene modelling

- Programs for gene modelling
- Those that take into account other parameters as well, e.g.continuity of ORFs
\square Genescan (http://genes.mit.edu/GENSCAN.html) very good foor prediction of exons in coding regions (tested for gene PDR9, Genescan identified all of the 23 (!) exons)
\square GeneMark.hmm (http://opal.biology.gatech.edu/GeneMark/)
\square GlimmerHMM (http://http://ccb.jhu.edu/software/glimmerhmm/

MINISTERSTVO ŠKOLSTVÍ,
MLADEŻE A TËLOVY̌CHOVY
INVESTICE DO ROZVOJE VZDĚLÁVÁNÍ

Identification of genes ab initio

GeneMark ${ }^{\text {TM }}$

A family of gene prediction programs provided by Mark Borodovsky's Bioinformatics Group at the Georgia Institute of Technology, Atlanta, Georgia.

Gene Prediction in Bacteria and Archaea For bacterial and archaeal gene prediction, you can use the paralle combination of the GeneMark and GeneMark.hmm programs here.

If the DNA sequence of interest belongs to a species whose name is not in the list of available models, you should use either the Heuristic models option or, if the sequence is longer than 1 Mb , generate models with the self-training program GeneMarkS. Both options will allow you to generate models and then to use GeneMark.hmm and GeneMark in parallel.

Gene Prediction in Eukaryotes

For eukaryotic gene prediction, you can use the parallel combination of the GeneMark and GeneMark.hmm programs here.

Gene Prediction in EST and cDNA

To analyze ESTs and cDNAs, please follow this link.

Gene Prediction in Viruses

For viral gene prediction, or to access our link.

What the programs do:

MINISTERSTVO ŠKOLSTV MLÁDEŽE A TĚLOVY̌CHOVY

Borodovsky Group

Gene Prediction

Programs

- GeneMark
- GeneMark.hmm
- Frame-by-Frame
- GeneMarkS - Heuristic models

Statistics

- Documented

GeneMark.* usage
Help

- References
- Paper
- FAQ
- Contact

Databases of predicted genes

- Prokaryotes (VIOLIN)

Bioinformatics

Resources

- Links

Bioinformatics Studies at Georgia Tech

- MS Degree Program - PhD Program - Lectures
- Seminars
- Center for

Bioinformatics and

Eukaryotic GeneMark.hmm ${ }^{(1,2)}$ (Reload this page
References:
$1_{\text {Borodovsky } M \text {. and Lukashin } A \text {. (unpublished) }}$
${ }^{2}$ Lomsadze A., Ter-Howhannisy an V., Chernoff Y. and Borodovsk y M., "Gene identification in novel eukaryotic genomes by self-training algorithm", Nucleic Acids Research, 2005, Vol. 33, No. 20, 6494-6506

Accuracy comparison

UPDATE October 2005. Added pre-built models of eukaryotic GeneMark.hmm ES-3.0 (E eukaryotic; S - self-training; 3.0 - the version)

Listing of previous updates
 Input Sequence

Titte (optional): ©
CK1
Sequence:

Sequence File upload:e

```
Species:e Athaliana ES3.0 Model description
```

Output Options
Email Address: (required for graphical output or sequences longer than 400000 bp)/e

T Generate PDF graphics (screen)
\square Generate PostScript graphics (email)e
Print GeneMark 2.4 predictions in addition to GeneMark. hmm predictionse Translate predicted genes into proteine

Identification of genes ab initio

Result of last submission:

View PDF Graphical Output

GeneMarkhmm Listing

Go to: GeneMark.hmm Protein Translations
Go to: Job Submission

Eukariotyc GercMark.haw version bp 3.g 2qril 25, 2008
Sequerce rame: CKIl
Sequence length: 5043 bp
G+C content: 38.79 .
Matrices file:/home/germark/euk_grm.matrices/athal iara_hom3. Omod Thu 0ct 1 ll:0g:24 200g

Predicted genes/exons

JZDĚLÁVÁNí
Tato prezentace je spolufinancována
Evropským sociálním fondem
a státním rozpočtem České republiky

Identification of genes ab initio

Result of last submission:

View PDF Graphical Output

GeneMarkhmm Listing

Go to: GeneMark.hmm Protein Transhations

Go to: Job Submission

Eukariotyc GercMark.haw version bp 3.9 2qril 25, 2008
Sequerce rame: CKIl
Sequence 1 ength: 5043 bp
G+C content: 38.79 .
Matrices file: /home/germark/euk_ghm.matrices/athal iana_hmm3. Omod Thu 0et 1 11:09:24 200g

Predicted genes/exons

Gere \#	$\begin{gathered} \text { Exon } \\ \text { \# } \end{gathered}$	Strand Exon	Exor	Range	Exor Lergth	$\begin{gathered} \text { Start/End } \\ \text { Frame } \end{gathered}$
1	1	+ Initial	959	10255713	- -	
1	2	+ Interral	1155	1394	240	13 - -
1	3	+ Interral	1516	2175	560	13
1	4	+ Interral	2265	2544	379	11 -
1	5	+ Interral	2734	3317	584	23
1	5	+ Internal	3397	4629	1233	13
1	7	+ Terminal	4709	4921	213	13 - -

EVROPSKÁ UNIE

MINISTERSTVO ŠKOLSTVÍ,
MLÁDEŽE A TĚLOVY̌CHOVY

- GeneMark.hmm prediction

Thu Nov 10 03:23:47 EST 2005, Order 5, Window 96, Step 12, 4/6

Genomic homologies

- Searching for genes according to homologies
- Comparison with EST databases
- BLASTN (http://www.ncbi.nIm.nih.gov/BLAST/, http://workbench.sdsc.edu/
- Comparison with protein databases
\square BLASTX (http://www.ncbi.nlm.nih.gov/BLAST/, http://workbench.sdsc.edu/
\square Genewise (http://www.ebi.ac.uk/Wise2/)
They compare protein sequence with genomic DNA (after reverse transcription), therefore the aminoacid sequence is needed
- Comparison with homologous genome sequences from related species
\square VISTA/AVID (http://www.Ibl.gov/Tech-Transfer/techs/lbnl1690.html)

Outline

- Forward and reverse genetics approaches
- Differences between the approaches used for identification of genes and their function
- Identification of genes ab initio
- Structure of genes and searching for them
- Genomic colinearity and genomic homology

Genomic colinearity

- Genomes of related species (despite large differencies) are characterized by analogies in sequence organization -> possibility to use this kind of information for identification of genes in related species when searching in databases
- General scheme of work while applying genomic colinearity (also called „comparative genomics") for experimental identification of genes in related species:
\square Mapping small genomes using low-copy DNA markers (e.g. RFLP)
\square Using these markers for identification of orthologous genes (genes with the same or similar function) of related species
\square Small genome (e.g. rice, 466 Mbp) can be used as a guide: molecular lowcopy markers (e.g. RFLP) bound to gene of interest are identified and these regions are then used as a probe for searching in BAC libraries during identification of orthologous regions of large genomes (e.g. barley: 5 Gbp , or wheat: 16 Gbp)

Genomic colinearity

Genomic colinearity

- Can be mostly used for the species of grass (e.g. using related genes of species of barely, wheat, rice, maize)
- Small genome reorganizations (deletions, duplications, inversions, translocations smaller than a few cM) are then detected by detailed sequentional comparative analysis
- During evolution there's occured some divergencies in related species, mostly in non-coding regions (invasion of retrotransposons etc.)

INVESTICE UU KUくVVUJE VくUELA AVÁNÍ

Genomic colinearity

- Genomic colinearity of HOX genes in animals
- Transcription factors controlling organisation of body in anterio-posterior axis
- Position of genes in genome corresponds with spatial expression during development
- Interspecies conservation

$$
\text { Scaffold } 70 \quad 499,360 \mathrm{bp}
$$

Genomic organization of the Capitella sp. I Hox cluster. A total of 11 Capitella sp. I Hox genes are distributed among three scaffolds. Black lines depict two scaffolds, which contain 10 of the Capitella sp. I Hox genes. The eleventh gene, Capl-Post1, is located on a separate scaffold surrounded by ORFs of non-Hox genes (unpublished data). No predicted ORFs were identified between adjacent linked Hox genes. Transcription units are shown as boxes denoting exons, connected by lines that denote introns. Transcription orientation is denoted by arrows beneath each box. Color coding is the same as that used in on the right-hand side for each ortholog.

The phylogenic tree on the right-hand side shows that the order of the genes on the chromozome is retained in several species (genome colinearity).

INVESTICE DO ROZVOJE VZDĚLÁVÁNÍ

Outline

- Forward and reverse genetics approaches
 - Differences between the approaches used for identification of genes and their function
 - Identification of genes ab initio
 - Structure of genes and searching for them
 - Genomic colinearity and genomic homology
 - Experimental identification of genes
 - Constructing gene-enriched libraries using methylation filtration technology

Methylation filtration

- Preparation of gene-enriched libraries by technology of methylation filtration
- genes are (mostly!) hypomethylated, noncoding regions are methylated
- using bacterial restriction-modification system, which recognizes methylated DNA with restriction enzymes McrA a McrBC
\square McrBC recognizes methylated cytosin (in DNA), which comes after purine (G or A)
\square For cleavage the distance of these sites $40-2000$ bp is necessary

Methylation filtration

- Preparation of gene-enriched libraries by technology of methylation filtration
- Scheme of work during preparation of BAC genome libraries using methylation filtration:
\square preparation of genomic DNA without addition of organelle DNA (chloroplasts and mitochondria)
\square fragmentation of DNA (1-4 kbp) and ligation of adaptors
\square preparation of BAC libraries in mcrBC+ strain of E. coli
\square selection of positive clones
- Limitied usage: enrichment of coding DNA only approx. 5-10 \%

Outline

- Forward and reverse genetics approaches
 - Differences between the approaches used for identification of genes and their function
 - Identification of genes ab initio
 - Structure of genes and searching for them
 - Genomic colinearity and genomic homology
 - Experimental identification of genes
 - Constructing gene-enriched libraries using methylation filtration technology
 - EST libraries

EST libraries

- Preparation of EST libraries

Isolation of mRNA
Reverse transcription
Ligation of linkers and synthesis
of the other cDNA strand
Cloning into suitable bacterial vector
Transformation into bacteria and isolation of DNA (amplification of DNA) Sequenation using primers specific for used plasmid

Saving the results of sequenation into public database

