How to visualize genes and their products

CG920 Genomics Lecture 9

Kamil Růžička FGP CEITEC MU

Outline

- reporter genes
- promoter fusions
- visualizing proteins
- visualizing RNA
- dynamics of protein imaging: FRAP, photoactivable proteins, FLIM, FCS

Promoter activity monitoring

promoter

here can be reporter

terminator

1-10 kb prior to ATG

LacZ, GUS Luciferase GFP

Reporter genes

- LacZ, GUS
- Luciferase
- GFP

some need external substrate, some do not

LacZ, GUS – rhapsody in blue

(in case of GUS – X-Gluc)

LacZ/ GUS:

worm, mouse – LacZ, plants - GUS

Luciferase

(similar to chemiluminiscence)

What's the difference between fluorescence and luminiscence? 8

Luciferase

How does fluorescence work?

How does a fluorescence microscope work?

Stokes shift

12

How does a confocal microscope work?

What are advantages of confocal microscopy?

Live imaging

GFP discovery - Nobel Prize 2008

Osamu Shimomura Martin Chalfie Roger Tsien

Fluorescent proteins on the market (Tsien's fruits)

Excitation and emission

Multicolored fluorescent protein image (neurones)

Promoter-GFP

promoter GFP terminator

Promoter activity monitoring

choice of suitable reporter

- LacZ, GUS
- Luciferase
- GFP

accessibility, sensitivity, accuracy...

Promoter activity monitoring

• LacZ, GUS

- easy assay, also on sections, easy imaging
- substrate must diffuse, kills the organism
- luciferase
 - good quantification, very sensitive, no autofluorescence
 - substrate must diffuse, special machine, dark
- GFP
 - good sensitivity, colocalization with other dyes/promoters possible, no substrate needed
 - only in vivo, autofluorescence, thin transparent sample; it should be ER localized in plants

Luminiscent mouse better than phluorescent mouse

In Vivo Comparison of Bioluminescence and Fluorescence (I.M.)

- Fluorescent signal is limited by tissue autofluorescence
- The bioluminescent signal level is ~300x lower, yet the signal to background is 160x higher

Bioluminescence

Background flux ~ 2.6 x 10³ p/s Signal flux ~ 2.8 x 10⁶ p/s Signal/background ~ 1100 Min. detectable cells ~ 900

Background flux ~ 1.2 x 10⁸ p/s · Signal flux ~ 8.3 x 10⁸ p/s · Signal/background ~ 6.7 Min. detectable cells 150,000

Left: 1 x 10⁶ HeLa-luc/PKH26 cells Right: 1 x 10⁶ HeLa-luc cells

Fluorescence

Promoter activity monitoring

<u>Pros:</u>

- easy to clone, easy to visualize
- usually some signal seen cheers you up!
- can be used in less accessible organs

<u>Cons:</u>

- limited information about gene product (mRNA, protein etc.)
- needs cloning and transformation
- neglects regulatory elements (introns, UTRs etc.)
- length of promoter given arbitrarily

Translational GFP fusions

N-terminal fusion

promoter	here can be GFP	your gene	terminator

C-terminal fusion

n kom otok		here can	
promoter	your gene	be GFP	terminator

fusion inside the coding sequence

GFP and membrane proteins

It is good to have GFP tag localized inside the cell (plants)

Expression of isoforms

Not the best option available – can you guess?

5

Kriechenbaumer et al 2011

Isn't this better?

Expression of isoforms

Fluorescent protein fusion

Pros:

in vivo imaging

Cons:

- not always functional
- transformation needed
- transparent material (you can sometimes fix GFP signal, however)
- sometimes GFP artifacts (tag doesn't allow proper targeting)

Why to visualize all this stuff

Nakajima et al, Nature 2001

Why to visualize all this stuff

translational

promoter

- 1 epidermis
- 2 cortex
- 3 endodermis
- 4 stele

Why to visualize all this stuff

pSHR :: GFPpSHR::SHR::GFPBANG! SHR moves from stele to endodermis

Protein immunolocalization

Most favorite animals:

- rabbit (too many rabbits)
- mouse (low volume)
- goat
- chicken
- rat
- sheep
- donkey
- guinea pig

secondary: anti-rabbit from no-rabbit, anti-mouse from no-mouse, etc.

Protein immunolocalization immunolocalization - fluorescently

Protein immunolocalization immunolocalization

Fluorescent dyes conjugated to secondary (examples):

- FITC (obsolete)
- CY3, CY5
- Alexa (488, 568, 633)

Fluorescent Dyes and Proteins

500

600

700 nm

400

www.zeiss.com/microscopy

Protein immunolocalization

Pros:

- no need to clone or transform or cross
- direct (if no tag used)
- allows sectioning (less accessible tissues)

Cons:

- fixed material only
- excellent antibodies only, sometimes tricky
GFP tag partially retains PIN1 in endoplasmic reticulum (-> artifact)

PIN1-GFP

anti-PIN1

Protein localization - immunogold immunolocalization - immunogold

electron microscope

Immunogold collocalization

Philimonenko et al 2000, and an unfortunate Cell paper

Pros/cons

- Pros:
- direct
- nothing can beat the resolution

Cons:

- very tricky (needs rather expert)
- huge experience for interpretation needed

Can we visualize posttranslational modifications?

Also RNA can be visualized

Localization of mRNA RNA hybridization *in situ*

Visualization of mRNA RNA hybridization *in situ*

Pros

- classical technique in developmental biology
- no transgenes needed

Cons

- tedious, tricky, no success guaranteed
- only on fixed samples

For shorter RNAs (miRNA etc.):LNA probes needed

Single-molecule detection using multiple probes

 ~ 48 oligonucleotide probes provide sufficien signal to detect a single mRNA molecule

Raj, A., van den Bogaard, P., Rifkin, S.A., van Oudenaarden, A., and Tyagi, S. (2008). Imaging individual mRNA molecules using multiple singly labeled probes. Nature Methods 5, 877-879.

Also mRNA can be visualized *in vivo*

Ash1 mRNA localized to the tip of the daughter cell

λN₂₂ system – RNA imaging in vivo

nuclear localization signal

Drawbacks of λN₂₂ system - we have SPINACH

RNA fusion

aptamer

Paige et al. 2012

blue-DNA

green-RNA

Other vegetables than SPINACH

Paige et al. 2012; Song et al. 2014

49

Advanced confocal techniques

(slightly) Advanced confocal techniques

- FRAP
- photoactivatable FP
- FCS

<u>Fluorescence</u> <u>Recovery</u> <u>After</u> <u>Photobleaching</u>

region of interest (ROI)

FRAP

you can quantify fluorescence.. (ImageJ is our friend)

4 ImageJ				
File Edit Image Process Analyze Plugins Window Help				
🔳 🔾 🖾 🗸 🕂 🥄 A 🔍 🕅 🍠 Dev. Stk 🖉 🕭	≯ ≫			
Freehand selections				

	mean	min	max
А	90.404	49	113
С	8.556	3	8
D	39.934	19	63

iFRAP inverse FRAP

iFRAP – dissociation of premRNA from specles

FRAP derivatives FLIP <u>F</u>luorescence Loss <u>A</u>fter Photobleaching

continuous bleaching here

- bleaching process is repeated during the experiment
- for studying general protein turnovers in compartments
- scientific question here: is there a fraction of protein which does not leave the bright green patches

FRAP derivatives FLAP <u>F</u>luorescence Localization after Photobleaching

 two fluorochromes on one protein
 – one bleached, non bleached as control

Perhaps better scheme than previous

CFP not bleached

,YFP bleached

c prebleach
d after bleach
e
f

RED=CFP-YFP

Dunn et al. 2002

FRAP - advantages

- not only proteins (also other dyes)
- tells you more than simple life imaging movie

FRAP – pitfalls

- your cells are moving
- high energy needed to bleach the ROI
 - long time needed to bleach
 - can damage your material
- usually only one ROI can be observed time consuming
- for gourmets perhaps awkward (although more reliable and robust)

Photoactivable fluorescent proteins

Photoactivable proteins

Dronpa, Kaede, Eos – probably the most popular

Photoactivable proteins

Advantages:

- elegant, can be convincing

Disadvantages:

- very weak signal
- each material needs optimization

Remarks

- your material is 3D
- protein *de novo* synthesis in some experiments (e.g. cycloheximide stops translation)

<u>Fluorescence</u> <u>Life</u> <u>Time</u> Imaging <u>Microscopy</u>

Fluorochromes

- excitation spectra
- emission spectra
- unique lifetime

FLIM - applications

FLIM - applications

Lifetime sensitive to almost everything:

- pH
- ionic strength
- solution polarity
- other fluorochrome

Protein-protein interactions (FRET-FLIM)

FLIM

indeed, salt changes fluorophore life time (American cockroach glands)

Trautmann et al. PicoQuant Application note 2013

FLIM - discrimination of autofluorescence

Dovzhenko, TrautmannPicoQuant Application note 2013

autofluorescence?

- experience needed
- special module on your confocal needed

FCS

Fluorescence Correlation Spectroscopy

It is counted, how many times the fluorescent molecule comes through the focal plane.

Autocorrelation analysis: the way how to discriminate the diffusions speeds of particles.

Schwille und Haustein

FCS (FCCS) fluorescence cross-correlation spectroscopy

$$G_{CC}(\tau) = \frac{\langle I_A(t) \cdot I_B(t+\tau) \rangle}{\langle I_A(t) \rangle \langle I_B(t) \rangle} - 1$$

Digman and Gratton 2011

Literature

- Paige et al., RNA Mimics of Green Fluorescent Protein, Science 333, 642-646, 2011 (SPINACH and other vegetables)
- <u>https://www.micro-shop.zeiss.com/index.php?s=452278238ae52c&l=en&p=de&f=f&a=d</u> (comprehensive and broad list of phluorochromes)
- <u>http://www.illuminatedcell.com/</u> nicely done pages about plant cell imaging
- Ishikawa-Ankerhold et. al. Advanced Fluorescence Microscopy Techniques FRAP, FLIP, FLAP, FRET and FLIM, Molecules 2012, 17, 4047-4132
- Sambrook & Russell Molecular Cloning: A Laboratory Manual, Third Edition, Cold Spring Harbor Laboratory Press; 3rd edition (January 15, 2001), 13.5 pounds weight

Photon bunching, if someone asks

Photon detections as a function of time for a) antibunched, b) random, and c) bunched light