ALD Precursors, Precursor Design, Chemistry and Mechanisms

D. J. H. Emslie ALD/ALE Tutorial, Denver, Colorado July 15, 2017

Emslie Group in June 2017, McMaster Univ., Hamilton, ON, Canada

<u>OUTLINE</u>

- ALD versus CVD from Chemistry and Film-Deposition Perspectives
- Overview H_2O , H_2S , NH_3 , O_2/O_3 , H_2 , H_2/NH_3 etc.
- Precursor design stability, volatility, m.p., reactivity, evaluation
- Unique Examples of Element ALD:
 - Introduction to Cu ALD
 - <u>Cu ALD using ZnEt₂ as the co-reactant (inc. solution studies)</u>
 - Early Transition Metal ALD
 - $WF_6 + Si_2H_6$ (vs TaF₅)
 - TiCl₄ + 1,4-disilyl-substituted 2,5-cyclohexadiene or 1,4-dihydropyrazine co-reagents
 - ML₂ + BH₃(NHMe₂) [M = Cr, and possibly Mn]
 - MnR₂ + H₂ (organometallic precursors)
- Summary / Conclusions

CVD vs ALD from different perspectives

Thin Film Deposition Perspective: CVD and p-CVD are similar in that they do not allow for self-limiting growth or highly conformal and uniform deposition (not to the extent possible with ALD) ALD is distinct in that it achieves self-limiting growth and more conformal and uniform deposition

ALD OVERVIEW – ACCESS TO DIFFERENT MATERIALS

Co-reactants typically determine the type of thin film deposited (oxide, nitride etc). Precursors are designed to exhibit the desired reactivity with a particular co-reactant. Many Common precursors are halide, alkyl, Cp, amido, alkoxide, aminoalkoxide, acac, β -diketiminate, amidinate complexes.

WHY NEW ALD PRECURSORS AND REACTIVITIES ?

PRECURSOR DESIGN CONSIDERATIONS

Precursor Attributes	Additional Comments	Comments on Evaluation				
Volatile	Ideally deliverable at low T (low molecular weight, alkyl or silyl > aryl, fluorination, sometimes less symmetrical compounds).	Sublimation/Distillation Temp (or measurement of vapor pressure vs temp.).				
Thermally Stable	Long timescale Thermally stable for months at delivery temperature. Short timescale – no CVD until high temp.	Heating at delivery temp for 24h. TGA (thermogravimetric anal.), ideally at atm. and low pressure.				
Reactive	Reacts with co-reactant at low T (with wide temp. window in which desired reactivity is observed, ideally with fairly constant GPC vs T).	Literature and solution reactivity can serve as a guide. In-reactor studies essential.				
Reacts with co-reactant to form volatile and thermally robust products	Reaction by-products must be readily removed from the growing thin film.	Expected byproducts can be prepared. Alternatively, do ALD and assess film purity.				
Low melting point (ideally)	Ideally, precursor will be liquid at the delivery temp (much less important for ALD vs CVD). Longer alkyl (e.g. n-Bu, i-Bu) groups can help, but sometimes at the expense of volatility					
Reactivity allowing ALD of multiple materials ?	One precursor for ALD of multiple materials could be beneficial.					
No rapid exothermic decomp. upon heating		Exercise caution with certain classes of compound. TGA.				
Scaleable synthesis	Synthesis can often be improved if initial ALD performance is promising.					

Thermal ALD of Copper

Methods for Thermal Cu ALD:

Cu^{II} precursors with:

- H₂ (≥ 150 °C)
- ROH (300 °C)
- HCO₂H, then N₂H₄ (100-170 °C)
- BH₃(NHMe₂) (130-160 °C)

Cu^I precursors with:

- Zn metal (>400 °C; impure films)
- H₂O, then H₂ (375-475 °C).

The above methods require the use of anhydrous hydrazine or operate at temperatures \geq 130 °C, and in the case of very thin films, this can lead to agglomeration.

At outset of our work in this area, we asked:

Can ZnEt₂ be used as a co-reactant for Cu ALD (by introducing Et groups onto Cu, resulting in unstable Cu alkyl species) ?

Emslie, D. J. H.; Chadha P.; J. S. Price, <u>Metal ALD and</u> <u>pulsed-CVD: Fundamental reactions and links with solution</u> <u>chemistry</u>, *Coord. Chem. Rev.*, **2013**, *257*, 3282-3296.

Knisley, T. J.; Kalutarage, L. C.; Winter, C. H., <u>Precursors and</u> <u>chemistry for the ALD of metallic first row transition metal</u> <u>films</u>, *Coord. Chem. Rev.*, **2013**, *257*, 3222-3231.

Kalutarage, L. C.; Clendenning, S. B.; Winter, C. H., <u>Low-</u> <u>Temperature Atomic Layer Deposition of Copper Films</u> <u>Using Borane Dimethylamine as the Reducing Co-reagent</u>, *Chem. Mater.* **2014**, *26*, 3731–3738.

PROPOSED REACTION SCHEME

Screening Reactions – A Typical Reaction

Order of Reactivity from Solution Screening:

> ZnEt₂ > AIMe₃ >> BEt₃

Temp	5 eq.	
25 °C	Very pale yellow soln	
50 °C	Pale pink soln	
75 °C	Cu mirror with reddish pink soln	
100 °C	<u>Cu mirror</u> with colorless soln	
120 °C	Cu mirror with colorless soln	

Screening Reactions – A Typical Reaction

Pulsed-CVD of Cu Metal using [Cu(PyrIm^{Et})₂] with **ZnEt**₂ at 130 °C

Deposition on SiO₂ 1500 x [6s DEZ / 7s P / 9s CuL₂ / 7s P] Appearance: Metallic Cu Cu Film thickness ~ 470Å GPC ~0.31 Å/cycle Rs: 6.5 Ω/sq; ρ~ 31 μΩ•cm

Not Self Limiting → pulsed-CVD

 Zinc incorporation results from Zn CVD, which is significant at > 100 °C

Deposition on SiO₂ 1500 x [6s DEZ / 7s P / 9s CuL₂ / 7s P] Appearance: Metallic Cu Cu Film thickness ~ 470Å GPC ~0.31 Å/cycle Rs: 6.5 Ω/sq; ρ~ 31 μΩ•cm

Not Self Limiting \rightarrow pulsed-CVD

Dr. Scott B. Clendenning, Intel

- Zinc incorporation results from Zn CVD, which is significant at > 100 °C
- Minimum delivery temperature for our copper precursor was 120 °C.
- With a more volatile copper precursor, Fischer, Sung *et al.* demonstrated Cu metal ALD using ZnEt₂ at 100 °C (*Angew. Chem. Int. Ed.* **2009**, *48*, 4536-4539)

Not Self Limiting \rightarrow pulsed-CVD

Dr. Scott B. Clendenning, Intel

- Zinc incorporation results from Zn CVD, which is significant at > 100 °C
- Minimum delivery temperature for our copper precursor was 120 °C.
- With a more volatile copper precursor, Fischer, Sung *et al.* demonstrated Cu metal ALD using ZnEt₂ at 100 °C (*Angew. Chem. Int. Ed.* **2009**, *48*, 4536-4539)

Not Self Limiting \rightarrow pulsed-CVD

What Can we learn from NMR Spectroscopy?

Prepare NMR samples in the glovebox

Record NMR Spectra as Reactions Proceed (increasing temperature incrementally if necessary)

NMR Spectrum – CuL₂ + x ZnEt₂

x = 0.3 20 °C, 15 min

All Stable Intermediates / Byproducts Independently Synthesized. Selected X-ray Crystal Structures:

$CuL_2 + n ZnEt_2 \rightarrow Cu metal + byproducts$

- Multi step mechanism with several different available pathways
- Reaction steps identified by observation and synthesis of intermediates and byproducts
- *n*-Butane is the only gas formed during reduction from Cu^{II} to Cu^I.
- Ethylene, ethane and hydrogen (not *n*-butane) are formed during reduction from Cu^I to Cu⁰ (copper metal).

SOLUTION Reaction Pathway

Thermal ALD of Transition Metals (or pulsed-CVD)

Pauling Electronegativity													ALD with						
	1	2.0 – 2.6 ALD reported																	
I H			○ 1.7 – 2.0										² He						
2.20		1	<mark>O</mark> 1.5 – 1.7										5 6 7 8 9						
3 Li 0.98	4 Be 1.57		1.0 – 1.5										6 C 2.55	7 N 3.04	8 O 3.44	9 F 3.98	¹⁰ Ne		
11 Na 0.93	12 Mg 1.31		0.8 – 1.0									13 Al 1.61	14 Si 1.90	15 P 2.19	16 S 2.58	17 Cl 3.16	18 Ar		
19 K 0.82	20 Ca 1.00	21 Sc 1.36	22 Ti 1.54	23 V 1.63	1.66	25 Mn 1.55	26 Fe 1.83	27 Co 1.88	28 Ni 1.91	29 Cu 1.90	30 Zn 1.65	31 Ga 1.81	32 Ge 2.01	33 As 2.18	34 Se 2.55	35 Br 2.96	36 Kr 3.00		
37 Rb 0.82	38 Sr 0.95	39 Y 1.22	40 Zr 1.33	41 Nb 1.6	42 Mo 2.16	43 Tc 1.9	44 Ru 2.2	45 Rh 2.28	46 Pd 2.20	47 Ag 1.93	48 Cd 1.69	49 In 1.78	50 Sn 1.96	51 Sb 2.05	52 Te 2.1	53 I 2.66	54 Xe 2.60		
55 Cs 0.79	56 Ba 0.89	71 Lu 1.27	72 Hf 1.3	73 Ta 1.5	74 W 2.36	75 Re 1.9	76 Os 2.2	77 Ir 2.20	78 Pt 2.28	79 Au 2.54	80 Hg 2.00	81 Tl 2.04	82 Pb 2.33	83 Bi 2.02	84 Po 2.0	85 At 2.2	86 Rn 2.2		
87 Fr 0.7	88 Ra 0.9	103 Lr -																	

Ln	57 La 1.10	58 Ce 1.12	59 Pr 1.13	60 Nd 1.14	61 Pm	62 Sm 1.17	63 Eu 	64 Gd 1.20	65 Tb	66 Dy 1.22	67 Ho 1.23	68 Er 1.24	69 Tm 1.25	70 Yb
An	89	90	91	92	93	94	95	96	97	98	99	100	101	102
	Ac	Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No
	1.1	1.3	1.5	1.38	1.36	1.28	1.3	1.3	1.3	1.3	1.3	1.3	1.3	1.3

THE CHALLENGE OF EARLY TRANSITION METAL ALD

 $WF_6 + H_3Si-SiH_3 \longrightarrow W + H_{4-n}SiF_n$

J.W. Klaus, S.J. Ferro, S.M. George, <u>Atomically controlled growth of tungsten and tungsten</u> <u>nitride using sequential surface reactions</u>, *Appl. Surf. Sci.*, **2000**, *162–163* 479–491.

Analogous reaction with TaF₅ generated Ta silicide

Lemonds, A.M.; White, J.M.; Ekerdt, J.G., <u>Surface science investigations of atomic layer</u> deposition half-reactions using TaF_5 and Si_2H_6 , *Surf. Sci.*, **2003**, *538*, 191.

Klesko, J. P.; Thrush, C. M.; Winter, C. H., <u>Thermal Atomic Layer Deposition of Titanium Films Using Titanium Tetrachloride and</u> <u>2-Methyl-1,4-bis(trimethylsilyl)-2,5-cyclohexadiene or 1,4-Bis(trimethylsilyl)-1,4-dihydropyrazine</u>, *Chem. Mater.* **2016**, *28*, 700.

GPC 0.06 Å/cycle. Rapid oxidation to TiO_2 in air, but some Ti metal remains deeper in the film, according to XPS

Kalutarage, L. C.; Martin, P. D.; Heeg, M. J.; Winter, C. H., <u>Volatile and Thermally Stable Mid to Late Transition Metal</u> <u>Complexes Containing α-Imino Alkoxide Ligands, a New Strongly Reducing Coreagent, and Thermal Atomic Layer</u> <u>Deposition of Ni, Co, Fe, and Cr Metal Films</u>, J. Am. Chem. Soc. **2013**, 135, 12588.

GPC 0.06 A/cycle. Rapid oxidation to TiO₂ in air, but some Ti metal remains deeper in the film, according to XPS

Kalutarage, L. C.; Martin, P. D.; Heeg, M. J.; Winter, C. H., Volatile and Thermally Stable Mid to Late Transition Metal Complexes Containing α-Imino Alkoxide Ligands, a New Strongly Reducing Coreagent, and Thermal Atomic Layer Deposition of Ni, Co, Fe, and Cr Metal Films, J. Am. Chem. Soc. 2013, 135, 12588.

^tBu

^tΒι

^tBı

Me

THE CHALLENGE OF EARLY TRANSITION METAL ALD

 $WF_6 + H_3Si-SiH_3 \longrightarrow W + H_{4-n}SiF_n$

Me

ivie

Me

Analogous reaction with TaF₅ generated Ta silicide

J.W. Klaus, S.J. Ferro, S.M. George, <u>Atomically controlled growth of tungsten and tungsten</u> nitride using sequential surface reactions, *Appl. Surf. Sci.*, **2000**, *162–163* 479–491.

Lemonds, A.M.; White, J.M.; Ekerdt, J.G., <u>Surface science investigations of atomic layer</u> deposition half-reactions using TaF_5 and Si_2H_6 , *Surf. Sci.*, **2003**, *538*, 191.

Klesko, J. P.; Thrush, C. M.; Winter, C. H., <u>Thermal Atomic Layer Deposition of Titanium Films Using Titanium Tetrachloride and</u> <u>2-Methyl-1,4-bis(trimethylsilyl)-2,5-cyclohexadiene or 1,4-Bis(trimethylsilyl)-1,4-dihydropyrazine</u>, *Chem. Mater.* **2016**, *28*, 700.

GPC 0.06 A/cycle. Rapid oxidation to TiO₂ in air, but some Ti metal remains deeper in the film, according to XPS

Conceptually, the two precursors serve as a more reactive form of a disilane ($Me_3Si-SiMe_3$), which strips chloride ligands from titanium.

Me

Requires a volatile metal chloride, which is likely to limit translation of methodology to most other early transition metals.

• GPC 0.07-0.10 Å/cycle

۲Bı

∑"Bu Me

^tBu

THE CHALLENGE OF EARLY TRANSITION METAL ALD

Мe

An Alternative Approach: Organometallic Precursors for Electropositive Metal ALD ?

- **Reduction** to elemental metal becomes increasingly challenging for more electropositive metals
- Electropositive metals have a high tendency to form oxides, nitrides and halides, making many coordination complexes poorly suited for electropositive metal ALD

Can highly reactive organometallic precursors

(acyclic hydrocarbyl complexes, rather than cyclopentadienyl complexes) be used for electropositive metal ALD?

An Alternative Approach: Organometallic Precursors for Electropositive Metal ALD ?

- **Reduction** to elemental metal becomes increasingly challenging for more electropositive metals
- Electropositive metals have a high tendency to form oxides, nitrides and halides, making many coordination complexes poorly suited for electropositive metal ALD

Can highly reactive organometallic precursors

(acyclic hydrocarbyl complexes, rather than cyclopentadienyl complexes) be used for electropositive metal ALD?

How will the necessary **thermal stability** be achieved without compromising: (a) **volatility** and (b) **reactivity**?

The metal precursor must be:

- Thermally robust & volatile
- Reactive towards the desired co-reactant --- for this reason, *highly reactive metal* alkyl and allyl complexes are the focus of this work

Co-Reactants Selected to form <u>Alkyl / Hydride Intermediate</u> which should be particularly prone to <u>reductive elimination</u>

Co-reactants:

- **Class 1** co-reactants (H₂, PhSiH₃, R'₂BH) form the alkyl / hydride complex directly
- **Class 2** co-reactants (BEt₃, AlEt₃, ZnEt₂) initially form an unstable ethyl complex

Co-reactants:

- Class 1 co-reactants (H₂, PhSiH₃, R'₂BH) form the alkyl / hydride complex directly
- Class 2 co-reactants (BEt₃, AlEt₃, ZnEt₂) initially form an unstable ethyl complex

Co-reactants:

- Class 1 co-reactants (H₂, PhSiH₃, R'₂BH) form the alkyl / hydride complex directly
- Class 2 co-reactants (BEt₃, AlEt₃, ZnEt₂) initially form an unstable ethyl complex

Precursor Design

- Oxygen-free alkyl and allyl complexes
- All complexes will be *highly reactive* due to the presence of metal-carbon bonds

(1) Primary alkyl complexes

- fairly straightforward to prepare
- presence of α-hydrogen atoms may render complexes less thermally stable

(2) Tertiary alkyl complexes [C(SiR₃)₃ complexes]

- α-hydrogen free, and β-hydrogen free
- Complexes expected to exhibit high thermal stability (resistance to carbide formation)

(3) Bulky allyl complexes

- resistant to common decomposition pathways
- allyl complexes often have higher thermal stability than alkyl complexes
- allyl complexes are much more reactive than cyclopentadienyl complexes

Tertiary ALKYL and ALLYL Complexes

MIXED ALKYL (TSI) / ALLYL (allyl^{TMS2}) MANGANESE(II) COMPLEXES

MIXED ALKYL (TSI) / ALLYL (allyl^{TMS2}) MANGANESE(II) COMPLEXES

X-Ray Crystal Structures of [(allyl^{TMS2})Mn(TSI)L] Complexes

PRIMARY ALKYL MANGANESE(II) COMPLEXES: R = CH₂CMe₃

J. S. Price, P. Chadha, D. J. H. Emslie, *Organometallics*, **2016**, *35*, 168-180.

PRIMARY ALKYL MANGANESE(II) COMPLEXES: R = CH₂CMe₃

J. S. Price, P. Chadha, D. J. H. Emslie, Organometallics, 2016, 35, 168-180.

Solution Reactivity of Primary Alkyl Manganese(II) Complexes with H₂

<u>ALD using forming gas</u> (5% H₂ in N₂)

- With substrate = 125 °C, a GPC of 0.2 Å / cycle was observed on Ru seed.
- The film was nonconductive after airexposure, likely due to complete oxidation...

Ru seed Thickness ~ 80 Å (ellipsom), GPC ~ 0.2 Å/cycle

400 x [3s Mn / 5s purge / 2s FG / 15 s purge]

196-2_SH 5.0kV 4.7mm x180k SE(U) 6/17/2014 30

J. S. Price, P. Chadha, D. J. H. Emslie, Organometallics, 2016, 35, 168-180.

- With substrate = 110 °C, a GPC of 0.3 Å / cycle was observed on Ru seed.
- XPS: ~ 1:1 ratio of Mn:S with no P and low C.
 5-10% O, presumably due to air exposure...

Ru seed Thk ~ 390 Å (XSEM) GPC ~ 0.33 Å/cycle

1200x [3s Mn / 8s purge / 3s Mn / 4s purge / 0.4s H₂S / 8s purge] 196-38_SH 5.0kV 4.8mm x180k se(u) 6/26/2014

ALD using forming gas (5% H₂ in N₂)

- With substrate = 125 °C, a GPC of 0.2 Å / cycle was observed on Ru seed.
- The film was nonconductive after airexposure, likely due to complete oxidation...

Ru seed Thickness ~ 80 Å (ellipsom), GPC ~ 0.2 Å/cycle

400 x [3s Mn / 5s purge / 2s FG / 15 s purge]

196-2_SH 5.0kV 4.7mm x180k SE(U) 6/17/2014 300

ALD Reactor Studies

- Until recently, all ALD studies on our compounds were conducted by collaborators.
- We now have a home-built ALD reactor, so further studies on our Mn cpds are on the schedule for this summer...

- Many reported ALD processes are far from ideal:
- Also, many materials (especially pure elements) simply can t yet be deposited by thermal ALD.
- High deposition temperature (leading to agglomeration, low film purity, incompatibility with certain substrates, limited selection of precursors with appropriate thermal stability)
- Limited ALD temperature window
- Very low GPC
- Low film purity
- Undesirable film morphology
- Undesirable substrate selectivity (e.g. no deposition on H-terminated Si)
- Undesirable reactivity between the co-reactant and the underlying substrate.

below 100 °C. --- Solution reactivity studies can provide mechanistic insight.

- **The Mn chemistry** highlights a new approach for electropositive metal ALD: harnessing the high reactivity of manganese alkyl and allyl complexes for Mn metal deposition.
- Highly reactive organometallic precursors have the disadvantage of high air-sensitivity. However, they may allow deposition of multiple materials from a single precursor.

- Many reported ALD processes are far from ideal:
- Also, many materials (especially pure elements) simply cannot yet be deposited by thermal ALD.
- Consequently, new precursors, co-reactants, reactivities and methods are required.
- ALD at lower temperature (may require more reactive precursor/co-reactant combinations and/or more volatile precursors and co-reactants) offers various advantages:
- For metal ALD, most new ALD methods leading to ALD of previously inaccessible aterials rely upon new co-reactants rather than new metal precursors.
- Avoids agglomeration of thin metal films.
- Compatible with a broader range of substrates, perhaps including those with polymer patterning.
- Leads to more predictable chemistry, potentially generating higher purity films.
- Can allow use of less-thermally robust but higher-volatility (and perhaps higher reactivity) precursors and co-reactants.
- The Mn chemistry highlights a new approach for electropositive metal ALD: harnessing the high reactivity
 of manganese alkyl and allyl complexes for Mn metal deposition.
- Highly reactive organometallic precursors have the disadvantage of high air-sensitivity. However, they may allow deposition of multiple materials from a single precursor.

- Many reported ALD processes are far from ideal:
- Also, many materials (especially pure elements) simply cannot yet be deposited by thermal ALD.
- Consequently, new precursors, co-reactants, reactivities and methods are required.
- ALD at lower temperature (may require more reactive precursor/co-reactant combinations and/or more volatile precursors and co-reactants) offers various advantages:
- For metal ALD, most new ALD methods leading to ALD of previously inaccessible materials rely upon new co-reactants rather than new metal precursors.

- For thermal metal ALD, most precursors not organometallic (some Pt compounds are exceptions).

- <u>The Cu chemistry</u> highlights the use of a new type of co-reactant (ZnEt₂) for metal ALD.
 --- The initial focus was not on Cu precursor design. However, limitations in ZnEt₂ thermal stability brought the work full circle, where precursor volatility now appears to be the limitation in terms of accessing Cu deposition significantly below 100 °C. --- Solution reactivity studies can provide mechanistic insight.
- **The Mn chemistry** highlights a new approach for electropositive metal ALD: harnessing the high reactivity of manganese alkyl and allyl complexes for Mn metal deposition.
- Highly reactive organometallic precursors have the disadvantage of high air-sensitivity. However, they may allow deposition of multiple materials from a single precursor.

- Many reported ALD processes are far from ideal:
- Also, many materials (especially pure elements) simply cannot yet be deposited by thermal ALD.
- Consequently, new precursors, co-reactants, reactivities and methods are required.
- ALD at lower temperature (may require more reactive precursor/co-reactant combinations and/or more volatile precursors and co-reactants) offers various advantages:
- For metal ALD, most new ALD methods leading to ALD of previously inaccessible materials rely upon new co-reactants rather than new metal precursors.
- For thermal metal ALD, most precursors not organometallic (some Pt compounds are exceptions).
- <u>The Cu chemistry</u> highlights the use of a new type of co-reactant (ZnEt₂) for metal ALD.
 --- The initial focus was not on Cu precursor design. However, limitations in ZnEt₂ thermal stability brought the work full circle, where precursor volatility now appears to be the limitation in terms of accessing Cu deposition significantly below 100 °C. --- Solution reactivity studies can provide mechanistic insight.
- **The Mn chemistry** highlights a new approach for electropositive metal ALD: harnessing the high reactivity of manganese alkyl and allyl complexes for Mn metal deposition.
- Highly reactive organometallic precursors have the disadvantage of high air-sensitivity. However, they may allow deposition of multiple materials from a single precursor.

- Many reported ALD processes are far from ideal:
- Also, many materials (especially pure elements) simply cannot yet be deposited by thermal ALD.
- Consequently, new precursors, co-reactants, reactivities and methods are required.
- ALD at lower temperature (may require more reactive precursor/co-reactant combinations and/or more volatile precursors and co-reactants) offers various advantages:
- For metal ALD, most new ALD methods leading to ALD of previously inaccessible materials rely upon new co-reactants rather than new metal precursors.
- For thermal metal ALD, most precursors not organometallic (some Pt compounds are exceptions).
- <u>The Cu chemistry</u> highlights the use of a new type of co-reactant (ZnEt₂) for metal ALD.
 --- The initial focus was not on Cu precursor design. However, limitations in ZnEt₂ thermal stability brought the work full circle, where precursor volatility now appears to be the limitation in terms of accessing Cu deposition significantly below 100 °C. --- Solution reactivity studies can provide mechanistic insight.
- **The Mn chemistry** highlights a new approach for electropositive metal ALD: harnessing the high reactivity of manganese alkyl and allyl complexes for Mn metal deposition.
- Highly reactive organometallic precursors have the disadvantage of high air-sensitivity. However, they may allow deposition of multiple materials from a single precursor.

ACKNOWLEDGEMENTS

ALD Research in the Group: Cu Mn Mn Current Current Current Bala Preeti Nick Majeda Novan Funding for the Cu and Mn work: through: NSERC ínteľ) CRSNG Semiconductor Research Corporation SR

Questions ?