## Examination test from Discrete mathematics 4th term, 30/1/2017

| Name and surname | 1 | 2 | 3 | 4 | 5 | Sum |
|------------------|---|---|---|---|---|-----|
|                  |   |   |   |   |   |     |

16 points/task, 100 min.

1. Let  $X = \{0, 1, 2\}$  be a set and  $\mathcal{A} \subseteq \mathcal{P}(X)$  a system of its subsets. For each of the formulas find a system which satisfies the formula and a system which violates it. The later one denote as  $\mathcal{B}$ . If there is no such  $\mathcal{A}$  or  $\mathcal{B}$  prove that.

a)  $(\exists x \in X) (\forall Y \in \mathcal{A}) (x \in Y).$ 

b) 
$$(\forall Y, Z \in \mathcal{A})(Y - Z \in \mathcal{A}).$$

c) 
$$(\forall x, y \in X)(\forall Y \in \mathcal{A})((x \neq y \land x \notin Y) \rightarrow y \in Y).$$

d) 
$$(\forall x \in X) (\forall Y \in \mathcal{A}) (\{x\} \cup Y \in \mathcal{A}).$$

2. Construct some isotonne mapping  $f : (\mathbb{N}, \leq) \to (\mathbb{N}, \leq)$  (or prove that it does not exist) which does not have a fix-point (i.e.  $(\forall x) f(x) \neq x$ ) and is a) injective (one-to-one),

b) surjective (onto).

3. Let  $\rho, \sigma$  be relations on set X. Prove that: a)  $(\rho \cup \sigma)^{-1} = \rho^{-1} \cup \sigma^{-1}$ ,

b)  $(\rho \circ \sigma)^{-1} = \sigma^{-1} \circ \rho^{-1}$ .

4. Find Hasse diagrams of all mutually non-isomorphic preordered sets with four elements which do not have a greatest nor a smallest element.

5. a) Find some weight  $w : E \to \{1, 2\}$  for the depicted graph G = (V, E) such that there is exactly one minimal spanning tree.



b) Calculate a number of all such weights.