
1. Topological spaces

Definition 1.1. Let X be a set. A topology on X is a collection T ⊆ P(X) of subsets of
X satisfying

• T contains ∅ and X,
• T is closed under arbitrary unions, i.e. if Ui ∈ T for i ∈ I then

⋃
i∈I Ui ∈ T ,

• T is closed under finite intersections, i.e. if U1, U2 ∈ T then U1 ∩ U2 ∈ T .

Remark. One may view the first condition as a special case of the other two since ∅ is a union of the empty
collection and X is the intersection of the empty (hence finite) collection.

Definition 1.2. A topological space (X, T ) is a set X together with a topology T on it.
The elements of T are called open subsets of X. A subset F ⊆ X is called closed if its
complement XrF is open. A subset N containing a point x ∈ X is called a neighbourhood
of x if there exists U open with x ∈ U ⊆ N . Thus an open neighbourhood of x is simply
an open subset containg x.

Normally we denote the topological space by X instead of (X, T ).

Example 1.3. Every metric space (M,ρ) may be viewed as a topological space. Namely
the topology is defined by declaring U ⊆ M open if and only if with every x ∈ U it also
contains a small ball around x, i.e. if there exists ε > 0 such that Bε(x) ⊆ U . Two distinct
metrics may define the same topology, in fact this happens precisely if the two metrics are
equivalent. We say that a property of a metric space is topological if it does not depend
on the metric but only on its equivalence class. Such properties may be usually described
using topology.

Definition 1.4. Let A ⊆ X be a subset of a topological space X. The interior of A is the
biggest open subset contained in A. One has Å = intA =

⋃
A⊇U open U . Dually the closure

of A is the smallest closed subset containing A. One has A = clA =
⋂

A⊆F closed F .

Definition 1.5. A mapping f : X → Y between two topological spaces is called continuous
if for every U ⊆ Y open in Y the inverse image f−1(U) is open in X. We also say that f
is a map.

Proposition 1.6. The identity mapping is continuous. A composition of two continuous
maps is continuous. Thus topological spaces and continuous maps between them form a
category, the category of topological spaces.

Definition 1.7. A homeomorphism f : X → Y is a continuous bijection whose inverse
f−1 : Y → X is also continuous.

Remark. Unlike in algebra where the inverse of a bijective homomorphism is always a homomorphism this
does not hold for topological spaces. The identity mapping “ id ” : (X, T ) → (X, T ′) is continuous if and
only if T ′ ⊆ T . Thus if we topologize X in such a way that this inclusion is proper the identity mapping
in this direction will be continuous while its inverse (also the identity) will not. As an example for each X
there are two extreme topologies, the discrete topology for which all subsets are open and the indiscrete
one for which only ∅ and X are open.
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2. Constructions with topological spaces

Definition 2.1. Let X be a topological space and A ⊆ X its subset. The subspace topology
on A is given by the collection

{A ∩ U | U open in X}
Thus a subset V ⊆ A is open in this topology if and only if there exists an open subset
U ⊆ X such that V = A ∩ U . We also call A endowed with the subspace topology a
subspace of X.

Proposition 2.2. Let X be a topological space and A its subspace. Then the inclusion
i : A→ X is continuous. Moreover if f : Y → A is a mapping then f is continuous if and
only if the composition if : Y → X is continuous.

A� _
i
��

Y
if
//

f
>>

X

Remark. This has the following explanation. To define a continuous map into a subspace A ⊆ X is the
same as to define a continuous map into X whose image lies in A. This categorical viewpoint is often
useful especially in the dual situation of quotients.

Definition 2.3. Let X and Y be topological spaces. The product topology on X × Y is
given by

{W ⊆ X × Y | (∀(x, y) ∈ W ) (∃U ⊆ X, V ⊆ Y open) U × V ⊆ W}

Remark. We say that a collection B of open subsets generates a topology T if every U ∈ T may be
expressed as a union of elements of B. We may thus rephrase the previous definition by saying that the
product topology is generated by products U × V of open subsets of X and Y . Not every collection B
generates a topology in this way though so there is something to be checked if one wants to define the
product topology in this way.

Proposition 2.4. The projections p : X × Y → X and q : X × Y → Y are continuous.
Moreover a mapping f : Z → X × Y is continuous if and only if the two compositions
pf : Z → X and qf : Z → Y are continuous.

Z

f

��

pf

{{

qf

##

X X × Yp
oo

q
// Y

Remark. Again this propositions makes it easy to define continuous maps into a product of two topological
spaces. One needs only to specify its two components which have to be continuous and the continuity of
the whole mapping is automatic. It is much harder to check continuity of a map from a product.

Before dualizing the notion of a subspace we define the coproducts (or disjoint unions).
These are much easier.
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Definition 2.5. Let Xi be a collection of topological spaces indexed by a set I. The
disjoint union

∐
i∈I Xi has the following coproduct topology

{U ⊆
∐
i∈I

Xi | Xi ∩ U is open in Xi}

Proposition 2.6. The inclusions ji : Xi →
∐

i∈I Xi are continuous. Moreover a mapping
f :

∐
i∈I Xi → Y is continuous if and only if all compositions fji : Xi → Y are continuous.

Xi� _

ji
��

fji

##∐
i∈I Xi

f
// Y

Definition 2.7. Let X be a topological space and R an equivalence relation on X. We
define the quotient topology on X/R via the canonical projection p : X → X/R by

{U ⊆ X/R | p−1(U) open in X}

We call X/R with this topology the quotient of X and the projection p the quotient map.

Remark. This definition is much less transparent than that of a subspace topology. Some ugly quotients
may easily end up having the indiscrete topology. For example define an equivalence relation as the kernel
relation of the projection R→ R/Q on the quotient group. Then R/Q has indiscrete topology.

Proposition 2.8. The projection p : X → X/R is continuous. Moreover a map f :
X/R→ Y is continuous if and only if the composition fp : X → Y is continuous.

X
fp

//

p

��

Y

X/R
f

==

Remark. This proposition makes defining maps from a quotient space particularly easy. One simply
provides a continuous map from X that factors through X/R as a mapping of sets. This means that
this map f has to be constant on each equivalence class. It is often very dificult to determine whether a
mapping into a quotient space is continuous.

A special class of quotient spaces are the so-called pushouts. Let

A
f
//

g
��

X

Y

be a diagram of topological spaces and their continuous maps. We define the pushout of
this diagram, X ∪A Y to be the quotient (X t Y )/ ∼ where the equivalence relation ∼ is
defined as follows. Denote the two inclusion i : X → X tY and j : Y → X tY . Then ∼ is
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generated by if(a) ∼ jg(a). Namely it is the smallest equivalence relation on X t Y such
that after passing to the quotient (X t Y )/ ∼ the following square becomes commutative.

A
f

//

g

��
6�

X

i
��

 

A
f

//

g

��
�

X

i′

��

Y
j
// X t Y Y

j′
// X ∪A Y

Proposition 2.9. The pushout enjoys the following universal property. A mapping h :
X∪AY → Z is continuous if and only if the two compositions fi′ : X → Z and fj′ : Y → Z
are continuous.

Remark. Thus defining continuous maps out of a pushout is again easy. One needs to supply two continuous
maps k : X → Z and l : Y → Z for which kf = lg : A→ Z. Then there exists a unique (and continuous)
map X ∪A Y → Z which agrees with k on X and with l on Y . This construction is usually applied when
one of the maps f, g is an embedding of a subspace.

Definition 2.10. Let X be a topological space and A ⊆ X its subspace. Then the pushout
of the diagram

A �
�

//

��

X

∗
where ∗ denotes the one-point space is called the quotient of X by A and denoted X/A.

Remark. This quotient space X/A is a special case of the quotient space X/R for the equivalence relation
whose equivalence classes are {x} for x 6∈ A and A at least when A 6= ∅.

3. The Hausdorff property and other separation axioms

Definition 3.1. A topological space X is said to be Hausdorff if for any two distinct
points x, y ∈ X (x 6= y) there exist two disjoint open subsets U, V (U ∩ V = ∅) such that
x ∈ U and y ∈ V .

This is an example of a separation axiom since one thinks of the open sets U, V as
“separating” the two points x, y.

Example 3.2. Every metric space is Hausdorff since if ρ(x, y) = 2k then Bk(x), Bk(y) are
such open subsets.

Lemma 3.3. In every Hausdorff topological space the one-point subsets are closed.

Remark. The condition of all points being closed is strictly weaker and is called the T1 property. The
Hausdorff condition is sometimes denoted as T2. It belongs to a series of separation axioms. We will now
describe the condition T4 normally called the normality.

Definition 3.4. A Hausdorff topological space X is called normal if for any two disjoint
closed subsets F,G there exist disjoint open subsets U, V such that F ⊆ U and G ⊆ V .
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Theorem 3.5. The class of Hausdorff spaces is closed under taking subspaces, products
and coproducts. Explicitly every subspace of a Hausdorff space is Hausdorff, products and
coproducts of Hausdorff spaces are again Hausdorff.

The quotients do not behave well with respect to Hausdorff spaces. There are however
some special cases.

Proposition 3.6. A quotient of a normal space by its closed subspace is again normal.
Explicitly if X is normal and A ⊆ X is a closed subspace then X/A is also normal.

4. Connectedness and path-conectedness

Definition 4.1. A topological space X is called connected if it is non-empty and its only
subsets which are both open and closed are ∅ and X. In other words (passing to the
complement) it is not possible to write X as a disjoint union X = U t V of its two
non-empty open subsets.

Remark. Although the disjoint union U t V in the definition is meant as a set-theoretical one it is also
true that in such a case the topology on X is that of that disjoint union.

Theorem 4.2. The real numbers R are connected as well as any non-empty interval in R.

Remark. This uses heavily the completeness of the reals since the rationals Q are not connected. Namely
one might write Q = (Q ∩ (−∞, π)) t (Q ∩ (π,∞)).

Theorem 4.3. The class of connected spaces is closed under products and quotients (im-
ages in fact). Explicitly a product of connected spaces is connected and if f : X → Y is a
surjective map with X connected then so is Y .

In algebraic topology a more useful concept is that of a path-connected space.

Definition 4.4. A topological space X is called path-connected if it is non-empty and any
two points x0, x1 ∈ X may be joined by a continuous path, i.e. there exists a continuous
map γ : I → X such that γ(0) = x0 and γ(1) = x1.

Example 4.5. Every non-empty interval in R is path-connected. If x0, x1 are two points
in the interval then one may define γ(t) = (1− t)x0 + tx1.

Definition 4.6. A space X is called locally path-connected if for every point x and its
open neighbourhood U 3 x there exists a sub-neighbourhood U ⊇ V 3 x such that V is
path-connected.

Theorem 4.7. Every path-connected topological space is connected. Every locally path-
connected and connected topological space is path-connected.

5. Compactness

Definition 5.1. A collection U of open subsets of a topological space X is called an (open)
cover if its union is the whole of X, i.e.

⋃
U =

⋃
U∈U U = X. A subcollection U ′ ⊆ U is

called a sub-cover if it is itself a cover.
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Definition 5.2. A topological space X is called compact if every open cover admits a
finite sub-cover.

Theorem 5.3. The unit interval I is compact.

Remark. Again this depends on the completness of the reals. Define the following cover of Q ∩ I
U = {Q ∩ ([0, π/6− 1/n) ∪ (π/6 + 1/n, 1]) | n ≥ 3}

Its union is Q ∩ ([0, π/6) ∪ (π/6, 1]) = Q ∩ I but no finite sub-cover exists.

Theorem 5.4. The class of compact spaces is closed under closed subspaces, products,
finite coproducts and quotients (images). Explicitly a closed subspaces of a compact space
is compact. Products and finite coproducts of compact spaces are compact and if f : X → Y
is a surjective map with X compact then so is Y .

Proposition 5.5. A continuous bijection f : X → Y from a compact space X to a
Hausdorff space Y is a homeomorphism.

Remark. This means that in this situation the inverse mapping f−1 : Y → X will be automatically
continuous.

Remark. It might also be useful to note that every compact Hausdorff space is normal.

Theorem 5.6 (Lebesgue number Lemma). Let X be a compact metric space and U its
open cover. Then there exists ε > 0 for which every subset A ⊆ X of diameter at most ε
(i.e. a, b ∈ A ⇒ ρ(a, b) ≤ ε) is contained in some U ∈ U .

Definition 5.7. A topological space X is called locally compact if for every point x and
its open neighbourhood U 3 x there exists a sub-neighbourhood U ⊇ V 3 x such that V
is compact.

Remark. The usefulness of locally compact spaces lies in the following. Let p : X → X/R be a quotient
map and Y locally compact Hausdorff. Then the product map p × idY : X × Y → (X/R) × Y is also
a quotient map, i.e. the space (X/R) × Y is homeomorphic to a quotient (X × Y )/S (where S is easily
determined from R) in such a way that under this homeomrphism the map p × id becomes the quotient
projection X × Y → (X × Y )/S.

6. Compactly generated spaces

Maybe later. . .


