1. Convex hull in the plane

Convex sets and convex hulls in the plane. A set K in the plane is called convex if for every two points $p, q \in K$ the line segment $p q$ is contained in K.

FIGURE 1.1 Convex and nonconvex sets
Every point r of the line segment $p q$ can be written as a convex combination of the points p and q :

$$
r=\lambda p+(1-\lambda) q, \quad \text { where } \lambda \in[0,1] .
$$

For coordinates $\left(r_{x}, r_{y}\right)$ of the point r it means that

$$
\begin{aligned}
& r_{x}=\lambda p_{x}+(1-\lambda) q_{x}, \\
& r_{y}=\lambda p_{y}+(1-\lambda) q_{y} .
\end{aligned}
$$

The intersection of convex sets is apparently a convex set. The convex hull $\mathcal{C H}(P)$ of a set P in the plane is the smallest convex set containing the set P, which can be written in the following way:

$$
\mathcal{C H}(P)=\bigcap_{K \supseteq P \text { convex }} K .
$$

We will deal with algorithms which find the convex hull of a finite set P effectively. In this case we use the fact that the convex hull is

$$
\mathcal{C H}(P)=\bigcap_{H \supseteq P \text { a halfplane }} H
$$

We do not need to consider all such halfplanes. It is enough to intersect only those halfplanes that are determined by a pair of points from P and that also contain all the other points from P. Therefore the convex hull of a finite nonempty set with at least two points is a convex polygon which can degenerate to a line segment.

Naive algorithm. In this section we show that only knowledge of mathematical definition does not suffices to creation of a good algorithm. Our naive algorithm will search for oriented segments $p q$ which form the clockwise boundary of the convex hull. It is based on the fact that for such an oriented segment there is no point of the set P lying to the left of the oriented line $p q$.

FIGURE 1.2 To the left of the oriented line $p q$ there is no point of the set P.
The fact that a point r lies to the left of the oriented line $p q$ can be expressed mathematically by the following condition on the determinant the rows of which are the coordinates of the vectors $q-p$ a $r-p$:

$$
\operatorname{det}\left(\begin{array}{cc}
q_{x}-p_{x} & q_{y}-p_{y} \\
r_{x}-p_{x} & r_{y}-p_{y}
\end{array}\right)>0
$$

This determinant of the 2×2 matrix can be written also as a determinant of the following 3×3 matrix

$$
\operatorname{det}\left(\begin{array}{ccc}
1 & p_{x} & p_{y} \\
1 & q_{x} & q_{y} \\
1 & r_{x} & r_{y}
\end{array}\right)
$$

ALGORITHM 1 from pseudo.pdf

The time complexity of this algorithm for n points in the entry is $O\left(n^{3}\right)$ since we go through all oriented lines determined by n points and for every such line we test if remaining points lie to the left. The next shortage is the fact that the algorithm is unstable. If three points p_{1}, p_{2}, p_{3} lie on one line, it can happen that oriented segments $p_{1} p_{2}, p_{2} p_{3}$ a $p_{1} p_{3}$ are elements of the set E of boundary segments. However then we can have a problem with ordering them to the sequence in clockwise order.

FIGURE 1.3 Three points of the set P being on only one boundary line segment.
Better algorithm - Graham's scan. We get a much better result if we order the points of the set P in a suitable way before we start with searching boundary segments of the convex hull. We use lexicographic layout of points, first according to the coordinate x and then according to the coordinate y. Explicitly,

$$
p<q \quad \text { iff } p_{x}<q_{x} \text { or }\left(p_{x}=q_{x} \text { and } p_{y}<q_{y}\right) .
$$

In this arrangement let us denote the points from the smallest to the biggest

$$
p_{1}<p_{2}<p_{3}<\cdots<p_{n-1}<p_{n}
$$

The point p_{1} which is the " most left" and the point p_{n} which is the " most right" have to lie on the boundary of the convex hull and split this boundary into an upper and a lower part. To omit long formulations we will talk (not exactly) about an upper and lower convex hull instead of talking about an upper and a lower part of the boundary of the convex hull.

FIGURE 1.4 The upper (blue) and the lower (green) convex hull.
The clockwise arrangement of the points of the upper convex hull corresponds with their lexicographic order. That is why our algorithm will search for the upper convex hull of the sets

$$
P_{i}=\left\{p_{1}, p_{2}, \ldots, p_{i}\right\}
$$

from $i=2$ to $i=n$. Then it will search for the lower convex hull of the sets

$$
\left\{p_{n-i}, p_{n-1+1} \ldots, p_{n-1}, p_{n}\right\}
$$

for $i=1$ do $n-1$ in a similar way.
Let \mathcal{L} be the lexicographically ordered list of the vertices of the upper convex hull of the set P_{i}. It always contains points p_{1} and p_{i}. Now we show how to change the list
\mathcal{L} to contain the vertices of the upper convex hull of the set P_{i+1}. The lexicografically biggest point p_{i+1} has to be in the upper convex hull, so we start by adding it into \mathcal{L}.

The points which do not belong to the upper convex hull of the set P_{i+1} will be discarded from the list \mathcal{L} gradually in the following way: We take the last three points $p_{j}<p_{i}<p_{i+1}$ in the list \mathcal{L}. If the point p_{i+1} lies to the right of the oriented line $p_{j} p_{i}$, we will say that the points p_{j}, p_{i} a p_{i+1} form a right turn. In this case we will not change the list \mathcal{L} since the points of the set P_{i-1} lie to the right of the oriented line $p_{i} p_{i+1}$. So we have the list of vertices of the upper convex hull of the set P_{i+1} and we can start to search for the list of vertices of the upper convex hull for the set P_{i+2}, if $i+2 \leq n$.

FIGURE 1.5 Right turn.
If the points p_{j}, p_{i} a p_{i+1} do not form a right turn, we exclude the middle one, i. e. p_{i}, from the list \mathcal{L}. If p_{i} lies on the segment $p_{j} p_{i+1}$, we do not need it for the description of the upper convex hull (although it lies in it). If p_{i} lies to the right of the oriented line $p_{j} p_{i+1}$, it is not in the upper convex hull of the set P_{i+1} and has to be discarded.

FIGURE 1.6 Cases in which the last three points of the list \mathcal{L} do not form a right turn.

After discarding the point p_{i} from the list \mathcal{L} we take again the last three points of this list, if they exist, and we carry out the same procedure with them. We repeat this process until

- either only two points remain in the list \mathcal{L},
- or the last three points in the list \mathcal{L} form a right turn.

This completes the searching for the list of vertices of the upper convex hull of the set P_{i+1}. We illustrate this process using the following animation.

ANIMATION 1.1 Texts:

- We take $\mathcal{L}=\left\{p_{1}, p_{2}\right\}$ and add p_{3} to \mathcal{L}. The points $p_{1} p_{2}$ and p_{3} form a right turn.
- We add p_{4} to the list $\mathcal{L}=\left\{p_{1}, p_{2}, p_{3}\right\}$. The points p_{2}, p_{3} and p_{4} form a right turn.
- We add p_{5} to the list $\mathcal{L}=\left\{p_{1}, p_{2}, p_{3}, p_{4}\right\}$. The points p_{3}, p_{4} and p_{5} do not form a right turn.
- We discard the point p_{4} from the list \mathcal{L}. The points p_{2}, p_{3} and p_{5} do not form a right turn.
- We discard the point p_{3} from the list \mathcal{L}. The points p_{1}, p_{2} and p_{5} form a right turn.
- We add p_{6} to the list $\mathcal{L}=\left\{p_{1}, p_{2}, p_{5}\right\}$. The points p_{2}, p_{5} and p_{6} form a right turn.
- We add p_{7} to the list $\mathcal{L}=\left\{p_{1}, p_{2}, p_{5}, p_{6}\right\}$. The points p_{5}, p_{6} and p_{7} do not form a right turn.
- We discard the point p_{6} from the list \mathcal{L}. The points p_{2}, p_{5} and p_{7} form a right turn.
- We add p_{8} to the list $\mathcal{L}=\left\{p_{1}, p_{2}, p_{5}, p_{7}\right\}$. The points p_{5}, p_{7} and p_{8} do not form a right turn.
- We discard the point p_{7} from the list \mathcal{L}. The points p_{2}, p_{5} and p_{8} form a right turn.
- We add p_{9} to the list $\mathcal{L}=\left\{p_{1}, p_{2}, p_{5}, p_{8}\right\}$. The points p_{5}, p_{8} and p_{9} form a right turn.
- $\mathcal{L}=\left\{p_{1}, p_{2}, p_{5}, p_{8}, p_{9}\right\}$. The upper convex hull is complete.

The vertices of the lower convex hull can be found analogously.
Pseudocode and time complexity. The above verbal description can be formalized by the following pseudocode

ALGORITHM 2 from pseudo.pdf

Theorem 1.1. The above algorithm is correct and its time complexity depending on the number of points of the set P is $O(n \log n)$.

Proof. The proof that the algorithm gives us the list of vertices of the convex hull of the set P ordered clockwise reduces to the proof that we get the list of vertices of the upper and lower convex hulls ordered lexicographically. The proof for the upper convex hulls proceeds by induction: We show that the algorithm will create the list for the upper convex hull of the set P_{i+1} from the list of vertices of the upper convex hull of the set P_{i}. We can carry it out by similar considerations as we did during the verbal description of the algorithm. Practically focused readers will no longer be tired of them. Theoretically focused readers can try to handle the proof by themselves.

As for the time complexity, the first step of the algorithm - to order n points lexicographically takes the time $O(n \log n)$ as it is well known. The rest of the algorithm takes only the time $O(n)$. We put each of the points of the set P into the list \mathcal{L} once, and we take it out at most once. So the time required for the list to be created must be proportional to the number of points.
The reader will surely come up with a number of ways to improve this algorithm. However, none of them improves the estimate $O(n \log n)$.

Another algorithm. There are a lot of other algorithms for the convex hull of a finite set in the plane. Let us indicate one of them, which is suitable to use if we know in advance that the number of vertices of the convex hull is limited by a number k which is small with respect to n, the number of points of the set P. The process of the algorithm is reminiscent of packaging, so it is called Gift wrapping.

For simplicity, let's assume that no three points lie in a line. First, we find the left most point of the set P (more precisely, the smallest in the above lexicographic layout) and mark it p_{1}. We make lines from the point p_{1} to other points of the set P and consider their slopes. Let p_{2} be such a point that $p_{1} p_{2}$ has the biggest slope from all these lines. Now, we link the point p_{2} to the remaining $n-2$ points of the set P. We select a point p_{3} so that the convex angle $\angle p_{1} p_{2} p_{3}$ is the largest. In this way we
proceed until we get back to the point p_{1}. This is how we wrapped the set P into the convex hull. If the convex hull is a polygon with k vertices, the time complexity of this algorithm is $O(k n)$. In each of the k vertices, we spend $O(n)$ time.

ANIMATION 1.2 Texts:

- We choose the most left point p_{1} and make lines from p_{1} to the other points. We choose the point p_{2}.
- We make lines from p_{2} to the other points and choose the point p_{3}.
- We make lines from p_{3} to the other points and choose the point p_{4}.
- We make lines from p_{4} to the other points and choose the point p_{5}. It is equal to p_{1}.
- We are finished. The vertices of the convex hull in clockwise order are p_{1}, p_{2}, p_{3} and p_{4}.

