
2. Line segment intersection via sweep algorithm

Introduction. Let S = {s1, s2, . . . , sn} be a set of line segments in the plane such that
the intersection of any two segments is either empty or a single point. We want to find
an effective algorithm which looks for all intersections of these segments. Moreover,
we ask the algorithm to assign to every intersection the list of all segments on which
it lies.

How to compute the intersection of two segments ab a cd? Every point of the
segment ab is of the form

p = λa+ (1− λ)b , where λ ∈ [0, 1] .

Similarly a point on cd is

q = µc+ (1− µ)d , where µ ∈ [0, 1] .

The intersection is obtained by solving the equation

λa+ (1− λ)b = µc+ (1− µ)d .

Comparing x and a y-coordinates we get the following system of two linear equations
with two unknowns λ a µ

λax + (1− λ)bx = µcx + (1− µ)dx

λay + (1− λ)by = µcy + (1− µ)dy

If there is a solution of this system such that λ ∈ [0, 1] and µ ∈ [0, 1], the segments
have an intersection. In opposite case the segments do not have an intersection.

A trivial algorithm takes all pairs of segments (si, sj), 1 ≤ i < j ≤ n, and computes
their intersections. Since the number of all pairs is

(
n
2

)
, the time complexity of such

an algorithm is O(n2). In many cases it happens that the number of intersections is
much less than n2 which makes this algorithm (in these cases) ineffective. Hence we
deal with an algorithm which is much more suitable for such cases and works in time

O
(
(n+ k) log n

)
,

where k is the number of intersections found. This algorithm uses the method of sweep
line.

Sweep line algorithm. The method of sweep line is based on the following geometric
concept: A horizontal line - called a sweep line - moves in the plane, its path begins
above all the segments of S and ends below them. The algorithm slowly moves the line
from the top to bottom and along the way performs some actions. These actions occur
only when the sweep line passes through prominent points, so-called events. Only two
type of points are considered as events. Each endpoint of all the given segments is
an event and all the intersections already calculated by the algorithm are events. The
algorithm detects whether the segments from the nearest left and right neighborhoods
of the event have an intersection below the sweep line. If they do, the algorithm
classifies the intersection among events into so called queue.

FIGURE 2.1

1



2

Structures connected with sweep line algorithm. Two structures are usually
associated with the sweep line method - an event queue and a binary balanced tree.
The queue of events Q is a ordered sequence of points of interest (events) for the
algorithm. The layout is ”from top to bottom” and ”from left to right”, which is
formally lexicographic ordering: a point p is stored before a point q if

py > qy or (py = qy and px < qx) .

Basically, the event queue determines the order in which the sweep line passes our
events. When the sweep line passes an event, this event is removed from the queue,
while some other events may be queued. In our algorithm, all the endpoints of the
segments from the set S are initially stored in the queue.

FIGURE 2.2 The event queue Q is the sequence (p2, p3, q1, q2, q3).

FIGURE 2.3 After the sweep line l passes the event p2, the event queue Q changes
into (r1, p3, q1, q2, q3).

A further structure associated with the sweep line algorithm is a binary balanced
tree T . It describes the order of segments which intersect the sweep line l. This order
is taken from the left to the right and it is captured in the leaves of the tree T . The
nodes of the tree are named after leaves which are rightmost in the left subtree of this
node.

FIGURE 2.4

What happens when the sweep line passes an event p. Denote L(p) the set of
the segments from the set S which have p as its lower endpoint, denote C(p) the set
of the segments from S which contain p as its inner point, and finally, let U(p) be the
set of the segments which have p as its upper endpoint.

If the position of the sweep line is tightly above the event p, the tree T contains
the segments from L(p) ∪ C(p) in its leaves. It can contain additional segments but
surely not from the set U(p). When the sweep line passes the point p, the segments
L(p) will disappear from the tree T , while the segments from U(p) will be added and
the segments from C(p) will change their order. We formally do this in the following
way: at first, we remove the leaves in L(p) ∪ C(p) from the tree T and rebalance the
tree after each removal. Then we add the segments in C(p)∪U(p) between the leaves
of the tree in the right order and we rebalance the tree again. (In fact, we rebalance
the tree after adding any single segment.) If the union L(p)∪C(p)∪U(p) contains at
least two segments, we mark p as an intersection. In any case we discard the point p
from the event queue Q.

FIGURE 2.5

When the sweep line passes through the point p other actions of the algorithm
consist of computing the intersections of the segments passing through the point p
and adjacent segments (which are the nearest left and right segments to p). We use
the order of segments tightly under the event p, eg. a moment after the sweep line
passes p.



3

(1) If C(p) ∪ U(p) = ∅, we find out whether the nearest segment to the left of p
(denote it as sl) and the nearest segment to the right of p (denote it as sp)
have an intersection under the sweep line. If they do, we put the intersection
into the queue.

FIGURE 2.6

(2) If C(p) ∪ U(p) 6= ∅, denote s′ and s′′ the leftmost segment and the rightmost
segment from C(p) ∪ U(p), respectively. Let sl be the nearest left neighbour
of the segment s′ and let sp be the nearest right neighbour of the segment s′′.
We look for the intersections s′ ∩ sl and s′′ ∩ sp under the sweep line l. If some
of them exist we put them into the event queue Q.

FIGURE 2.7

ALGORITHMS:

FIND INTERSECTION pseudo.pdf page3. Correct the text in the line Output in
the following way:
Output. The set of intersection points among the segments in S such that each inter-
section point is associated with the segments which contain it.

HANDLE EVENT POINT pseudo.pdf page4

FIND NEW EVENT pseudo.pdf page 5

Animation of the algorithm.

(1) The sweep line l will move from top to bottom. The points in the event queue
Q are marked by the black colour.

(2) The segments s′ = s′′ = s1. The segments sl and sp do not exist. We do not
compute any intersections.

(3) The segments s′ = s′′ = s2, sl = s1 and sp does not exist. The intersection of
sl and s′ exists and lies under the point p2. We put it into the event queue.

(4) s′ = s′′ = s3, sp = s1 and sl does not exist. The segments s′′ and sp have no
intersection.

(5) After the sweep line passes the event p4, this point is put into the list of
intersections. Now, s′ = s2, s

′′ = s1, sl = s3 and sp does not exist. The
intersection of s′ and sl exists and lies under the point p4. We put it into the
event queue.

(6) s′ = s′′ = s4, sl = s1 and sp does not exist. The segments s′ and sl have no
intersection.

(7) s′ and s′′ do not exist, sl = s2 and sp = s4. The intersection of sl and sp is
identical with the intersections of the segments s2 and s3 which has already
been included into the event queue.

(8) s′ = s′′ = s5, sl = s4 and sp does not exist. The segments s′ and sl have no
intersection.

(9) s′ = s′′ = s6, sp = s3 and sl does not exist. The segments s′′ and sp have no
intersection.



4

(10) After the sweep line passes the event p9, this point is put into the list of
intersections. Now s′ = s4, s

′′ = s2, sl = s6 and sp = s5. The intersection of s′

and sl exists and lies under the point p9. We put it into the event queue. The
segments s′′ and sp have no intersection.

(11) The point p10 is put into the list of intersections. s′ = s4, s
′′ = s6, sl does not

exist and sp = s2. The segments s′′ and sp have no intersection.
(12) s′,s′′ and sp do not exist, sl = s2. We do not look for any intersections.
(13) s′, s′′ and sl do not exist, sp = s6. We do not look for any intersections.
(14) s′, s′′ and sp do not exist, sl = s6. We do not look for any intersections.
(15) After passing the point p14 the event queue is empty. The algorithm is finished.

Lemma 2.1. The algorithm finds all intersections.

Proof. We have to show that every intersection is computed when the sweep line
passes an event. Let p be an intersection of two or more segments. Suppose that all
the intersections above the point p have been already computed and included into the
event queue. FIGURE 2.8

In the FIGURE the events in which p is detected as the intersection are denoted by
the red colour. �

Lemma 2.2. The running time of the algorithm is O
(
(n + k) log n

)
, where n is the

number of segments and k is the number of intersections found.

We need the Euler Formula from graph theory to prove it.

Theorem 2.3 (Euler Formula). Let G be a planar graph with nv vertices, ne edges
and nf faces. Then nv − ne + nf ≥ 2. If G is connected graph, we get the equality

nv − ne + nf = 2 .

Corollary 2.4. For any planar graph

ne ≤ 3(nv − 1).

Proof. Every bounded face is bordered at least by three edges, every edge is adjacent
to at most two faces. That is why the number of all faces (included the unbounded
one) is

nf ≤
2ne

3
+ 1.

Substituting this inequality into the Euler inequality, we get

nv − ne +
2ne

3
+ 1 ≥ 2.

From here we get the required inequality. �

Proof of Lemma 2.2. To order 2n endpoints of given segments lexicographicly into a
queue it takes time O(n log n). To rebalance a binary tree with at most n leaves after
discarding or adding a leaf needs the time O(log n).

For an event p denote m(p) the number of elements of the set L(p) ∪ C(p) ∪ U(p).
The running time of the algorithm HANDLE EVENT POINT in the event p is

O
(
m(p) log n

)
.



5

Hence the running time of the whole algorithm is

O
(
n log n

)
+O

(∑
p

m(p) log n
)
.

To compute this sum we apply the Euler Formula to the planar graph determined by
the set S. Verteces of this graph are all endpoints and intersections of segments from
the set S. Denote s(p) the degree of the vertex p, i. e. the number of edges coming
from p. Obviously, m(p) ≤ s(p). FIGURE 2.9 m(p) = 4, s(p) = 6

Now it is sufficient to realize that
∑

p s(p) = 2ne and nv ≤ 2n + k. Applying
Corollary 2.4 we get∑

m(p) ≤
∑

s(p) = 2ne ≤ 6(nv − 1) ≤ 6(2n+ k − 1)

= 12n+ 6k − 6 ≤ 12(n+ k) .

So the running time of the algorithm is O
(
(n+ k) log n

)
. �


