
3. Map overlay

Introduction. The purpose of this chapter is to show how to store data on a com-
puter that allows us to draw maps and work with them, and how to create new data
describing the overlapping of two maps from the data describing these two maps. What
is a map overlay is shown in the following figure, where we have two maps, red and
blue, and their overlay, which is black.

FIGURE 3.1 The overlay of the red map and the blue map creates the black map.

Description of maps - planar subdivisions. The map will be a planar subdivision
consisting of a finite number of distinguished points, line segments which connect these
points and do not intersect in the inner points, and connected areas that are bounded
by these segments. The plane subdivisions will be described by means of the so-called
double-connected edge lists.

Such a list consists of three tables that describe the vertices, edges, and faces. Given
a planar subdivision vertices are its significant points. Edges are line segments of
the planar subdivision together with an orientation. The vertex from which the edge
emerges is called the origin. To every edge there is an edge defined by the same line
segment but with the opposite orientation. We call it the twin of a given edge. The
third term in the description of planar subdivisions is the face. It is a connected area
bounded by line segments. The face lying to the left of a given edge (what is left and
what is right is determined by the edge orientation) is called adjacent to the edge. This
term allows us to define for a given edge e its successor next(e) and its predecessor
prev(e). The next edge comes from the end of the edge e, has the same adjacent face
as e, and there are no other edges with these properties between it and the edge e. The
previous edge is the edge that ends at the origin of the edge e, it also has the same
adjacent region, and there are no other edges with the previous two properties between
it and the edge e. All these concepts are demonstrated in the following pictures.

FIGURE 3.2 The edge e1 emerges from the vertex v1, the edge e2 is the twin of the
edge e1, the face f1 is adjacent to the edges e1, e3 and e6. The next edge to the edge
e1 is e3, not e6. The previous edge to e2 is e7.

Another term we will use is the notion of a cycle. It is the sequence of edges
e1, e2, . . . , en, en+1 such that ei+1 is the successor of ei and en+1 = e1. Each limited
face is bounded by an outer boundary, which may be described as a cycle of edges
that have a given face as adjacent. We talk about the outer cycle. Some faces are also
bounded by one or more cycles from inside. We take the orientation of the edges so
that the face is adjacent to them. We call these cycles as inner.

FIGURE 3.3 The sequence of the edges e1, e2, e3, e4, e5, e6, e7 is an outer cycle of the
face f , the sequence e8, e9, e10 and e11, e12, e13, e14 are inner cycles of f .

Now we can describe the double-connected edge list tables in more detail.

1



2

Vertices. In the table there is one row for each vertex. This row contains the name
of the vertex, its coordinates, and the pointer to an edge coming from the vertex.
Edges. The row in the edge table shows the name of the edge, a pointer to its origin
(the point at which it begins), a pointer to its twin, a pointer to the adjacent area, a
pointer to the next edge, and a pointer to the previous edge.
Faces. The row in the face table contains the name of the face, a pointer to one edge
from the outer boundary cycle (if an outer boundary exists), a pointer to one edge of
each inner boundary cycle (if an inner boundary exists).

An example of a simple planar subdivision and its description using a double-
connected edge list can be found in Figure 3.4 and in Table 3.1.

FIGURE 3.4. An example of a simple (although a bit atypical) planar subdivision.

TABLE 3.1 In the description replace Czech terms by the English ones:
Vertex, Coordinates, Edge coming from the vertex.
Edge, Origin, Twin, Next, Prev, Adjacent face.
Face, Outer cycle, Inner cycles.

The description using a double-connected edge list can be understood as a minimal
description of a planar subdivision, from which we can algorithmically obtain all other
data in time O(n), where n is the amount of data required. For example, if we want
to find all the edges of the outer cycle of a face f , we take the edge of the outer cycle
given in the row for f in the face table, find the successor, find the successor to the
successor, and do so until we reach the original edge. Because we use pointers, the
successor search can be considered as a step of running time O(1), so the running
time for finding all the edges of the outer cycle equals to O(n), where n is the number
of edges in this cycle . In a similar way one can solve the following tasks as simple
exercises:

• Find all the edges coming out of a given vertex v and list them in the anticloc-
kwise direction.
• Find all the faces that are adjacent to a given vertex v and list them in the

anticlockwise direction. (Beware, some faces may repeat.)

Algorithm for map overlay. We are given two planar subdivisions S1 and S2, de-
scribed by the double-connected edge lists D(S1) and D(S2). The goal of our algorithm
is to create a double-connected edge list D for the overlay O(S1,S2) of maps S1 and
S2. In addition, for each new face f in the map overlay, we want to find original faces
in S1 and S2 in which f lies.

For simplicity, we will talk about the planar subdivision S1 as about a red map and
about the subdivision S2 as about a blue map. This will correspond to our pictures.
The algorithm starts by creating a new list D by joining the tables for vertices and
edges of double-connected edge lists of both maps. Editing the list D into a double-
connected edge list of the resulting overlay has two steps. In the first one, we add and
modify records in D for vertices and edges to match the overlay. In the second part,
we create a table for faces.



3

Vertices and edges. The procedure for creating tables of vertices and edges of the
overlay is based on the sweep algorithm which finds the intersections of line seg-
ments and was described in detail in the previous chapter. However, this is a relatively
laborious modification, so in this chapter we will only describe the algorithm ver-
bally and demonstrate it in the examples. Pseudocode description would be too long.
Readers are referred to pseudocodes 4 - 10 in the diploma thesis of Dominik Jank̊u
(https://is.muni.cz/auth/th/359588/fi−m/diplomka.pdf).

We start by creating a list of line segments specified by the red and blue edges and
the list of their endpoints. For the sake of simplicity, let’s assume that the intersection
of a red segment and a blue segment is either a point or an empty set or the two lines
are identical. In the latter case, we consider both segment to be the only segment that
is the wearer of both colours. We assign L(p) and U(p) to each vertex p with the same
meaning as in the previous chapter, while we remember the colours of segments. We
activate the event queue Q to include all vertices, and a binary balanced tree that will
be blank at the beginning. Just as in the previous chapter, we start the sweep line
method.

We describe the algorithm when passing an event p. If the set C(p) of segments, for
which p is an inner point, is empty, and the union of L(p)∪U(p) contains only segments
of one colour, we do not add any new rows into the list D but we can change records
concerning the previous and next edges. The way how to do it is shown farther. If C(p)
is not empty (i.e. it contains at least one red and one blue segment), each segment of
C(p) is divided into two segments with the end point p and these new segments are
put into L(p) or U(p). We assign edges to these segments - to those that end in p we
assign the original edges, to those starting at p we assign a new edge, see the following
picture.

FIGURE 3.5 Original and new notation of segments and edges.

We now make these changes in the list D. In the table for vertices we add a row
for the vertex p, in the table for edges we modify the rows for the original edges
corresponding to the segments containing the vertex p, and we add rows for the new
edges. To determine the new successors and predecessors of these edges, we first arrange
the segments from L(p) (using the binary tree for the position of the sweep line over
the event p) and then we arrange the segments from U(p) (using the binary tree
in the sweep line position under the event p). This will give the segments of L(p)
and U(p) around the vertex p an arrangement in the clockwise direction. Concrete
implementation of this idea is shown in the example from Figure 3.5

The order of segments from L(p) is su < s′u. The order of segments from U(p) is s′l <
sl. This gives the order of the segments around the vertex p in the clockwise direction:
su, s

′
u, sl, s

′
l. From this order we deduce successors and predecessors, for example the

successor of the edge e1 is e8 and the predecessor of e5 is e3. The new row for the
vertex p, the modified row for the edge e1, and the new row for e5 will look like this:

TABLE 3.2 English description is:
Vertex, Coordinates, Edge coming from the vertex.



4

TABLE 3.3 English description is:
Edge, Origin, Twin, Next, Prev, Adjacent face
e1, v1, e5, e8, we leave the original, we leave the original.
e5, p, e1, the same as for e2, e3, the same as for e2.

In the table for edges the item regarding the adjacent face is either left unchanged
(see the row for e1 in the previous table) or refers to the original map according to the
colour of the edge (see the row for e5). This procedure gives us complete information
about the relationship between vertices and edges of the overlay in the list D.

Faces. Each limited face of the overlay is determined by its outer boundary represen-
ted by an outer cycle. Therefore, to identify the overlay faces, we need to find all the
cycles and to identify those that are outer ones.

To determine cycles, information about successors that are already captured in the
list D is sufficient. We take an edge e, find its successor, another successor, and so on
until we get back to the edge e. Then we take an edge that is not run in this cycle. By
the same procedure, we will get another cycle. This is how we get all the cycles.

Now we will show how to distinguish outer and inner cycles. In a given cycle, we
take the vertex v, which is leftmost (the smallest in the lexicographic arrangement
from the previous chapter). Let the edge e1 come into the vertex v and let the edge e2
come out of v. If the angle from e1 to e2 measured over the adjacent area is less than
180o, it is an outer cycle. If this angle is greater than 180o, the cycle is inner.

FIGURE 3.6 The cycle c1 with the angle α < 180o is outer, the cycle c2 with the
angle β > 180o is inner.

Computationally, we decide on this by the sign of the determinant

det

(
e1x e1y
e2x e2y

)
,

where we take e1 and e2 as vectors with coordinates (eix, eiy). If the sign of the deter-
minant is positive, the cycle is outer, if negative, the cycle is inner.

So we know all outer and inner cycles for the overlap. For an unrestricted face, let’s
introduce a fictional cycle c∞ as the outer cycle of this face. Now every outer cycle
defines just one face. To assign inner cycles to faces, we construct the following graph
G. It is a graph in the sense of the theory of graphs, whose vertexes are all cycles. We
create the edges of this graph as follows:

We take an inner cycle c1. Let p be its most left vertex. Let s be the segment
closest to the left of p (The information on the nearest left segment is found out in the
first step of the algorithm for each event when using the sweep line). The segment s
determines an edge e with the same adjacent face as the inner cycle c1 has. This edge
further determines a cycle c2, which can be inner or outer. If there is no segment to
the left of p, we take the fictional outer cycle c∞ as the cycle c2. We join the cycles c1
and c2 by an edge in the graph G.



5

FIGURE 3.7 In the graph G the inner cycle c1 is connected by an edge with the
inner cycle c2 and this is connected by an edge with the outer cycle c3.

In the graph G we determine the components of connectivity. There is just one outer
cycle in each component, which determines one face of the overlay. Therefore, there is
a clear correspondence between the components of the graph and the faces. The inner
cycles in a given component of the graph are the inner cycles of the corresponding
face. With knowledge of the outer cycle and all inner cycles of each region, we can
now fill in the table for faces in the list D. Further, to each edge we find the cycle in
which it lies, and to this cycle we look out its face. This is the adjacent face to this
edge. This completes the last item in the edge table.

FIGURE 3.8 The cycles in a planar subdivision and the graph G which they de-
termine. The components of connectivity correspond to the faces f1, f2, f4, f5, f∞,
respectively.

Identification of original faces. We still have to find for each face f of the overlay
a face f1 of the red map and a face f2 of the blue map in which f lies. There are two
possibilities. If there are edges of both colours in the boundary cycles of the face f ,
then the adjacent face to a red edge is f1, and the adjacent face to a blue edge is f2.

FIGURE 3.9 Specification of the original faces f1 and f2 for the face f of the overlay.

If all boundary cycles of the face f are single colour, let us say red, we determine f1
as in the previous case. If f is unlimited, f2 is the unlimited face in the blue map. For
the bounded face f , we specify the face f2 as follows: Take the most left vertex of the
outer cycle of the face f . We find the closest segment to the left of this vertex. This
segment determines the inner or outer cycle of a face f ′ which is adjacent to f . If at
least one edge of the cycles of the face f ′ is blue, we specify f2 as the face adjacent to
this edge in the blue map. If f ′ is unlimited, the face f2 is the unlimited face in the
blue map. If f ′ is bounded and if all edges of its cycles are red, let us proceed with
the same procedure, only f is now replaced f ′. The appropriate blue face for f ′ is f2
for the original face f .

FIGURE 3.10 Specification of the original faces f1 and f2 for the face f of the
overlay.

Intersections and unions of polygons. The previous map overlay algorithm can
be used to find the intersection, the union, or the difference of two generally non-
convex polygons. A simply connected polygon is such a polygon that is connected and
does not have ”holes”in its interior, i.e. each closed curve can be shrunk continuously
without breaking into a point inside the polygon. A simply connected polygon thus
determines a planar subdivision with two faces, inner and external. The intersection of
two polygons consists of those faces of the overlay of their planar subdivisions, which



6

lie in the bounded faces of both subdivisions. Likewise, the union of polygons is made
up of all faces of the overlay which are bounded. See the following pictures.

FIGURE 3.11 The intersection of the red and blue polygons is the union of the faces
f2 a f4. The union of polygons is described as the union of the faces f0 to f10.

Pseudocodes of the algorithm, its implementation and running time. The
algorithm can be briefly summarized as follows:

ALGORITHM 6 from pseudo.pdf
Corrections:

(1) Instead of half-edge write only edge.
(2) Replace Section 2.1 by Chapter 2.
(3) Remove the text in brackets: (This was explained for the case where an edge

of ... passes through a vertex of ... )
(4) Replace OuterComponent(f) by Outer cycle, InnerComponents(f) by Inner

cycle, InnerFace by Adjacent face.

Detailed pseudocodes can be found in the diploma thesis Map Overlay written by
Dominik Jank̊u (in Czech)

https://is.muni.cz/auth/th/359588/fi−m/diplomka.pdf
Lines 1 a 2 of the given pseudocode are realized by Pseudocodes 4 to 10 of the diploma
thesis. The search of cycles in line 4 is described by Pseudocode 13, inner and outer
cycles are found using Pseudocodes 11 and 12. Components of connectivity of the graph
G in line 5 are constructed using Pseudocode 14, lines 6 and 7 of our pseudocode are
in detail described by Pseudocode 16 and line 8 by Pseudocode 15.

A part of the diploma thesis is also an implementation of the algorithm. Its de-
scription is in the last chapter of the thesis, the necessary files are compressed in the
cdrom.zip file.

https://is.muni.cz/auth/th/359588/fi−m/fakulta=1431
The complexity of the algorithm is characterized by the following theorem, which

we give without proof.

Theorem 3.1. Let S1 be a planar subdivision of complexity n1 and let S2 be a planar
subdivision of complexity n2. Let n = n1 +n2. Then the running time of the algorithm
that builds a double-connected edge list for the overlay of these subdivisions is

O((n+ k) log n)

where k is the complexity of the overlay.


