
5. Half-plane intersection

Introduction. In this chapter, we will show you how to describe and find the in-
tersection of n half-planes in the plane effectively. We want to proceed recurrently
according to the ”divide and conquer”strategy. That is, we divide the set

H = {h1, h2, . . . , hn}
of given half-planes into two parts H1 and H2 of roughly same size and we compute
the intersection

C =
⋂

hi∈H

hi

as an intersection C1 ∩ C2, where

C1 =
⋂

hi∈H1

hi, C2 =
⋂

hi∈H2

hi.

A major role for the gradual computing of intersections C1 ∩ C2 has the way how we
describe these intersections.

Description of half-plane intersection. Intersections of half-planes are convex sets
that can be both bounded and unbounded. We exclude the case that among given half-
planes there are two opposite to each other. In this case, the intersection would be
a subset of their common line, and this would lead to a one-dimensional task of the
intersection of half-lines on the line.

If the intersection is bounded and 2-dimensional, it is a convex polygon and we can
describe it using a double-connected edge list with two faces, one bounded and one
unbounded. In case the intersection is unbounded, we need to modify this description.
For this purpose, we will use a lexicographic arrangement of points in the plane defined
as follows:

p > q iff py > qy or (py = qy and px < qx).

Let us consider a non-empty convex set C, which is the intersection of the half-planes
and is not a subset of a line. There is just one of the following options:

(1) The set C has a maximum point p and a minimum point q in the lexicographic
arrangement. They both lie on the boundary and divide it into the left and right
parts, abbreviated to the left and right boundaries. Each of these is a polygonal
chain determined by the sequence of vertices and segments. We denote these
sequences L(C) and P (C), respectively.

FIGURE 5.1 The left boundary of C is L(C) = (p = v1, e1, v2, e2, v3, e3, q =
v4), the right boundary is P (C) = (p = v1, e7, v7, e6, v6, e5, v5, e4, q = v4).

(2) The set C contains the maximum point p but does not contain the minimum
point. In this case the point p divides the boundary of C again into two parts,
left and right. Each of them is determined by a sequence of vertices and seg-
ments terminated by a half-line.

FIGURE 5.2 The left boundary L(C) = (p = v1, e1, v2, e2, v3, e3), the right
boundary P (C) = (p = v1, e7, v7, e6, v6, e5, v5, e4).

1

2

(3) C contains a minimum point q but does not have a maximum point. In this
case q divides the boundary again into two parts, left and right. These are
sequences, starting with a half-line followed by vertices and segments.

FIGURE 5.3 L(C) = (e1, v2, e2, v3, e3, q = v4), P (C) = (e7, v7, e6, v6, e5, v5, e4, q =
v4).

(4) The set C has neither a maximum point nor a minimum point. In this case,
there are two possibilities. Either the boundary has left and right parts formed
by parallel lines or the boundary has only one part, left or right. This is de-
termined by a single line or a sequence beginning and ending with a half-line
with a sequence of vertices and segments between them. We will speak about
the other part of the boundary as empty.

FIGURE 5.4 Left: L(C) = (e1), L(C) = (e2). Right: L(C) = (e1, v2, e2, v3, e3),
P (C) = ().

Algorithm for half-plane intersection. Let C1 and C2 be convex sets that have
been created as intersections of disjoint sets of half-planes. Therefore they are deter-
mined by their left and right boundaries. We will describe an algorithm which will
create two sequences describing the left and right boundary of the intersection C1∩C2

out of the sequences L(C1), P (C1), L(C2), P (C2).
To do this, it is sufficient to realize that the vertices on the left boundary of C1∩C2

are the following:

• vertices of L(C1), which lie inside C2,
• vertices of L(C2), which lie inside C1,
• points of intersection of the left boundaries of C1 and C2,
• points of intersection of the left boundary of Ci and the right boundary of Cj

for i 6= j. They form in the given lexicographic order a maximal or a minimal
vertex in L(C1 ∩ C2).

FIGURE 5.5 The vertices on the left boundary of the intersections C1 ∩ C2 are p –
the point of the intersection of the left boundary of C2 and the right boundary of C1,
w2 ∈ L(C2) lying inside C1, q – the point of the intersection of the left boundaries,
v3 ∈ L(C1) lying inside C2 and r – the point of the intersection of the left boundary
of C1 and the right boundary of C2.

Analogously, the points of the right boundary of C1 ∩ C2 are:

• vertices of P (C1) lying inside C2,
• vertices of L(C2) lying inside C1,
• points of intersection of the right boundaries of C1 and C2,
• points of intersection of the left boundary of Ci and the right boundary of Cj

for i 6= j They are maximal or minimal vertices of P (C1 ∩ C2).

To create lists L(C1∩C2) and P (C1∩C2) we have to select the appropriate vertices
of C1 and C2, to calculate the intersections of the boundaries and to organize chosen
vertices lexicographically. Our algorithm will be similar to the algorithm for segment
intersection in Chapter 1. So we use again sweep line method.

3

Events will be the vertices of C1 and C2 and the calculated intersections of bounda-
ries. At the beginning of the algorithm, we set the boundary vertices lexicographically
into the queue. Because the vertices are already arranged at both left and right boun-
daries, the creation of the queue takes time proportional to the number of vertices.
Gradually, we will include the calculated intersections of boundaries into the event
queue. Since we know on which segments or half-lines these intersections lie, their
queuing will take only a constant time.

If none of the convex sets C1 and C2 have a maximum point, we calculate the
intersections of the half-lines that begin the left and right boundaries of both sets and
we will place the obtained points into the queue. Since C1 and C2 are intersections of
disjoint sets of half-planes, the set of the boundary intersections will be finite.

Horizontal sweep line l moves from top to bottom. It starts at a position above the
highest event. For every event we will record on which boundary it lies, and which
lines, half-lines or segments pass through it. (For each of the three types of objects we
will use a common notation edge.) We will also record the order in which the edges of
each boundary cross the sweep line. Since there are no more than four edges crossing
the sweep line, there is no need to keep the order in a binary balanced tree. When
passing the event v, we do the following actions:

(1) We include or do not include the event v as a vertex in the sequence L(C1∩C2)
or P (C1 ∩ C2) using criteria given above.

(2) If v is the first event in the left or right boundary of the intersection, and if
there are some half-lines going upwards from it, we decide which one will be in
the right and the left boundary of the intersection.

FIGURE 5.6 The vertex v is the first event in L(C1 ∩ C2). The half-line f1
will be a part of L(C1 ∩ C2) above v, and hence L(C1 ∩ C2) = (f1, v, . . .).

(3) We decide which of the edges going downwards from the event v is in the left
and which is in the right boundary of the intersection.

FIGURE 5.7 The edges e and f are going down the event v ∈ L(C1 ∩ C2).
The edge e will be included in L(C1 ∩ C2) below the event v, while f is not
any more a part of the boundary below v.

(4) We compute the intersection of the left edge el originating from the event v
downwards with the adjacent left edge sl of the boundary of the second set, and
the intersection of the right edge ep originating from the event v downwards
with the adjacent right edge sp of the boundary of the second set. If intersections
exist and lie below v, we put them in the queue.

FIGURE 5.8 The choice of edges el, ep, sl, sp for the sweep line below the
event v. We put the point p = el ∩ sl in the queue. The intersection ep ∩ sp is
empty.

(5) If the event v is the minimum vertex of the left and right boundary of the
intersection, we will remove all events from the queue as the description of
both boundaries of the intersection is already complete. Otherwise, only the
event v is removed from the queue.

4

The algorithm ends when the queue is empty.

Pseudocodes and their running time. A framework for the whole algorithm is
provided by the following pseudocode:

Algoritmus 1: HalfplanesIntersection(H)

Input: A set H = {h1, h2, . . . , hn} of n half-planes in the plane.
Output: Lists L(C) and P (C) describing the left and the right boundaries of

the intersection C of all half-planes from H.

1: if n = 1 then
2: determine the left and the right boundaries.
3: else
4: put H1 = {h1, h2, . . . , h[n/2]}, H2 = H \H1.
5: C1 ← HalfplanesIntersection(H1).
6: C2 ← HalfplanesIntersection(H2).
7: C ← IntersectionOfTwo(C1, C2).
8: end

The intersection of two convex sets can be obtained in this way:

Algoritmus 2: IntersectionOfTwo(C1, C2)

Input: Convex sets C1 a C2 described using the left and right boundaries.
Output: The intersection C = C1 ∩ C2 described using a list L(C) for the left

boundary and a list P (C) for the right boundary.

1: Put L(C) = () a P (C) = ().
2: if C1 a C2 are half-planes then
3: compute L(C) a P (C).
4: else
5: make an event queue out of vertices of C1 and C2.
6: end
7: if C1 a C2 are not bounded from above then
8: compute intersections of boundary half-planes or lines which are at the

beginnings of boundaries of both sets, and insert them into the queue.
9: end

10: while the queue of events is not empty do
11: take its first vertex v
12: HandleEvent(C1, C2, v)
13: end
14: return L(C1 ∩ C2) and P (C1 ∩ C2).

The passage of the sweep line through an event is recorded in the pseudocode:

5

Algoritmus 3: HandleEvent(C1, C2, v)

Input: A vertex v on the boundary of C1 or C2 and lists L(C1 ∩ C2) and
P (C1 ∩C2) for the left and right boundaries of the intersection above v.

Output: Updated lists L(C1 ∩ C2) and P (C1 ∩ C2), updated queue Q.

1: if v ∈ L(Ci) lies between the left and right boundaries of Cj, i 6= j then
2: insert v into L(C1 ∩ C2).
3: end
4: if v ∈ P (Ci) lies between the left and right boundaries of Cj, i 6= j then
5: insert v into P (C1 ∩ C2).
6: end
7: if v lies in the intersection of the left boundaries then
8: insert v into L(C1 ∩ C2).
9: end

10: if v lies in the intersection of the right boundaries then
11: insert v into P (C1 ∩ C2).
12: end
13: if v lies in the intersection of the left boundary of Ci and the right boundary of

Cj, i 6= j then
14: insert v into L(C1 ∩ C2) and also into P (C1 ∩ C2).
15: end
16: if v lies in L(C1 ∩ C2) or in P (C1 ∩ C2) then
17: if v is the first vertex in L(C1 ∩ C2) or in P (C1 ∩ C2) then
18: find which halflines with lower vertex v belong to L(C1 ∩ C2) or

P (C1 ∩ C2).
19: end
20: Find which edges with the upper vertex v belong to L(C1 ∩ C2) or

P (C1 ∩ C2).
21: end
22: From the edges which go downwards from the vertex v denote el the mostleft

one and ep the mostright one. To el find a left adjacent edge sl from the
boundary of the other convex set. To ep find a right adjacent edge sp from the
boundary of the other set.

23: Compute intersections sl ∩ el and sp ∩ ep below v and insert them into the
queue.

24: if v is the last member of the sequence L(C1 ∩ C2) or/and P (C1 ∩ C2) (i.e. it is
not followed by an edge) then

25: remove all events from the queue
26: else
27: remove v from the queue
28: end
29: return L(C1 ∩ C2) and P (C1 ∩ C2).

6

The running time of the algorithm from the last pseudocode is constant. Let the
convex sets C1 and C2 have n1 and n2 vertices, respectively. Then the running time of
the algorithm from the pseudocode IntersectionOfTwo(C1, C2) is O(n1 + n2).

The running time T (n) of the whole algorithm for the computation of the inter-
section of n half-planes is given by the recurrent relation

T (n) = 2T
(n

2

)
+ O(n).

This leads to the resulting running time

T (n) = O(n log n).

Animation. An example of the computation of the intersection of two convex sets C1

and C2 according to the algorithms described by the second and the third pseudocodes
is captured in the following animation.

ANIMATION

(1) The algorithm creates the queue Q = (w2, w3, w5, v2, v4, v3, w4). There are no
intersections of half-lines e1, e4, f1, f5 above w2. The queue remains unchanged.
The position of sweep line is above w2.

CORRECTION of the pictures. The vertex in the middle denoted w4 in this
first picture of animation should be denoted w5. See the second picture where
the description is correct. Nevertheless, all the remaining pictures contain the
same mistake. Please, correct.

(2) The sweep line passes w2 ∈ L(C2). The vertex does not lie in C1, hence L(C1∩
C2) = P (C1 ∩ C2) = (), ep = el = f2, sl = e4, sl ∩ el = {p}. We insert p into
the queue.

(3) The sweep line passes p. This point is in the intersection of the left boundary of
C2 and the right boundary of C1. Hence L(C1 ∩C2) = P (C1 ∩C2) = (p). Next
we find edges which are beyond the point p in the left and right boundaries of
the intersection. L(C1 ∩ C2) = (p, f2), P (C1 ∩ C2) = (p, e4). el = f2, ep = e4,
sl = e1, sp = f5. ep ∩ sp = {q}, el ∩ sl = ∅. We insert q into the queue.

(4) The sweep line passes w3 ∈ L(C2) which lies in C1. Hence L(C1 ∩ C2) =
(p, f2, w3, f3). el = ep = f3, sl = e1, sp = e4, sl ∩ el = ep ∩ sp = ∅.

(5) The sweep line passes q which is the intersection of the right boundary of C1

and the right boundary of C2. Hence P (C1∩C2) = (p, e4, q, f5). el = f5, ep = e4,
sl = f3, sl ∩ el = ∅.

(6) The sweep line passes w5 ∈ P (C2) which lies in C1. Hence P (C1 ∩ C2) =
(p, e4, q, f5, w5, f4). el = ep = f4, sl = e1, sp = e4, sl ∩ el = sp ∩ ep = ∅.

(7) The sweep line passes v2 ∈ L(C1) which does not lie in C2. Hence L(C1 ∩ C2)
and P (C1 ∩ C2) remain unchanged. el = ep = e2, sp = f3, ep ∩ sp = {r}. We
insert r into the queue. Q = (r, v4, v3, w4).

(8) The sweep line passes r which is an intersection of the left boundaries. We
update L(C1∩C2) = (p, f2, w3, f3, r, e2). el = f3, ep = e2, sp = f4, ep∩sp = {t}.
We insert t into the queue. Q = (v4, t, v3, w4).

7

(9) The sweep line passes v4 ∈ P (C1) which does not lie in C2. Hence L(C1 ∩ C2)
and P (C1∩C2) remain unchanged. el = ep = e3, sl = f4, el∩sl = ∅. The queue
is Q = (t, v3, w4).

(10) The sweep line passes t which is an intersection of the left boundary of C1

and the right boundary of C2. Hence t is the last member both in L(C1 ∩ C2)
and P (C1 ∩ C2). We get L(C1 ∩ C2) = (p, f2, w3, f3, r, e2, t) and P (C1 ∩ C2) =
(p, e4, q, f5, w5, f4, t). We remove the remaining points from the queue. The
algorithm is finished.

