

Research centre for toxic compounds in the environment

Ecotoxicology Part 2 - HAZARDS & RISKS

Ludek Blaha + ecotox colleagues

EUROPEAN UNION EUROPEAN REGIONAL DEVELOPMENT FUND INVESTING IN YOUR FUTURE

Ecotoxicology

Science of doses / concentrations

HAZARDS vs RISKS

Research centre for toxic compounds in the environment

EUROPEAN UNION EUROPEAN REGIONAL DEVELOPMENT FUND INVESTING IN YOUR FUTURE

Assessment of chemical hazards

....to....

Humans (TOXICOLOGY)

Other organisms (**ECO**toxicology)

ASSESSMENT and MANAGEMENT of RISKS

WHAT IS HAZARD ? RISK?

RISKS (Probability of the actual occurrence of hazard under specific situation) HAZARDS (Inherited properties of

stressors ... including chemicals)

Table 1.5. Annual mortality rate associated with certain occurrences and activities in the Netherlands [23]

Activity/occurrence	Annual	Annual mortality rate		
Drowning as a result of dike collapse	10-7	1 in 10 million		
Bee sting	2x10 ⁻⁷	1 in 5 million		
Struck by lightning	5x10 ⁻⁷	1 in 2 million		
Flying	1.23x10 ⁻⁶	1 in 814,000		
Walking	1.85x10 ⁻⁵	1 in 54,000		
Cycling	3.85x10 ⁻⁵	1 in 26,000		
Driving a car	1.75x10 ⁻⁴	1 in 5,700		
Riding a motorbike	2x10 ⁻⁴	1 in 1,000		
Smoking cigarettes (1 packet a day)	5x10 ⁻³	1 in 200		

Cause – effect \rightarrow Risk assessment

Exposure (resulting from load)

Effects

(what exposures cause effects

Laboratory (and field) studies Ecotoxicity tests

<u>Predicted Environmental</u> <u>Concentration (PEC)</u>

Research centre for toxic compounds in the environment

(PNEC

007-13 OP Research and Development for Innovation

Regulatory approach: risk assessment and management

Regulatory approach: risk assessment and management

"magnitude" or "impact" of actual risk

<u>Example</u> - "P" (probability) is the same for both events - impact is very different

In ecotoxicology – e.g. fish species:

10% risks of malformations ... is compensated by large numbers of eggs 10% risks of feminization \rightarrow much large impact on population

(Eco)Toxicology – science of "doses"

Paracelsus (1493 - 1541)

What is there which is not a poison?

"Cause-effect paradigm"

- All things are poison and nothing without poison.
- Solely the dose determines that a thing is not a poison.

Toxicology – ultimate goal ?

To identify (or predict) safe vs hazardous levels

Research centre for toxic compounds in the environment

EUROPEAN UNION EUROPEAN REGIONAL DEVELOPMENT FUNE INVESTING IN YOUR FUTURE

Ecotoxicology: what approaches are available?

Hazard assessment

Traditionally – Evaluation of adverse effects using the whole organism models

(Eco)Toxicology methods 1 - standardized assays

Ecotoxicology in current practice

- Most legislations on chemicals) (e.g. REACH, Pharmaceuticals, Pesticides) have very simple (basic) requirements
 - EC50 from acute toxicity
 - Of 3 basic assays
 - Algae
 - Daphnia
 - Fish

Ecotox database: www.epa.gov/ecotox

Laboratory data and results

Ecotoxicology in current practice

 How to extrapolate 3 (or few more) EC50 values to get legally binding safe concentration, which is protecting virtually all organisms?

PNEC

(Predicted No Effect Concentration) *"value recommended by scientists"*

EQS

(Environmental Quality Standard) *"value that occurs in legislation"*

Extrapolation for Risk Assessment

Notes on practical testing

- Testing chemicals
 - Traditional / bioassays developed to assess individual chemicals
 - Advantages: Standardized approaches
 - Disadvantage: Limited ecological relevance
 - often acute tests only
 - "too standardized…" (? Less representative ?)
 - does not assess/consider bioavailability
 - no consideration of mixture effects
 - no consideration of specific modes of action
 - no consideration of ecological situation
- Example: Acute (96h) fish toxicity assay with ethanol
 - No deaths (but fish are passive slow swimming) \rightarrow OK ?
 - − Real life: easy prey \rightarrow population decline

Notes on practical testing

- Testing toxicity of natural contaminated matrices
 - Rather new in ecotoxicology many open challenges
 - Whole effluent toxicity testing (WET)
 - Contact soil toxicity assays
 - More complex and more complicated
 - "cause-effects" often not clear
 - Natural variability in matrices
 - Algal tests nutrients (Nitrogen, Phosporus) >> Toxic compounds

Results of ecotoxicology

WHAT IS IT GOOD FOR ?

SOLVING PRACTICAL PROBLEMS

Research centre for toxic compounds in the environment

EUROPEAN UNION EUROPEAN REGIONAL DEVELOPMENT FUNE INVESTING IN YOUR FUTURE

Application of ecotoxicity results (ECx → EQs) in regulatory context

European Water FrameworkDIRECTIVE

Research centre for toxic compounds in the environment

EUROPEAN UNION EUROPEAN REGIONAL DEVELOPMENT FUND INVESTING IN YOUR FUTURE

EQS in reality – example EU Water Framework Directive

h and Innovation

List of priority compounds EU WFD (selection/examples)

Most recent (2015)

44 priority compounds (table here) + additional "watch list" → see further

AA: annual average;

MAC: maximum allowable concentration.

PRACTICE: Chemical measurements vs limits (EQs)

Unit: [µg/l]

(1)	(2)	(3)	(4)	(5)	(6)	(7)
No	Name of substance	CAS number (1)	AA-EQS (²) Inland surface waters (³)	AA-EQS (²) Other surface waters	MAC-EQS (4) Inland surface waters (3)	MAC-EQS (4) Other surface waters
(1)	Alachlor	15972-60-8	0,3	0,3	0,7	0,7
(2)	Anthracene	120-12-7	0,1	0,1	0,4	0,4
(3)	Atrazine	1912-24-9	0,6	0,6	2,0	2,0
(4)	Benzene	71-43-2	10	8	50	50
(5)	Brominated diphenylether (5)	32534-81-9	0,0005	0,0002	not applicable	not applicable
(6)	Cadmium and its compounds (depending on water hardness classes) (⁶)	7440-43-9	≤ 0,08 (Class 1) 0,08 (Class 2) 0,09 (Class 3) 0,15 (Class 4) 0,25 (Class 5)	0,2	≤ 0,45 (Class 1) 0,45 (Class 2) 0,6 (Class 3) 0,9 (Class 4) 1,5 (Class 5)	≤ 0,45 (Class 1) 0,45 (Class 2) 0,6 (Class 3) 0,9 (Class 4) 1,5 (Class 5)
(6a)	Carbon-tetrachloride (7)	56-23-5	12	12	not applicable	not applicable

Watch list of substances for Union-wide monitoring as set out in Article 8b of Directive 2008/105/EC

Name of substance/group of substances	CAS number (1)	EU number (²)	Indicative analytical method (³) (⁴) (⁵)	Maximum acceptable method detection limit (ng/l)
17-Alpha-ethinylestradiol (EE2)	57-63-6	200-342-2	Large-volume SPE — LC-MS-MS	0,035
17-Beta-estradiol (E2), Estrone (E1)	50-28-2, 53-16-7	200-023-8	SPE — LC-MS-MS	0,4
Diclofenac	15307-86-5	239-348-5	SPE — LC-MS-MS	10
2,6-Ditert-butyl-4-methylphenol	128-37-0	204-881-4	SPE — GC-MS	3 160
2-Ethylhexyl 4-methoxycinnamate	5466-77-3	226-775-7	SPE — LC-MS-MS or GC-MS	6 000
Macrolide antibiotics (6)			SPE — LC-MS-MS	90
Methiocarb	2032-65-7	217-991-2	SPE — LC-MS-MS or GC-MS	10
Neonicotinoids (⁷)			SPE — LC-MS-MS	9
Oxadiazon	19666-30-9	243-215-7	LLE/SPE — GC-MS	88
Tri-allate	2303-17-5	218-962-7	LLE/SPE — GC-MS 670 or LC-MS-MS	

in the environment

Another example where ecotoxicology results are used

European strategy how to deal with chemicals REACH

Research centre for toxic compounds in the environment

EUROPEAN UNION EUROPEAN REGIONAL DEVELOPMENT FUNI INVESTING IN YOUR FUTURE

REACH

Registration, Evaluation and Authorisation of Chemicals

- 27-2-2001: White Paper on the Strategy for Future Chemicals Policy
- 23-10-2003: Commission's proposal REACH
- December 2008: Pre-registration mandatory (all chemicals in EU must be registered at ECHA

ECHA > Homepage

15/06/2015 - Press release

Two new substances of very high concern (SVHCs) added to the Candidate List

ECHA took the decision to include two substances on the Candidate List based on proposals by Sweden and the Netherlands respectively, following the SVHC identification process with involvement of the Member State Committee. The Candidate List now contains 163 substances. Of those, 31 have subsequently been included in the Authorisation List.

locoen

European Chemicals Agency (http://echa.europa.eu)

Existing substances and REACH

Nay31.2018

June 1, 2001 , 2008 , 2008 , 2010 , 2010 , 2013

- > 95,000,000 known chemicals
 (...and counting http://www.cas.org/)
- 100,000 substances in EINECS (i.e. commercial use)
- 30,000 relevant for R
- cc 3000 HPVCs (Hig Volume Chemicals)

Research centre

for toxic compound in the environment REACH comes into force

Start of the pre-registration phase

End of the pre-registration phase

Registration of:

≥ 1000 to/a R50-53 ≥ 100 to/a CMR cat 1,2 ≥ 1 to/a

≥ 100 to/a

≥ 1 to/a

New substances

REACH legislation in EU

Registration, Evaluation and Authorisation and Restriction of Chemicals

- Physico-chemical properties, e.g.:
 - Vapour pressure, boiling point, Kow,...
- Human toxicology, e.g.:
 - Acute and chronic toxicity, skin irritation, carcinogenity,...
- Environment/ Ecotoxicological information, e.g.:
 - Acute and/or chronic toxicity for aquatic organisms, biodegradation, ...

REACH: testing

Classification categories	Test requirements in REACH			
	>1	t	>10t	>100t
	New or prioritised substance			
Reproductive toxicity (a generation test)	no	no	no	no
Chronic toxicity and cancer	no	no	no	(yes)
90-day study	no	no	no	(yes)
28-day study	no	no	(yes)	yes
Acute toxicity (a second route of exposure)	no	no	yes	yes
Acute toxicity	no	yes	yes	yes
Skin allergy	no	yes	yes	yes
Skin and eye irritation	no	yes	yes	yes
Mutageneicity (in vitro)	no	yes	yes	yes
Further ecotoxicity studies (incl long term tests)	no	no	no	yes
Acute toxicity: fish	no	no	yes	yes
Acute toxicity: algae	no	yes	yes	yes
Acute toxicity: Daphnia	no	yes	yes	yes
Biotic degradation	no	yes	yes	yes

Total costs: 2,8 to 5,6 billion € (industry pays)

Research centre for toxic compounds in the environment

Testing costs (50-60% of total) **OP Research and Development for Innovation**

INVESTING IN YOUR FUTURE

Depends on legislation (... of course !) ... but current EU legislations tend to be harmonized (use similar approaches)

→ example of REACH

Assays must be STANDARDIZED for REACH should follow OECD Guidelines

Other standardization agencies (also include toxicity tests) e.g. ISO, ASTM

OECD guidelines for testing of chemicals

- Section 1: Physical Chemical Properties
- Section 2: Effects on Biotic Systems (i.e. Ecotoxicity)
- Section 3: Degradation and Accumulation
- Section 4: Health Effects
 - (i.e. Toxicity)
- Section 5: Other Test Guidelines

OECD guidelines (examples – selection)

OECD

SECTION 2 - Aquatic organisms

Test No. 201: Alga, Growth Inhibition Test	11 July 2006
Test No. 221: Lemna sp. Growth Inhabition Test	11 July 2006
Test No. 202: Daphnia sp. Acute Immobilisation Test	23 Nov 2004
Test No. 211: Daphnia magna Reproduction Test	16 Oct 2008
Test No. 203: Fish, Acute Toxicity Test	17 July 1992
Test No. 204: Fish, Prolonged Toxicity Test: 14-Day Study	04 Apr 1984
Test No. 210: Fish, Early-Life Stage Toxicity Test	17 July 1992
Test No. 212: Fish, Short-term Toxicity Test on Embryo and Sac-Fry Stages	21 Sep 1998
Test No. 215: Fish, Juvenile Growth Test	21 Jan 2000
Test No. 229: Fish Short Term Reproduction Assay	08 Sep 2009
Test No. 230: 21-day Fish Assay	08 Sep 2009
Test No. 231: Amphibian Metamorphosis Assay	08 Sep 2009

OECD guidelines (examples – selection)

SECTION 4 – Human health effects

- Test No. 401: Acute Oral Toxicity
- Test No. 402: Acute Dermal Toxicity
- Test No. 403: Acute Inhalation Toxicity
- Test No. 404: Acute Dermal Irritation/Corrosion
- Test No. 405: Acute Eye Irritation/Corrosion
- Test No. 406: Skin Sensitisation
- Test No. 407: Repeated Dose 28-day Oral Toxicity Study in Rodents
- Test No. 408: Repeated Dose 90-Day Oral Toxicity Study in Rodents
- Test No. 409: Repeated Dose 90-Day Oral Toxicity Study in Non-Rodents
- Test No. 410: Repeated Dose Dermal Toxicity: 21/28-day Study
- Test No. 411: Subchronic Dermal Toxicity: 90-day Study
- Test No. 412: Subacute Inhalation Toxicity: 28-Day Study

OECD Guidelines for the Testing of Chemicals, Section 4 Health Effects

in the environment

INVESTING IN YOUR FUTURE

Subscribe to the feed

Development for Innovation

Hide / Show Abstract

			Hide / Show all Abstracts
Mark	Date	≜ Title	Click to Access
	11 Sep 2006	Summary of Considerations in the Report from the OECD Expert Groups on Short Term and Long Term Toxico OECD	ology 🤌 PDF 💿 READ
	24 Feb 1987	Test No. 401: Acute Oral Toxicity OECD	🧶 PDF 💿 READ
	24 Feb 1987	Test No. 402: Acute Dermal Toxicity OECD	🌔 PDF 💿 READ
	08 Sep 2009	Test No. 403: Acute Inhalation Toxicity OECD	🕭 PDF 💿 READ
	R fd	esearch centre	nload and study uideline for free!

Risks of chemicals: a balancing act

between perception, uncertainties, science and pragmatism?

Final considerations

EUROPEAN UNION EUROPEAN REGIONAL DEVELOPMENT FUNI INVESTING IN YOUR FUTURE

SOCIETY - RISKS vs BENEFITS (!)

Society is a balancing act ...

Scientists should contribute (provide valid data) for decision making

Scientists

EUROPEAN UNION EUROPEAN REGIONAL DEVELOPMENT FUND INVESTING IN YOUR FUTURE

WRAP UP and take home message – part 2

- What are hazards vs risks?
 - Risk assessment and management?
 - IMPACTS of risks? Risks vs benefits?
- How are the risks calculated
 - By comparing EXPOSURES (PEC) with HAZARDS (PNEC)
- How are hazards assessed?
 - By toxicity assays
 - there are 3 most widely used!
 - They must be done by standardized approaches (OECD guidelines)
 - What are results of toxicity assays (ICx, NOEC, LOEC)?
 - How are the results used?
 - Predictions of PNEC (by application of AFs)
 - Regulatory acceptance \rightarrow EQS
- Know examples of ecotox applications
 - PNEC (EQs) in Water framework directive
 - Predictive risk assessment in REACH regulation

