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SUMMARY

As organisms age, cells accumulate genetic and
epigenetic errors that eventually lead to impaired or-
gan function or catastrophic transformation such as
cancer. Because aging reflects a stochastic process
of increasing disorder, cells in an organ will be indi-
vidually affected in different ways, thus rendering
bulk analyses of postmitotic adult cells difficult to
interpret. Here, we directlymeasure the effects of ag-
ing in human tissue by performing single-cell tran-
scriptome analysis of 2,544 human pancreas cells
from eight donors spanning six decades of life. We
find that islet endocrine cells from older donors
display increased levels of transcriptional noise and
potential fate drift. By determining themutational his-
tory of individual cells, we uncover a novel mutational
signature in healthy aging endocrine cells. Our re-
sults demonstrate the feasibility of using single-cell
RNA sequencing (RNA-seq) data from primary cells
to derive insights into genetic and transcriptional
processes that operate on aging human tissue.

INTRODUCTION

Aging in higher-ordermetazoans is the result of a gradual accumu-

lation of cellular damage, which eventually leads to a decline in tis-

sue function and fitness (López-Otı́n et al., 2013). Because the

fundamental processes involved in aging affect single cells in a

stochasticmanner, theyhavebeendifficult to study systematically

in primary human tissue. Studies of selected genes in mice indi-

cate that aging postmitotic cells of the heart display a transcrip-

tional instability (Bahar et al., 2006) that is not observed in actively

renewing cell populations such as those of the hematopoietic sys-

tem (Warren et al., 2007). An accumulation of genetic aberrations

has been suggested to underlie transcriptional dysregulation by

affecting promoter and enhancer elements as well as exonic se-
quences (Vijg, 2004). However, due to technical constraints, it

haspreviouslybeendifficult tostudy theseprocesses inhuman tis-

sue or at thewhole transcriptome level. In particular, little is known

about the mutational load on post-mitotic cells that cannot be

expanded in culture. Studies on CAG repeats inmouse brain (Go-

nitel et al., 2008) have shown that age-dependent somatic muta-

tion rates in post-mitotic cells might be higher than previously

anticipated.Because thesemutational processes operate in chro-

nological time rather than number of cell divisions, an analysis of

human cells from a large age span rather than from short-lived

model organisms is needed. However, such a systematic survey

of human tissue from different ages has not been performed.

The pancreas functions both as an endocrine and an exocrine

gland and is associated with illnesses such as type II diabetes,

that have a considerable age-related disease risk. The exocrine

function is mediated by acinar cells producing enzymes for the

digestive system, while the endocrine function is mediated by is-

lets of Langerhans, where themajor cell types are a-cells, b-cells,

d-cells, and pancreatic polypeptide (PP) cells. Previously, single-

cell RNA sequencing (scRNA-seq) on primary tissue has been

used to study heterogeneity within cell types and to further refine

them—for the pancreas, see Muraro et al. (2016), Segerstolpe

et al. (2016), Li et al. (2016), and Wang et al. (2016). However,

scRNA-seq also provides an ideal framework to study noisy pro-

cesses that act on single cells, such as aging. Thus, to overcome

the previous technical difficulties in studying cellular aging, we

analyzed single human cells from donors of a wide spectrum of

ages. Using this approach allows us to detect features of aging

that are not coordinated across many cells but rather affect

different cells randomly and to quantify themwith high precision.
RESULTS

A Comprehensive Survey of Single Pancreatic Cells
from Human Donors across Different Ages
To investigate the effect of physiological aging on pancreatic

epithelial cells, we obtained pancreata from eight previously

healthy donors operationally defined as juvenile (ages 1 month,
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Figure 1. A Comprehensive Survey of Single Cells Sampled from Human Pancreas across Different Ages

(A) tSNE plot of 2,544 successful scRNA-seq libraries from eight donors. Each point represents one cell and points are positioned to retain pairwise distances as

determined by Pearson correlation of the 500 most highly expressed genes. Cell identity is indicated by marker gene expression.

(B) Fraction of cells that express the aging associated gene CDKN2A (p16) in juvenile (0–6 years), young adult (21–22 years), and middle-aged (38–54 years)

donors increases with age (p = 3.1E-3, n = 8, linear regression.) Bars are mean ± SEM (n = 2–3).

(C) Boxplot of transcriptional noise in b-cells, plotted by age group. Higher age is associated with increased whole-transcriptome cell-to-cell variability within cell

type (p = 6.67E-9, n = 384). Boxes indicate the middle quartiles, separated by median line. Whiskers indicate last values within 1.5 3 the interquartile range for

the box.

(D) Violin plots show the ratio of Insulin–Glucagon protein staining at the sites of Insulin (INS, n = 5,801) and Glucagon (GCG, n = 3,254) RNA hybridization spots.

(E) Boxplot of Log2 counts per million (CPM) of cell-atypical glucagon transcript in b cells (left), and insulin transcripts in a-cells (right), in cells from juvenile

(0–6 years), young adult (21–22 years) and middle-aged (38–54) donors. Boxes indicate the middle quartiles, separated by median line. Whiskers indicate last

values within 1.5 3 the interquartile range for the box.

See also Figure S1 and Tables S1, S2, and S3.
5 years, and 6 years), young adult (ages 21 years and 22 years),

and adult/middle aged (ages 38 years, 44 years, and 54 years).

Single pancreatic cells were purified by flow cytometry and their

mRNA expression analyzed using scRNA-seq (Picelli et al., 2014)

with transcript abundance expressed as counts per million

(CPM) and the quality of individual cells assessed using an auto-

mated quality control pipeline (see STAR Methods for details).

Dimensionality reduction analysis (tSNE) of data from all donors

led to consistent clustering of different cell types into distinct

regions (Figure 1A), indicating an absence of donor- or

sequencing-related batch effects.

Transcriptional Instability and Fate Drift in Cells from
Older Donors
The large span of donor ages (z6 decades), allowed us to

assess the effect of organismal aging at the single-cell level.
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The fraction of cells expressing known markers of organismal

aging, such as CDKN2A (p16INK4A), were associated with age

(Figure 1B) consistent with prior studies using bulk RNA-seq

on larger donor cohorts (Arda et al., 2016; Chen et al., 2011);

however, overall we observed only modest systematic age-

dependent transcriptional changes for many age-specific genes

(Figures S1A andS1B; Tables S2 andS3). From investigations on

a small panel of genes in the mouse heart (Bahar et al., 2006), it

has previously been suggested that aging is the result of an in-

crease in transcriptional instability rather than a coordinated

transcriptional program. To test whether this observation can

be generalized to a full transcriptional profile in human tissue,

we measured the transcriptional noise within cell types and do-

nors using estimates based on Euclidean distance (Figure S1C)

and Pearson correlation as a fraction of technical error (Fig-

ure 1C). Both methods indicated increased transcriptional noise



Figure 2. Gene Expression Changes Associ-

ated with Transcriptional Noise

(A) Expression of cell-typical (INS for b-cells, GCG

for a-cells) and non-typical hormone in cells,

ranked by transcriptional noise. Dots represent

individual cells, line is running mean, with k = n/5

(k = 69 for b cells and 199 for a cells).

(B) Organismal age and expression of stress-

related genes are strongly associated with tran-

scriptional noise. All genes were tested for

association with transcriptional noise (linear rank

regression), shown are the top genes by coeffi-

cient, with FDR <1E-3. Heatmap shows loess fit.

Rows marked with a black box indicate genes that

are associated with response to stress (Yu et al.,

2015; Daugaard et al., 2007; Paneni et al., 2013;

Toone et al., 2001).

See also Figure S2 and Table S4.
in samples from older donors compared to samples from

young adults and children, demonstrating age-dependent

transcriptional noise (p = 3.01E�11, n = 2,544, for Pearson and

p < 1E-16, n = 80,000 for Euclidean, linear regression) without

changes in cellular composition (Figure S1D).

A subset of a-cells and b-cells simultaneously expressed both

Insulin (INS) andGlucagon (GCG) mRNA—a result that is consis-

tent with prior studies (Blodgett et al., 2015; Xin et al., 2016; Kat-

suta et al., 2010) and that we verified using in situ RNA staining

(Figures 1D and S2). scRNA-seq revealed that the fraction of

a- or b-cells co-expressing both Insulin and Glucagon mRNA

increased significantly with advancing age (Figure 1E, GCG in

b-cells: p = 1.74E-27, n = 348; INS in a-cells: p = 5.38E-10,

n = 998, linear regression). As expected, cells with high levels

of transcriptional noise also express more cell-atypic hormone

(Figure 2A). Thus, increasing numbers of cells with ‘‘atypical’’

hormone mRNA expression is emblematic of age-dependent

transcriptional instability, and such ‘‘fate drift’’ suggests a phys-

iological basis for declining endocrine function, in spite of

increased hormone secretion, in the aging pancreas (Chang

and Halter, 2003; De Tata, 2014).

We performed linear regression on gene expression levels as a

function of noise rank (batch corrected and within cell type) to

investigate whether any systematic gene expression differences

accompany an increase in transcriptional noise. As shown in Fig-

ure 2B, stress response genes such as FOSB, HSPA1A, and

JUND were most highly associated with increasing transcrip-

tional noise, supporting an aging paradigm that implicates

cellular stress in age-related pathology (Harman, 1965).

Analysis of Single Nucleotide Variants in scRNA-Seq
Data Reveals Cell-Type-Specific Somatic Substitutions
and Neuronal mRNA Editing
Aging is accompanied by the accumulation of somatic DNA sub-

stitutions, and the pattern of somatic substitutions in a cell de-

pends on the mutational processes that cause them. A growing

body of data from tumor genomes has uncovered a multitude of

such mutational signatures (Alexandrov et al., 2013b; Nik-Zainal
et al., 2014, 2016; Kasar and Brown, 2016), many of which can

be linked to specific mutational processes. However, these sig-

natures are dominated by processes associated with tumor

growth and only 3 out of 21 such signatures have been linked

to aging in tumors or organoid cultures of stem cells (Alexandrov

et al., 2015; Blokzijl et al., 2016). Post-mitotic cells are especially

difficult to study, because they cannot be clonally expanded.

Thus, very little is known about themutational processes that op-

erate on the terminally differentiated cells that make up most of

our body. To directly study mutational signatures that are active

in healthy tissue, we developed a computational method for

determining genetic variation within single cells using scRNA-

seq data and validated the method using deep whole-genome

sequencing (see STAR Methods). Using this method, we

compiled a catalog of putative somatic and constitutional

(donor-specific germline) mutations from the 2,544 pancreas

cells together with 398 previously published single cells from

adult human brain (Darmanis et al., 2015). We also compiled a

similar catalog of clonal variation within 73 cells fromGP5d colon

cancer cells cultured in vitro (Figure 3A). We used synthetic

spike-in RNA (ERCC control) as an internal control, which al-

lowed us to sift out technical artifacts, removing 92.6% of these

false positive calls (Figure S3C). Further, we used whole genome

sequencing data to benchmark our method of separating so-

matic substitutions from germline variation, with the majority

(67.4%) of putative somatic mutations being absent from

genomic calls. Somatic substitutions were enriched in untrans-

lated regions of transcripts such as the 30UTR (p = 1.40E-32,

paired t test, n = 73) and also enriched for mutations resulting

in codons that do not alter the amino acid sequence (Figures

3B and S5H). As expected, the vast majority of putative somatic

substitutions were observed in only one cell each (Figure S3A),

indicating that the method is specific to somatic variation. Sub-

stitution calls were very rare in low copy-number transcripts and

greatly enriched in high copy-number transcripts, while ERCC

calls were not (Figures S3C–S3E), precluding the possibility of li-

brary preparation artifacts being a major source of substitution

calls. Whereas low expressed transcripts often showed allelic
Cell 171, 321–330, October 5, 2017 323



Figure 3. Somatic Mutation Profiles Derived from Single Primary Human Cells

(A) Substitution rates for each type of substitution in the three datasets. Somatic substitution rates were more than five times as high in pancreas as in brain

(2.743 10�6 versus 0.523 10�6), whereas germline substitution rates were similar between the two. As expected, the rate of clonal substitutions in the tumor cell-

line (GP5d) is several fold higher than germline rates in primary tissue.

(B) Somatic substitutions are strongly enriched on untranslated regions compared to germline substitutions. Bars are mean ± SEM, n = 73.

(C) Comparison of relative mutation rates of single-nucleotide substitutions in the context of the nucleotide immediately 50 of the altered base. Different sub-

stitution types are separated by boxes with the substitution type indicated (e.g., C > A: C to A transversion). The relative substitution rate for C > T substitutions

within a CpG context, and T > C substitutions is higher in brain than in the other tissues tested (p = 6.38E-61 and p = 1.89E-17, respectively; Wilcoxon test,

n = 2,544 for pancreas, n = 73 for gp5d, and n = 332 for brain).

(D) Detecting mRNA editing in brain samples. Shown is the number of splice site substitutions in the GRIA2 gene. T > C substitutions mapping to the

transcribed (�) strand, corresponding to adenine substituted for guanine in the transcribed RNA, are highly enriched whereas other substitution types remain at

baseline levels. Inlay shows mean number ofGRIA2 substitutions per cell for the three datasets, brain is highly enriched in such substitutions (p = 5.40E-19. Bars

are mean ± SEM, n = 2,544 for pancreas, n = 3323 for brain, and n = 73 for GP5d).

See also Figure S3.
imbalance at heterozygous alleles, highly expressed genes did

not (Figure S3G), suggesting that the main driver of allelic imbal-

ance was bursty gene expression rather than early cycle PCR

errors. Somatic mutation rates exceed the technical error rates

due to amplification and sequencing error, asmeasured by inter-

nal spike-in controls of synthetic RNA included in each single-

cell experiment (Figure 3A).

To investigate patterns of somatic mutations, we determined

the rates (substitutions per base pair) of the six possible single

nucleotide substitutions in each cell. Single cells from pancreas

had a markedly higher overall rate (> 5-fold) of somatic variation

compared to brain tissue (Figure 3A), and there were consider-

able differences also between cell types in the pancreas (Fig-

ure S3B), whereas we only observed small fluctuations in the

number of substitutions on ERCC control RNA from the same

cells (Figure S3C, red bars). However, rates of C > T substitutions

in a CpG dinucleotide context, known to deaminate spontane-

ously when methylated, and T > C substitutions were relatively

higher in brain compared to pancreas (Figure 3C), in line with
324 Cell 171, 321–330, October 5, 2017
what was previously found for postmitotic brain cells (Lodato

et al., 2015). Synthetic control RNA substitution rates were

similar between cell types of the pancreas and represent a lower

level of technical noise in the measurement. Thus, analyzing the

raw sequence reads from scRNA-seq data allows us to deter-

mine the mutational history of primary tissues as well as the

clonal variation in a tumor cell line.

Because we are analyzing processed mRNA rather than DNA,

our method can potentially be used to uncover systematic

mRNA editing events in addition to DNA substitutions.mRNA ed-

iting is a controlled cellular process found in neuronal lineage

cells, where adenosine residues are converted to inosine, result-

ing in T > C substitutions on the transcribed strand. To determine

whether mRNA editing can be detected using our method, we

analyzed substitutions in the glutamate receptor GRIA2 gene,

which is a well-known target for mRNA editing at splice junctions

(Higuchi et al., 1993). This gene is expressed in both endocrine

cells and brain cells, making a direct comparison possible.

Consistent with mRNA editing being specific to neurons, T > C



Figure 4. Mutational Signatures Derived from scRNA-Seq Data

(A) Single-nucleotide substitutions in 3,003 cells from pancreas, brain, and the colon cancer cell line GP5d were organized into mutational signatures using non-

negative matrix factorization followed by agglomerative hierarchical clustering. Bar plot illustrates the percent of mutations attributed to each substitution type in

each of the three signatures (S1–S3, left) and the four excluded signatures (SC1–SC4, right). Colors as in (A). Panel below the bar plot indicates selection items for

determining whether to exclude the signature. Green, cause for inclusion; red, cause for exclusion. Bottom panel denotes the presence of a signature (columns) in

a cell type (rows), with color scale indicating strength of signature as median substitution rate for cells of the indicated type. Blue boxes denote significant

association between signature load and donor age. Bottom row indicates equivalent signatures from Alexandrov et al. (2013b).

(B) Strand specificity differs between cell types. Mutations were annotated based on whether the mutated pyrimidine occurred on the transcribed (�) or un-

transcribed (+) strand. Bars representmean ±SEMof raw substitution counts in endocrine cells (left) and brain cells (right). Note that endocrine cells have a strong

strand bias for the transcribed strand for C > A, C > G, and C > T substitutions (p = 1.00E-79, 1.37e-28, and 6.40E-34, respectively; Wilcoxon test, n = 1,429)

previously observed in oxidative stress-related tumor signatures, while brain has a bias for T > C substitutions on the transcribed strand (p = 3.41E-11; Wilcoxon

test, n = 466) similar to tumor signature 12 (Alexandrov et al., 2013b).

(C) Signature S2 is composed of two sub-signatures corresponding to cancer signatures 1 and 6. Violin plot show C > T substitutions with a preceding G as a

fraction of all substitutions in a cell, which is a hallmark of cancer signature 6 and that separates GP5d and brain cells (p = 7.156E-11; Wilcoxon test, n = 73 for

GP5d and n = 332 for brain cells).

See also Figure S4 and Tables S6 and S7.
substitutions inGRIA2 occurred almost exclusively in brain cells.

A more precise analysis of the GRIA2 splice sites confirmed this

because these sites were highly enriched in T > C substitutions

on the transcribed strand (Figure 3D).

Endocrine Cells Display a Specific Mutational Signature
Related to Oxidative Stress
To identify the mutational signatures (S1–S3, SC4–SC7) that un-

derlie the observed substitution rates, we used non-negative

matrix factorization (NMF) followed by hierarchical clustering
(similar to Alexandrov et al. [2013a], see STAR Methods for de-

tails) on the substitution rates of single cells (Figures 4A and

S4). The NMF analysis also acts as a second filter for false-pos-

itive substitution calls by ordering substitutions due to technical

artifacts such as PCR errors into their own signatures. Thus, we

excluded signatures with a high degree of similarity to the substi-

tution rates of the negative control RNA, lacking cell-type spec-

ificity or positive age association, or with a very low signal

(excluded signatures SC4–SC7 in Figure 3A, see STAR Methods

for details).
Cell 171, 321–330, October 5, 2017 325



Figure 5. The Genomic DNA in Pancreatic

Islets Are Highly Enriched in Oxidized

Guanine

(A) Pancreatic b-cell DNA is enriched in oxidized

guanosine. Nuclear staining intensity of anti

8-Oxoguanosine antibody was quantified for INS-

positive or INS-negative cells, from the same im-

ages. Slides were treated with RNase so as to only

measure oxidized bases on DNA. Bar plot in-

dicates mean ± SEM (p = 7.30E-57; Wilcoxon test,

n = 769 b-cells, 10,713 non-islet cells.).

(B) Left: representative micrograph with 8-Ox-

oguanosine in magenta and nuclear stain (DAPI) in

gray (scale bar, 50 mm). Right: insulin protein

staining of the same region. Insulin-positive islet

cell mass is at bottom left, boundary indicated with

orange line.

(C) Pancreatic b-cell RNA is marginally enriched in

oxidized guanosine. Cytoplasmic staining intensity

of anti 8-Oxoguanosine antibody was quantified

for INS-positive b cells and INS-negative cells from

the same slides. Bar plot indicates mean ± SEM

(p = 9.5E-22, 1,239 b-cells, 21,048 surrounding

cells).

(D) Left: representative micrograph with 8-Ox-

oguanosine in magenta and nuclear stain (DAPI) in

gray. Right: insulin protein staining of the same

region. INS-positive islet cell mass boundary indi-

cated with orange line. Scale bar, 50 mm.

See also Figure S5.
The S1 signature (high rate of C > A, followed by C > G and

C > T substitutions), and S3 signature (highly elevated rate of

T > C substitutions), were cell-type-specific signatures, with S1

found in the endocrine pancreas and S3 in the brain. The S2

signature was highly enriched in clonal variation within the

mismatch repair-deficient GP5d cell line, with weaker signal in

brain. The pancreas-specific signature S1 was characterized

by C > A substitutions, with C > G and C > T substitutions at pro-

gressively lower rates. C > A and C > G substitutions are attrib-

uted to oxidation of the guanine base, creating 8-Oxo-20-deoxy-
guanosine (8-Oxo) that mispairs with adenine and can be further

oxidized to mispair with guanine (Moriya et al., 1991; Kino and

Sugiyama, 2005), whereas C > T substitutions are attributed to

oxidation of the cytosine base (Kreutzer and Essigmann, 1998).

Consistent with oxidation of guanosine driving the mutational

signature of b cells, 8-hydroxyguanosine levels were markedly

elevated in the DNA of b cells compared to non-islet cells, while

only modestly elevated in RNA (Figure 5). 8-Oxo substitutions

preferentially occur when the guanine is on the non-transcribed

strand (Park et al., 2012; Alexandrov et al., 2013b), possibly due

to transcription-coupled nuclear excision repair of adducts on

the transcribed strand (Banerjee et al., 2011). In order to deter-

mine if transcriptional strand bias occurred in our data, we anno-

tated the single-base substitutions with whether the mutated

pyrimidine was on the transcribed (�) or untranscribed (+)

strand. As expected, C > A and C > G substitutions had a strong
326 Cell 171, 321–330, October 5, 2017
preference to occur on the transcribed strand in endocrine cells,

but not in brain cells, consistent with guanine oxidation driving

signature S1 (Figure 4B). Taken together, signature S1 appears

to be a novel, strand-specific mutational signature that is en-

riched in transcribed genes and that bears the hallmarks of

oxidative damage.

Previous large-scale efforts to decipher cancer-specific muta-

tional signatures in bulk tumor genomes (Alexandrov et al.,

2013b) discovered 21 unique signatures based on the substitu-

tion type and the surrounding two bases. We reasoned that

our signatures might have been also detected in the tumor

data and compared the signatures by collapsing their probabili-

ties into single-base substitution probabilities. Signature S3

found in this study was very similar to tumor signature 12 from

Alexandrov et al. (2013b) (Figure S5D, Pearson correlation

0.971), and the characteristic T > C substitutions in brain display

a similar degree of strand specificity to tumor signature 12

(Figure 4B). Signature S2 was almost identical to both the age-

dependent tumor signature 1 and the mismatch repair-associ-

ated tumor signature 6 (Figure S5D, Pearson correlation 0.975

and 0.987, respectively). The major distinguishing feature

between the two tumor signatures is the rate of C > T substitu-

tions within a GpC context. As shown in Figure 4B, this distin-

guishing feature clearly separates the two tissues in our data,

suggesting that non-clonal substitutions in GP5d mainly stem

from faulty mismatch repair, whereas somatic substitutions in



Figure 6. Transcriptional Correlates of

Mutational Signatures

Endocrine pancreas cells were ordered accord-

ing to the fraction of mutations attributed to

Signature S1.

(A) Average age is higher in cells with high S1 load

(p = 5.95E-23, linear rank regression). Points are

running mean, k = 10, and line is Loess fit, dotted

lines indicate ± 0.999 confidence interval.

(B) Each gene was tested for association with

signature S1 (linear rank regression), shown are the

top genes by coefficient, with p < 1E-15 (FDR

corrected). Points are individual mRNA measure-

ments, line loess fit as in (A).

(C) Comparison of the top ten gene ontology (GO)

categories positively correlated with signature S1

and transcriptional noise. Categories related to

protein production, such as ribosomal proteins,

recur in both. Color scale indicates FDR-adjusted

p value, winsorized at 10�6.

See also Table S5.
brain are caused by the same age-dependent process as tumor

signature 1.

Interestingly, tumor signature 5, which is of unknown etiology

and is found at low levels in all tumor types, is highly reminiscent

of our false positive signature (Figure S5D, Pearson correlation

0.990)—suggesting that it is either aproductof false-positivecalls

in the tumor datasets or causedby amechanism shared between

human replication and enzymes used for nucleic acid amplifica-

tion. None of the 21 tumor signatures found to date is directly

related to endogenous oxidative stress, and the endocrine signa-

ture S1 has no direct counterpart among the tumor signatures.

The strongest correlation was to tumor signature 3 (Pearson

correlation 0.769), which has been found in pancreatic, breast,

and ovarian cancers, followed by signature 24 (Pearson correla-

tion 0.756), which is found in cancers resulting from aflatoxin

exposure via oxidative stress-induced DNA damage. However,

signature S1 only bears a passing resemblance to these two,

and further investigation into mutational signatures of healthy tis-

sueswill be needed to elucidatewhether signature S1 is emblem-

atic of mainly post mitotic cells with high rate of metabolism,

which rarely form tumors, or if it is specific to endocrine pancre-

atic cells.

Mutational Load of Signature S1 Is Higher in Endocrine
Cells from Older Donors and Correlate with Induction of
Protein Synthesis-Related Genes
Ranking of cells by signature-specific mutational load indicated

that signatures S1 and S2 were highly correlated with age, with
S1 showing the highest significance

(p = 5.95E-23, Figures 6A and S5). Signa-

ture S2 showed none or little effect on

gene expression—only 45 genes were

significantly affected with false discovery

rate (FDR) <1E-3, none of which were up-

regulated. PON2 (a membrane protein

with a putative antioxidant activity) and

EGR1 displayed the highest upregulation
associated with mutational load of the age-dependent S2 (at

FDR <0.05) (Figure S5; Table S6). Signature S1, on the other

hand, was associated with a considerable transcriptional effect

(1,595 genes at FDR <1E-3). The genes most highly associated

with high S1 load were involved in transcription (TCEB2), protein

synthesis (RPL36), and modulation of ROS (ROMO1) (Figure 6B,

see also Table S5 for an expanded list).

Gene set enrichment analysis (Subramanian et al., 2005) indi-

cated that pathways involved in protein synthesis were altered in

both cells with high S1 load and cells with high transcriptional

noise (Figure 6C). Further, signature S1 correlated with higher

abundance of the tumor suppressor CDKN2A (p16) (Figure S4D,

p = 0.024, n = 1,425, linear regression), a correlation that was not

observed between transcriptional noise and CDKN2A expres-

sion (Figure S4C, p = 0.17, n = 1,425, linear regression) and

that suggests that even low levels of mutational load might acti-

vate the cell’s tumor suppressive response.

DISCUSSION

Cellular aging in long-lived organisms appears to be a complex

stochastic process of gradual accumulation of errors (López-

Otı́n et al., 2013). Using single-cell data, we find that aging is

accompanied by both increased transcriptional noise and an

accumulation of genetic errors. It has been previously suggested

that DNA substitutions have a direct causative role in transcrip-

tional instability (Vijg, 2004). However, as shown in this work

and by others (Lodato et al., 2015), the mutational burden in
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single cells is on the order of one to a few thousand substitutions

genome-wide and is unlikely to affect the expression of a large

enough number of genes or regulatory elements to have an

impact on overall transcriptional noise. If there were a causal

link betweenmutational load and transcriptional noise, we would

expect the correlation between these two features to be consid-

erably stronger than a correlation of either feature with organ-

ismal age. By contrast, we would expect similar correlations

between all three of these features if mutational load and tran-

scriptional noise were independently acquired with age. Our

data support the absence of a causal link between mutational

load and transcriptional noise. In fact, the correlation of either

transcriptional noise or signature S1 with age was slightly stron-

ger than the correlation between mutational load and transcrip-

tional noise (age–noise: p = 2.94E-11, age–S1: p = 5.29E-16,

noise–S1: p = 4.83E-11. Two-sided Pearson correlation test,

n = 1,429). Thus, our single-cell approach seems to suggest

that aging is characterized by a gradual accumulation of both

epigenetic and genetic errors in a stochastic and independent

fashion.

Importantly, the accrual of epigenetic errors is likely to cause a

drift in cell fate, as suggested by an increase in non-cell-type-

specific hormone expression in endocrine cells. Such ‘‘fate drift’’

could help explain the decrease in fitness and organ function

associated with aging. In addition to identifying age-dependent

mutational signatures and transcriptional noise, our findings

refined previous results on age-dependent increase in CDKN2A

gene expression. We identified CDKN2A expression in a higher

fraction of cells in pancreata from older donors, rather than an

increase of transcript abundance in every cell. Such cellular het-

erogeneity suggests that the previously observed age-depen-

dent changes in CDKN2A expression (Arda et al., 2016) are

due to events affecting a subset of cells rather than an intrinsic

program dictating cellular aging.

Age-dependent decline in function and regenerative potential

has been attributed partially to the activity of reactive oxygen spe-

cies produced by cellular metabolism (Harman 1965). The age-

dependent mutational signature in the endocrine pancreas is

characterized by a high rate of C > A and C > G substitutions,

which are selectively induced by reactive oxygen species (Fig-

ure S5E) (Kino and Sugiyama, 2001, 2005; Kamiya et al., 2009).

Pancreatic islet cells are sensitive to reactive oxygen species

due to low expression of antioxidant enzymes such as SOD1

(Tiedge et al., 1997), a relatively high rate of ATP-dependent pro-

cesses such asprotein production and secretion, and the require-

ments for reducing power to keep insulin disulfide bonded. Our

results thus suggest that the age-specific mutational signature

observed in the endocrine pancreas is due to ROS-dependent

lesions on DNA. Interestingly, oxidative damage is part of the pa-

thology of type II diabetes, and plasma 8-hydroxyguanosine is a

good correlate to endocrine dysfunction (Shin et al., 2001).

Current methods used to study somatic mutations rely either

on single-cell genomic sequencing or on sequencing DNA from

many cells that stem from a clone that has been expanded

in vitro (Blokzijl et al., 2016; Lodato et al., 2015; Gawad et al.,

2016). Both families of methods are very costly, precluding

large-scale experiments on thousands of cells, and analysis of

a specific cell type requires pre-selection of the cells because
328 Cell 171, 321–330, October 5, 2017
the information on cell identity provided by mRNA-sequencing

is lost. Our methods for determining transcriptional noise and

for identifying mutational signatures from scRNA-seq data pro-

vide a means to study these features in arbitrarily specific cell

populations from primary tissue, irrespective of the replicative

potential of the cells. Such methods applied to much larger

donor cohorts, and different tissue types could be a crucial

tool for understanding aging and other stochastic processes

that act on single cells.
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STAR+METHODS
KEY RESOURCES TABLE
REAGENT or RESOURCE SOURCE IDENTIFIER

Antibodies

HPx1-Dylight 488 Novus NBP1-18951G

HPi2-Dylight 650 Novus NBP1-18946C

CD133/1 – Biotin Miltenyi Biotec 130-090-664

CD133/2 – Biotin Miltenyi Biotec 130-090-852

Streptavidin-eFluor780 eBioscience 47-4317-82

Streptavidin-APC eBioscience 17-4317-82

anti human EpCAM- Biolegend 324208

APC,

Anti human Insulin DAKO A0564

Anti human Glucagon Sigma G 2654

8-oxo-dG mouse Ab MyBioSource MBS606843

Biological Samples

Human pancreatic samples Integrated Islet Distribution

Network (IIDP),

N/A

Human pancreatic samples UCSF Islet Isolation Core

(San Francisco, CA USA)

N/A

Human pancreatic samples International Institute for the

Advancement of Medicine (IIAM)

N/A

Chemicals, Peptides, and Recombinant Proteins

Antifade gold Invitrogen P36930

UNG Thermo Fisher N8080096

Critical Commercial Assays

Nextera XT Illumina FC-131-1096

KAPA HiFi HotStart ReadyMix KAPA Biosystems KK2601

Deposited Data

Single cell mRNA-seq data This paper GEO:GSE81547

Experimental Models: Cell Lines

GP5d colon adenocarcinoma cell line Sigma-Aldrich 95090715

Oligonucleotides

GCG primer for staining: This paper N/A

G+TC+TC+TC+AA+AT+TC+ATCGTGACGTTT

INS primer for staining: This paper N/A

G+CA+CC+AG+GGC+CCC+CGCCCAGCTCCA

GCG padlock probe: This paper N/A

Phosp-GAATAACATTGCCAAACGTGTGTCTATTTAG

TGGATCCCGTGCGCCTGGTAGCAATTAGCT

CCACTGTTACTAGATTGGAATACCAAGAGGA

ACAG

INS padlock probe: This paper N/A

Phosp-AGGTGGGGCAGGTGGAGCCTCAATGCTGC

TGCTGTACTCTACGATTTTACCAGTTGCCCT

AGATGTTCCGCTATTGTCCGGGAGGCAGAG

GACCTGC

(Continued on next page)

Cell 171, 321–330.e1–e7, October 5, 2017 e1



Continued

REAGENT or RESOURCE SOURCE IDENTIFIER

SmartSeq2 OligodT: Picelli et al., 2014 N/A

50–AAGCAGTGGTATCAACGCAGAGTACT30VN-

30

SmartSeq2 TSO: Picelli et al., 2014 N/A

50-AAGCAGTGGTATCAACGCAGAGTACATrGrG

+G-30

SmartSeq2 ISPCR: Picelli et al., 2014 N/A

50-AAGCAGTGGTATCAACGCAGAGT-30

Detection probes for in situ RNA staining – see Table S8 This paper N/A

Software and Algorithms

GATK pipeline McKenna et al., 2010; Van der

Auwera et al., 2013

https://software.broadinstitute.

org/gatk/

HTSeq Anders et al., 2014 https://github.com/simon-

anders/htseq

STAR Dobin et al., 2013 https://github.com/alexdobin/STAR

GSEA Subramanian et al., 2005 software.broadinstitute.org/gsea

Picard McKenna et al., 2010 https://broadinstitute.github.io/picard/

TSNE van der Maaten and Hinton, 2008 https://github.com/jdonaldson/rtsne/
CONTACT FOR REAGENT AND RESOURCE SHARING

Further information and requests for resources and reagents should be directed to and will be fulfilled by the Lead Contact, Stephen

R. Quake (quake@stanford.edu).

EXPERIMENTAL MODELS AND SUBJECT DETAILS

All studies involving human pancreas or islets were conducted in accordance with Stanford University Institutional Review Board

guidelines, including informed consent for tissue donation from all subjects. De-identified human pancreata or islets were obtained

from previously healthy, non-diabetic organ donors with BMI < 30, less than 15 hr of cold ischemia time, and deceased due to acute

trauma or anoxia. Organs and islets were procured through Integrated Islet Distribution Network (IIDP), National Diabetes Research

Institute (NDRI), UCSF Islet Isolation Core (San Francisco, CA USA) and International Institute for the Advancement of Medicine

(IIAM). For FACS, scRNA-seq studies islets from three juvenile (ages 1 month-old, 5, 6), and five adult donors (ages 21, 22, 38,

44, 54 years) were used. For immunostaining studies pancreatic tissue sections from a 31-year-old donor were used.

Tissue from both male and female donors were used, an analysis of systematic influence of sex on the results is included in Fig-

ure S1B. Subjects were not involved in previous studies. Further donor details are provided in Table S1.

Verified GP5d cells (colon adenocarcinoma from human female Caucasian) were obtained from Sigma-Aldrich (95090715), and

only first-passage cells were used in this study.

METHOD DETAILS

Flow Cytometry
Isolated human islets were dissociated into single cells by enzymatic digestion using Accumax (Invitrogen). Prior to antibody staining,

cells were incubated with blocking solution containing FACS buffer (2% v/v fetal bovine serum in PBS and goat IgG [Jackson Labs],

11.2 mg per million cells). LIVE/DEAD Fixable Aqua Dead Cell Dye (Life Technologies) was used as a viability marker. Cells were then

stained with appropriate antibodies at 1:100 (v/v) final concentration. The following antibodies were used for FACS experiments:

HPx1-Dylight 488 (Novus, NBP1-18951G), HPi2-Dylight 650 (Novus, NBP1-18946C), CD133/1 - Biotin (Miltenyi Biotec 130-090-

664), CD133/2 - Biotin (Miltenyi Biotec 130-090-852), streptavidin-eFluor780 (eBioscience, 47-4317-82), streptavidin-APC

(eBioscience, 17-4317-82), anti human EpCAM-APC (Biolegend, 324208). Cells were sorted on a special order 5-laser FACS Aria

II (BD Biosciences) using a 100 m nozzle following doublet removal. Sorted single cells were collected directly into 96-well plates

(Bio-Rad cat #: HSP9601) containing 4 mL of lysis buffer with dNTPs (Picelli et al., 2014) for downstream single-cell RNA-seq assays.
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Single-Cell RNA-Seq
Single-cell RNA-seq libraries were generated as described (Picelli et al., 2014). Single-cells collected in 96-well plates were lysed,

followed by reverse transcription with template-switch using an LNA-modified template switch oligo to generate cDNA. After 21 cy-

cles of pre-amplification, DNA was purified and analyzed on an automated Fragment Analyzer (Advanced Analytical). Each cell’s

cDNA fragment profile was individually inspected and only wells with successful amplification products (concentration higher

than 0.06 ng/ul) and with no detectable RNA degradation were selected for final library preparation. Tagmentation assays and bar-

coded sequencing libraries were prepared using Nextera XT kit (Illumina) according to the manufacturer’s instructions. Barcoded

libraries were pooled and subjected to 75 bp paired-end sequencing on the Illumina NextSeq instrument.

Genomic sequencing
Genomic variants were determined from whole genome sequencing data following GATK Best Practices (Van der Auwera et al.,

2013). Adapters and low quality bases were trimmed using cutadapt v1.9 (Van der Auwera et al., 2013; Martin, 2011). Reads were

aligned to hg19 using BWA-MEM 0.7.12 (Li and Durbin, 2010). Duplicates were removed using Picard tools v1.119 followed by indel

realignment and base recalibration using GATK v3.5 (McKenna et al., 2010). Variants were called using haplotype caller and recali-

brated using VQSR. Default software parameters were used and reference files downloaded from the GATK Resource Bundle

2.8/hg19.

In situ RNA and protein staining
Multiplex RNA staining was performed on 10 mm thick, formalin-fixed, tissue sections using barcoded transcript-specific padlock

probes and rolling circle amplification (RCA) as described before (Ke et al., 2013). The primer sequences were

GCG: G+TC+TC+TC+AA+AT+TC+ATCGTGACGTTT

INS: G+CA+CC+AG+GGC+CCC+CGCCCAGCTCCA

Padlock probes

GCG: Phosp-GAATAACATTGCCAAACGTGTGTCTATTTAGTGGATCCCGTGCG

CCTGGTAGCAATTAGCTCCACTGTTACTAGATTGGAATACCAAGAGGAACAG

INS: Phosp-AGGTGGGGCAGGTGGAGCCTCAATGCTGCTGCTGTACTCTACG

ATTTTACCAGTTGCCCTAGATGTTCCGCTATTGTCCGGGAGGCAGAGGACCTGC

Detection probes

DO_1_FITC: AGUCGGAAGUACTACTCUCT_FITC

DO_1_Cy3: CCUCAATGCUGCTGCTGUAC_Cy3

DO_1_Cy5: TGUGTCTATUTAGTGGAUCC_Cy5

DO_2_FITC: CGUGCGCCUGGTAGCAAUTA_FITC

DO_2_Cy3: AGUAGCCGUGACTATCGUCT_Cy3

DO_2_Cy5: TCUACGATUTTACCAGTUGC_Cy5

DO_3_FITC: CCUAGATGTUCCGCTATUGT_FITC

DO_3_Cy3: GCUCCACTGUTACTAGAUTG_Cy3

DO_3_Cy5: CTUGTGCTGUATGATCGUCC_Cy5

The RCA products were stained by sequential hybridization of three uracil-containing fluorescent oligonucleotides following a

modified protocol from Ke 2013 (Ke et al., 2013). The three reported probes were mixed 0.1 mM each with hybridization buffer

(20% formamide in 2x SSC) and incubated with the tissue at 37�C for 30’. After incubation, tissue section was washed in PBS 50

and nuclei were counterstained with DAPI 300nM in PBS at room temperature for 15’. The tissue was washed in ethanol 70, 85

and 100% 50 each, air-dried and mounted in Antifade gold (Invitrogen) before imaging. After imaging, the fluorescent probes were

removed by digestion with 0.02 U/ml UNG (Thermo) in UNG buffer and 0.2mg/ml BSA at 37�C for 30’ followed by two washes in

65% formamide pre-warmed at 55�C. Consecutive staining of the RCA products were performed, in the same way, with different

set of fluorescent probes.

After RNA, immunofluorescent staining was done on the same tissue section. The tissue was washed twice in PBS with 0.025%

Triton X-100 at room temperature and blocked with 1%BSA in PBS for 2 hr at room temperature. Antibodies against human Insulin

(DAKO, A0564, guinea pig) and glucagon (Sigma, G 2654, mouse) were diluted 1% in PBS containing 1% BSA and applied to the

tissue and incubated at 4�C overnight. The tissue was washed twice in PBS with 0.025% Triton X-100 before incubation with 1%

anti-guinea pig GFP labeled and anti-mouse Cy5 secondary antibody, 1% BSA in hybridization buffer for 1 hr at room temperature.

Cy3-labeled RCA reporter probes were also added at 0.1 mM concentration to stain all the RCA products and used to align immu-

nofluorescence images to previous RNA staining. After incubation in secondary antibody the section waswashed 3 times in 1xPBS at

room temperature before mounting in Antifade gold and imaging. For 8-hydroxyguanosine staining, 8-oxo-dG Ab (MyBioSource,

MBS606843, mouse) was used, which binds to the oxidized based both in DNA and RNA. To measure the levels of oxidized genomic

guanine, cells were treated with RNaseA before staining according to the protocol provided by the manufacturer. Briefly, sections
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were incubated in PBS buffer containing 500 mg/ml RNaseA (ThermoFisher), 150mMNaCl and 15mMsodium citrate for 1 hr at 37�C.
After washing the sample twice in PBS the DNAwas denatured by incubatingwith HCl 2N for 50 at room temperature and then neutral-

ized by incubation with Tris-base 50 at room temperature followed by two washes in PBS. Blocking and antibody staining against

human insulin and 8-Hydroxy-20-deoxyguanosine was performed as described before (anti 8-oxo-dG was used at 1:250 dilution).

Multidimensional imaging was done with a Zeiss Axioplan epifluorescence microscope equipped with filter-cubes for DAPI, FITC,

Cy3 and Cy5, a Axiocam 506 mono camera (Zeiss), automated filter-cube wheel and a motorized stage. Z stacks of 15 images were

acquired with a Plan-Apochromat 63x objective and check objective) several field of view of each region of interest were projected

(maximum intensity projection) and automatically stitched using the Axiovision software (Zeiss).

Images were exported as single-channel 16-bit grayscale and analyzed as described before (Ke et al., 2013). Briefly, single chan-

nels images from staining cycle one were combined and used as mask to align images from subsequent cycles based on nuclei and

RCA staining. Image alignment was done using MultiStackReg module of ImageJ (version 1.50e). Pre-aligned RNA images were

analyzed with CellProfiler 2.1.1 (rev 6c2d896) and intensity and position of RCA products were measured using the same pipeline

as in Mignardi et al. (2015). The barcode decoding was obtained using the same MATLAB script as described before (Ke et al.,

2013). Lowering the quality threshold to zero (Qt = 0) allowed us to increase sensitivity of detection while the fraction of insulin

and glucagone signals detected outside the islets (false positives) was still negligible (less than 0.3% of all GCG and INS signals).

Object-based measurement of immunostaining intensity was done with CellProfiler on the corresponding images using the identified

RCA products as mask.

QUANTIFICATION AND STATISTICAL ANALYSIS

Number of replicates used
The number of biological and/or technical replicates for each experiment is stated in the ‘‘Method Details’’ section and the figure

legends.

Single-cell RNA-seq Data Analysis
Sequencing reads were trimmed, adaptor sequences removed and the reads aligned to the hg19 reference assembly using STAR

(Dobin et al., 2013) with default parameters. Duplicate reads were removed using picard (McKenna et al., 2010). Raw transcript

counts were obtained using HT-Seq (Anders et al., 2014) and hg19 UCSC exon/transcript annotations. Transcript counts were

normalized into log transformed counts per million (CPM), by applying the formula log2(cij * 1 000 000 / tcj + 1, where cij is the tran-

script counts for gene i in cell j, and tcj is the total number of transcript counts for cell j. Single cell profiles with the following features

were deemed to be of poor quality and removed: 1) cells with less than 100.000 total number of valid counts on exonic regions. 2) cells

with very low actin CPM. To determine a cutoff for actin CPM, we used the normal distribution with empirical mean and standard

deviation from actin. The cutoff was set to the 0.01 quantile (e.g., the lower 0.01% of the bell curve).

Table - Summary of sequenced cells Sequencing statistics are median values.
Cells

Passed QC Failed QC

2544 (94.9%) 136 (5.1%)

Sequencing statistics

aligned reads 932172 962153

transcripts detected 3203 1392

% aligned 78.54% 79.94%

% ERCC 8.06% 33.20%

% exonic (non-ERCC) 62.85% 29.03%

% mitochondrial 6.47% 10.53%
Pairwise distances between cells were estimated using pearson correlation on the 500 most highly expressed genes (by CPM) in

any one cell. Dimensionality reduction of the pairwise correlation matrix was performed using the t-SNEmethod (van der Maaten and

Hinton, 2008).

To determine Gene Ontology categories that were associated with transcriptional noise or signature specific mutational load,

we used Gene Set Enrichment Analysis (GSEA), using the coefficients of association to noise/rank of significantly altered genes

(p < 1E-5, linear model, FDR corrected). Coefficients were used as a preranked list in the GSEA software using default parameters

with the gene set database ‘‘c5.all.v5.2.symbols.gmt,’’ which includes all GO categories. Statistical overrepresentation of gene sets

was performed using the PANTHER overrepresentation test (pantherdb.org) using the full GO biological process categorization.
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Somatic mutational signatures in single-cell RNA-seq data
To explore mutational signatures in single postmitotic cells, we analyzed the raw sequence reads frommRNA-seq. Previously, muta-

tional signatures have been successfully extracted from exome sequencing; however, using single-cell data poses a number of addi-

tional challenges. First, we need to deal with the higher error rate associated with reverse transcription and a higher number of PCR

cycles. We do this in two ways - by including positive and negative internal controls for each cell, that are used to derive a meaningful

cutoff when calling substitutions, and by performing an additional post-selection of signatures, discarding potential false-positives.

Second, the sequence space in a single-cell RNA-seq experiment is typically fairly limited, even compared to exome sequencing. We

mitigate this issue by sequencing long reads (75 bp paired-end), and by sequencing deeper than typically needed for scRNA-seq

(approx. 1M mapped reads per cell). Further, we calculate substitution rates based on the actual number of sequenced kmers in

each cell, to account for differences in base distribution. Finally, the limited number of substitutions in each cell means that the

sequence context cannot be reliably included in all cases, which is why we generally restricted ourselves to analyzing single-base

substitutions.

Raw variation calls were made using the Haplotype Caller (GATK pipeline) (McKenna et al., 2010; Van der Auwera et al., 2013)

on the BAM files after applying SplitNCigarReads to remove overhangs into intronic regions. Variants were filtered to remove clusters

(> 3 SNPs within 35 bases), as well as variants with QD < 2.0 and FS > 30.0. Germline mutations were called using a merged set of all

single-cell profiles from each patient. Subsequently, we filtered the raw variation calls by applying variant quality score recalibration

using the GATK pipeline. To reliably call substitutions we need internal controls for each cell, corresponding to a true-positive and

true-negative set. We used known variants (dbSNP release 138) from our germline calls that mapped to transcribed regions of

the genome as a true positive set (phred-scaled prior: 15.0) and variants that map to ERCC control reads as a false positive set

(ERCC controls are synthetic RNA sequences and therefore devoid of systematic variation). To filter somatic substitutions, a strict

cutoff, allowing 10% false negative rate was used. Variants also found in the germline were flagged as germline mutations and

not used for somatic signatures. In all subsequent analysis, only single-nucleotide substitutions were considered.

For each cell, we extracted the genomic context of each mutation and created a catalog of the frequency of mutation types. We

then divided these frequencies with the kmer counts derived from fastq sequences for the cell to obtain the final substitution rates.

Negative control ERCC sequences were processed in parallel, to give accurate substitution rates that reflect the different sequence

background. Substitution rates in these ERCC samples were 4.8E-7. Assuming that false-positive substitutions stem exclusively

from somatic calls (e.g., that the germline calls are completely devoid of false positives), this result indicates a false discovery

rate of 15.05% for somatic substitutions (excluding transcriptional errors, which are not accounted for by the ERCC controls).

Thus, we estimate that the upper bound of our false discovery rate is 15%. To further validate our method we performed 25x whole

genome sequencing (WGS) of GP5d and compared the overlapping substitution calls from single-cell mRNA seq and bulk genomic

sequencing. A total of 151,030 genomic positions were determined to have single-base substitutions from the reference genome

based on mRNA-seq. Out of these 151,030 substitution calls, 105,673 were also found in WGS and 105,543 were identical (concor-

dant). 45 357 substitutions, or 30.0% of total, were not found in WGS calls; these calls include somatic substitutions, false negative

calls from WGS and technical errors. These numbers are in line with the previously determined false-positive rate (%15%), and so-

matic substitution rates on highly transcribed DNA (�15%, see below for discussion).

It would be of interest to estimate the absolute number of somatic substitutions in the different tissues. On average, we find that

73.5% of our raw substitutions calls are called as germ-line with the rest consisting mainly of somatic substitutions, false-positive

calls and germline substitutions that were erroneously called somatic. Based on the ERCC error rate and NMF filterning, we estimate

the non-germline error rate to be 7%–15%, and based on WGS sequencing the rate of germline substitutions erroneously called

somatic is 32.6%. Thus, the final number of somatic substitutions in our mRNA data is approximately 15%, which, if extrapolated

linearly, would still indicate a total number of somatic substitutions significantly higher than even the mutational burden of many tu-

mors. However, we have to take into account that we can only call substitutions in highly expressed genes. Coding regions are

depleted in germ-line mutations because of negative selection against non-silent mutations. In our GP5d WGS data, for example,

we observe one substitution from the hg19 reference genome per 510 bp genome-wide, but only one per 886 bp in exonic se-

quences. However, the transcribed genome generally has a considerably higher substitution rate than the non-transcribed genome

with increases of between �2-fold and 50-fold reported depending on the cell types/species and the level of transcriptional activity

(Subramanian and Kumar, 2003; Alexander et al., 2013). This bias is so strong that it is detectable using mRNA-seq data alone – the

sensitivity to detect somatic substitutions is significantly more dependent on gene expression levels than the sensitivity to detect

germline substitutions is (p < 1E-16, linear model n = 316234), even though the sensitivity to call both types is highly dependent

on expression levels. Because of this intrinsic limitation of the method, we avoid absolute quantification of substitution rates and limit

ourselves to relative quantification between samples. DNA-sequencing of brain single brain cells indicated that neurons contain

between 1458 and 1580 somatic single nucleotide variants, which were mostly acquired during active transcription in post-mitotic

cells (Lodato et al., 2015), similarly to what we find for endocrine pancreas cells. The somatic substitution rate in our endocrine

pancreas cells was 5.2-fold higher than the rate in our brain data (2.74E-6 and 0.52E-6 substitutions per base, respectively), which

would indicate a somatic mutational load of between 7582 and 8216 substitutions per genome in endocrine pancreatic cells, given

that the association with active transcription is similar between the two mutational processes.

As described above, classification of substitutions as either germline or somatic is done based on scRNA-seq datamerged over all

cells from a donor. Because of the sparsity of the data, some germline substitutions will appear to be somatic (e.g., be called in a
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single cell, but not in the merged data). To determine how well our method identifies somatic substitutions, we used germline sub-

stitutions called from bulk WGS of GP5d colon cancer cells as a gold standard. This analysis indicated that 32.6% of the putative

somatic substitutions were actually germline SNPs.

Thus, we estimate the overall false discovery rate for somatic substitutions in our data (before applying nonnegative matrix factor-

ization and signature selection) to be approximately 40%, which includes�30% that represent real variation stemming from germline

rather than somatic events and �10% substitution calls that were erroneously called due to technical errors such as PCR or

sequencing artifacts. This should be compared to previous single-cell DNA-sequencing approaches, where the error rate is around

20%–30% (Lodato et al., 2015).

To further explore structure within the somatic substitution calls, we examined the effect of substitutions on protein sequence.

Because of the degeneracy of the exon code, a fraction of exonic substitutions will give rise to a DNA sequence which codes for

the same amino acid sequence. Such synonymous (or silent) substitutions are enriched in germline SNPs, and given that a subset

of amino acid substitutions will negatively affect fitness of the cells, we would expect some enrichment of synonymous substitutions

also among somatic substitutions. Also, wewould expect this enrichment to be similar in different cell types, irrespective of themuta-

tional load. Substitution calls due to technical errors, however, will not be enriched in silent substitutions. We annotated the substi-

tution calls based on genomic notation (hg19), and calculated the fraction of calls that result in a codon for the same amino acid. As a

comparison, we calculated the fraction of synonymous substitutions based on random DNA mutation. The average fraction of syn-

onymous substitutions was 40% higher than expected by random chance (0.32 in pancreas compared to 0.23 expected by random,

p = 3.34E-125,Wilcoxon test. Figure S5H). Importantly, this number did not correlate withmutational load; cells with higher number of

mutations in fact had a somewhat increased fraction of synonymous substitutions (Slope = 3.25E-5, p = 0.08, linear regression), and

pancreas cells had almost identical fraction of silent mutations compared to brain even though the substitution rate was 5-fold higher

in pancreas (Figure S5I). Thus, the differences in substitution rates likely reflect genetic alterations in the cells, rather than tech-

nical error.

To decipher the underlyingmutational signatures, we applied non-negativematrix factorization using the NMFRpackage (Gaujoux

and Seoighe, 2010) to the substitution rates of single-nucleotide substitutions (e.g., the mean of the rates for a substitution type over

all contexts) for each cell type separately. The highest scoring solution out of 10000 independent runs of the algorithm was used for

the final result. The number of possible signatures (5) was chosen to be higher than the number of unique signatures actually found by

the algorithm, and duplicate signatures were merged together. We applied hierarchical clustering on the full set of mutational signa-

tures (‘‘basis matrices’’) to identify distinct mutational signatures (Figure S4A). Finally, we selected signatures based on five criteria

(summarized below and in Figure 4A). To find the signatures that likely represent cell type specific processes that were active in the

healthy cell during the donor’s lifetime, we determined cell type specificity and age dependence of each signature. Also, because of

the relatively high level of noise in the data, a signature might represent errors that arose systematically during reverse transcription.

Thus, to arrive at the final three signatures (S1-S3), removed mutational signatures with a high degree of similarity to the substitution

rates of the negative control RNA, with no cell-type specificity, positive age dependence, or with a very low signal. We also deter-

mined the similarity of the signatures to the COSMIC tumor signatures (Alexandrov et al., 2013b). Figure 4A, bottom panel, summa-

rizes the association of signatureswith these traits. It should be noted that we cannot formally rule out the possibility that the excluded

signatures were due to a cell-type specific process active during the lifetime of the donor. Further investigation onmuch larger panels

of tissues will be needed to determine the origin of these signatures.

Figure 4A show the geometric median signature of each cluster. Mutational load of a signature on a cell was determined as the

fraction of somatic substitutions of that cell attributed to the signature in question. To obtain a signature load ranking, cells were

ordered according to the fraction of mutations that are attributed to a specific signature. Statistical significant association was deter-

mined using linear regression.

Estimation of transcriptional noise
In order to ascertain the robustness of age dependent transcriptional noise, we computed three measurements of transcriptional

instability each of which displayed a strong statistical significance and positive coefficient to age. As a main measure, we used a

correlation basedmethod where noise is expressed as biological variation over technical variation. First, we calculated the biological

variation bijk = 1-cor(xijk, uij), where ui is the mean expression vector in cell type i, patient j and xijk is the expression vector of cell k in

that cell type i, patient j. Next, we calculated the corresponding technical variation tijk = 1-cor(xcontrijk, u
contr) where xcontrijk and ucontr

are the expression vector andmean expression vector of the ERCC spike-in controls. The final measurement is bijk/tijk - the biological

noise as a fraction of technical noise. The cells were ordered by this distance within cell type, and their normalized ranking used for

linear regression.

For per-donor measurements we also first divided the cells into cell types and computed the mean expression vector for each cell

type. We then calculated the Euclidean distance between each cell and its corresponding celltype mean vector. The individual data-

points were summarized as boxplots. Finally, as an alternative method to obtain ameasure of the transcriptional noise of a single cell,

we first subsampled the gene count list to 100 000 counts per cell. We then selected a set of invariant genes evenly across the range

of mean expression. First we binned the genes in 10 equally sized bins by mean abundance, then we selected the 10% of genes with

the lowest CV from each bin, omitting the bins at the high and low extremes. We then used these genes to determine the Euclidean

distance from each cell to the average profile across all cells.
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To determine the genes whosemRNA abundancewere significantly dependent upon transcriptional instability, we used linear rank

regression on the CPM values. p values were adjusted for multiple testing using the FDR procedure of Benjamini & Hochberg (with

FDR < 1E-15 as significance cutoff), and ordered by their coefficient.

DATA AND SOFTWARE AVAILABILITY

The accession number for the single-cell mRNA-seq data reported in this paper is GEO: GSE81547. All custom scripts will be pro-

vided upon request to the Lead Contact.
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Supplemental Figures

Figure S1. Single-Cell RNA-Seq of Human Pancreas, Related to Figure 1

(A) tSNE plot of cells from themajor endocrine cell types. Colors are by donor (as specified by age, top right panel). Cells cluster by donor suggesting that our data

could not find support for sub cell types that have a stronger cell identity than individual variation, but does not preclude the existence of more subtle sub-

cell types.

(B) Relative contributions of cell type, age, gender, donor, and library preparation batch. Error bars are mean +-SEM.

(C) Boxplot of pairwise euclidean distances between 10000 random pairs of endocrine cells from each donor is plotted by age group. Whole-transcriptome cell-

to-cell variability between b-cells from adult donors is higher than variability between cells from juvenile donors. Boxes indicate themiddle quartiles, separated by

median line. Whiskers indicate last values within 1.5 3 the interquartile range for the box.

(D) Cell type composition is constant between endocrine pancreatic cells with low and high transcriptional noise. Lines are runningmean (k = 200) of fractional cell

type content, by rank of transcriptional noise (low to high).



Figure S2. Quantification of Cell-Atypical Hormone Expression In Situ, Related to Figure 2

(A) Cells were ranked by number of INS spots per cell (blue bars), with the number of GCG spots in the same cell shown in red. There was no significant de-

pendency between INS expression and GCG expression (p = 0.859, linear regression, n = 730).

(B–D) Parallel protein and RNA staining in situ. A representative image at 63xmagnification of a pancreatic islet containing cells with atypical hormone expression.

Scale bar is 20 mm. (B), protein stain only (green: insulin, blue: glucagon); (C), in situ RNA-staining (dots) + protein stain (green dots: INS gene specific, blue dots:

GCG gene specific); (D) magnified version of (B).



Figure S3. Characteristics of Somatic Substitutions in Single-Cell RNA-Seq Data, Related to Figure 3

(A) The distribution of the number of occurrences of distinct somatic (non-germline) substitutions. As expected, somatic mutations that are shared betweenmore

than one cell are rare.

(B) Somatic substitution rates vary between cell types in the same organ (bars are mean +- SEM).

(C) Numbers of substitution calls in ERCC control are similar between cell types. Shown aremean numbers (±SEM) of putative substitution calls in ERCC controls,

that were rejected (gray bars) or accepted (red bars) by our variation calling method. Red bars constitute false-positive calls.

(D) Substitutions/cell in genes in GP5d cells, ordered bymean expression. Only genes that were expressed in at least one cell are shown. Both clonal somatic and

non-clonal substitutions are counted. Red line is running mean (k = 100).

(E) Substitutions in ERCC controls by concentration of each spike-in RNA. Red line is a local regression (loess) fit.

(legend continued on next page)



(F) Somatic substitutions in individual mRNA or ERCC control transcripts in a cell as a function of the number of reads mapped to the transcript/cell.

Substitutions in highly expressed genes are more likely to be detected, whereas PCR errors are less likely to pass QC thresholds. Lines are running mean

(k = 300).

(G) Allelic imbalance is negatively correlated with the depth of sequencing used to call the substitution.



Figure S4. Mutational Signatures, Related to Figure 4

(A) Heatmap showing raw signatures from non-negative matrix factorization. Dendrogram (top) indicates hierarchical clustering, and clusters at the 6th branch

point shown as colored bar between dendrogram and heatmap. The spatial median of each cluster is shown in Figure 4A.

(B) Association of signatures S1-3,SC4-7 to age. Cells were ordered according to the fraction of mutations attributed to the indicated signature. Dots are running

mean of age, k = 10. Line is loess fit, dotted lines indicate +-.999 confidence interval.

(C and D) CDKN2A expression in cells ordered according to their level of transcriptional noise (C) or fraction of mutations attributed to signature S1 (D). Tran-

scriptional noise is not associated with CDKN2A expression, while S1 mutational load is weakly associated to it.

(E) Cell type composition is constant between cells with low and high signature S1mutational load. Lines are runningmean (k = 200) of fractional cell type content,

by rank of signature S1 specific mutational load (low to high).



Figure S5. Transcriptional Correlates of Mutational Signatures, Related to Figure 6

Brain cells were ordered according to the fraction of mutations attributed to Signature S2.

(A) Average age is higher in cells with high signature S2 load (p = 2.7E-3, n = 398. linear rank regression). Line is loess fit +-.999 confidence interval. Dots are

running mean, k = 10.

(legend continued on next page)



(B) Each gene was tested for association with signature S2 (linear rank regression), shown are the top genes by coefficient, with p < 5E-2 (FDR corrected). Line is

loess fit +-.999 confidence interval. Dots are individual observations.

(C) Signature of raw substitution rates in ERCC spike-in RNA constitutes a false-positive signature.

(D) Tumor signatures from Alexandrov et al. (2013b) collapsed into substitution types without 30/50 context by addition.

(E) Empirical misincorporation rates caused by 8-Hydroxyguanosine in vitro. Bars are mean ± SEM. Data from from Kamiya et al. (Kamiya et al., 2009).

(F and G) Ratio of human mRNA to spike in control in cells, ordered by rank of transcriptional noise (F) or rank of signature S1 mutational load (G).

(H) Synonymous substitutions generating an identical codon as the reference sequence are enriched in somatic variation from all tissues.

(I) The fraction of synonymous substitutions is not positively correlated with overall mutation load.
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