

Functional Genomics and Proteomics National Centre for Biomolecular Research Faculty of Science Masaryk University

Protein characterization by mass spectrometry

C7250

Part V

Zbyněk Zdráhal

RG Proteomics, CEITEC-MU Proteomics CF, CEITEC-MU NCBR FS MU zdrahal@sci.muni.cz

Proteomic MS applications

Proteomics – discipline dealing with proteome analysis

posttranscriptional modifications (alternative splicing etc.)

Proteomics - Why?

- several proteins/proteoforms might form from each gene, not possible to indicate them by DNA/RNA analysis
- there no direct correlation between mRNA content and final content of proteins
- functionality of protein depends frequently on its interaction with other proteins or DNA/RNA
- only at protein level epigenetics factors of gene expression regulation are detectable

Proteome analysis

characterization of all proteins including all their forms in cell (tissue, organisms) at given time under given conditions

C7250

The Desperate Man, Gr

Courbet, 1844-45

X

Genome

versus

relatively stable DNA sequence

4 basic building units

efficient analytical techniques developed (PCR, NGS)

Proteome

all proteins including all their forms in cell (tissue, organisms) at given time under given conditions 20 basic building units

necessity of development of sensitive and reliable techniques for identification and quantitation

Arabidopsis thaliana

Mouse-ear cress

Genome 0.135×10^9 bp, ~ 27 000 geness

32 000 proteins

human genome - 3.3×10^9 bp, ~ 21 000 genes

http://www.uniprot.org/taxonomy/complete-proteomes http://users.rcn.com/jkimball.ma.ultranet/BiologyPages/G/GenomeSizes.html

MALDI-MS profiling

Identification of microorganisms by MALDI-MS

MALDI-MS spectra (profiles) of selected bacteria

C7250

CCM

M M

M

CM

CM

CM

Graphical expression of MALDI-MS bacteria profile similarity

Staphylococcus saprophyticus CCM 3317 CCM

identification based on comparison of measured profile with database profile

Detected Species	Lo 🔻
Brachyspira murdochii DSM 12563T DSM	2.267
Azoarcus indigens VB32 MPB	1.164
Paenibacillus polymyxa DSM 741 DSM	1.127
Lactobacillus antri DSM 16041T DSM	1.122
Sphingobacterium spiritivorum DSM 11722T HAM	1.070
Staphylococcus schleiferi ssp schleiferi DSM 4809	1.068
Azoarcus sp BH72 MPB	1.053
Acidovorax avenae ssp avenae DSM 7227T HAM	1.018
Streptococcus salivarius IB5_M5_23 IB5	1.009
Bacteroides fragilis MB_9009_05 THL	1.006

validated method in clinical practise

L. Tvrzová, A. Teshim, I. Sedláček, M. Lexa, A. Voráč, O. Šedo,, A. Kostrzewa, T. Meier

C7250 Intens. [a.u.} 2564 **MALDI-MS** profiling of beer 3281 2812 2.0 1.5 5589 6225 7239 1.0 0.5 5000 6000 7000 8000 9000 10000 2000 3000 4000 Brewery 3 bottle 5 MALDI-TOF MS fingerprint containing proteins Brewery 3 bottle 4 Brewery 3 bottle 3 Brewery 3 bottle 2 Brewery 3 bottle 1 Brewery 2 bottle 2 Brewery 2 bottle 1 Brewery 2 bottle 5 cooperation with FCH BUT Brno Brewery 2 bottle 4 prof. Márová Brewery 2 bottle 3 Brewery 1 bottle 2 Brewery 1 bottle 1 Brewery 1 bottle 5 Brewery 1 bottle 4 Brewery 1 bottle 3

1000 900 800 700 600 500 400 300 200 100 Distance Level

MALDI-MS profiling of spider venoms

- evolution of food specialisation in spiders
- species adaptations
- ant-eating spiders

C7250

cooperation with prof. Pekar, FS MU

Pekár S. et al., J. Anim. Ecol., 81 (4), 838-848 (2012) Bočánek O. et al., Toxicon, 133, 18-25 (2017) Pekár S. et al. Mol. Ecol., 27 (4), 1053-1064 (2018)

14

J. LaBaer et al., J. Proteome Res., 4 (4) 1053-1059 (2005).

MS-based approaches for biomarker searching

Glycan profiling and structural analysis of glycans

NSCLC - Bronchoalveolar Carcinoma

C7250

Bronchoalveolar Adenocarcinoma

Large Cell Carcinoma

Lattová E., J. Proteome Res., 15 (8), 2777-2786 (2016)

C7250

Comparison of human cancer cell line proteome and transcriptome

Relative quantification by MS

isotopically labeled tag approaches
(comparison of limited number of samples, up to 10)

protein quantification

label-free approaches

(comparison of unlimited number of samples, lower accuracy)

Targeted quantification of selected proteins by MS

MRM, SWATH

C7250

Characterization of proteome changes differential (expression) proteomics

image analysis of 2-D gels LC-MS/MS of selected spots with different intensity

identification (MS) separated from quantification (spot intensity on gel) mixed spots

Acidithiobacilus ferrooxidans grown on ferrous iron (A) and elemental sulfur (B)

cooperation with Department of Biochemistry, FS MU P. Bouchal et al., Proteomics 2006, 6, 4278–4285.

C7250

Search for marker proteins for chicken salmonella infection relative quantification

	identification more than 2300 protein	
	• quantification for more than 1900	infected/ control
Accession	Description	
363741657	PREDICTED: syntenin-2-like [Gallus gallus]	
118095649	clarifying of mechanisms of molecular processes	34.036
4927286	charmying of meenamisms of morecular processes	33.575
112491068	search for marker proteins for early detection	30.221
56118294	ribonuclease homolog precursor [Gallus gallus]	25.497
363741459	PREDICTED: protein-glutamine gamma-glutamyltransferase E [Gallus gallus]	

confirmation by real-time PCR

cooperation with VRI Brno Matulova M. et al., Vet. Res., 44:37 (2013)

Quantification of enterotoxins targeted analysis of selected protein MRM

SWATH MS Q-TOF, MS/MS < 10 ppm

C7250

all MS/MS spectrum

Shot gun vs SRM vs SWATH

Liu et al, Expert Rev. Mol. Diagn., 13(8), 811 (2013)

Figure 3. Performance profiles comparing technical advantages and disadvantages of shotgun proteomics, SRM and SWATH MS. In the radar chart, analytical variables are presented on axes staring from the same point and each variable is represented by a spoke. The length of a spoke indicates the magnitude of the variables. Note that SWATH-MS combines the strengths of shotgun and SRM technologies; however, requires more powerful bioinformatic tools for data analysis. LOQ: Limit of guantification; MRM: Multiple reaction monitoring; MS: Mass spectrometry; SRM: Selected reaction monitoring.

Liu et al, Expert Rev. Mol. Diagn., 13(8), 811 (2013)

Phosphoproteome analysis – four fractionation approaches

ERLIC - Electrostatic Repulsion-Hydrophilic Interaction Chromatography

Chen et al., J. Chromatogr. B, 879, 25 (2011)

Phosphoproteome analysis – four fractionation approaches

Each method – over 4000 phoshopeptides In total – 9069 phosphopeptides – 9463 sites / 3260 proteins

Chen et al., J. Chromatogr. B, 879, 25 (2011)

C7250

Phosphoproteome analysis- quality and quantity

Huang et al., J. Proteomics, 106, 125 (2014)

C7250

Phosphoproteome analysis- quality

Comparison of identified peptides in replicas

CG010

Phosphoproteome analysis

Olsen J.V. et al., Sci. Signal., 3 (104) ra3 (2010)

quantified 6027 proteins

quantified 20,443 unique phosphorylation sites

- HELA cells
- SILAC labeling
- TiO₂ enrichment
- LC-MS/MS (Orbitrap)

The panels show the phenotypic phosphoproteome comparison organized by GO biological process for mitotic (left) and S phase (right) cells. Proteins involved in metabolic processes have high-occupancy phosphorylation sites during mitosis, but low-occupancy sites during S phase (color scale: yellow, high overrepresentation; dark blue, high underrepresentation).

to establish a set of methods

- HDAC Fluorimetric Cellular Activity Assay Kit
- MALDI-MS of N-terminal part of histones (after Glu-C digestion)
- AUT-AU 2-D GE combined with LC-MS/MS analysis

 $A \rightarrow E \qquad 0 \rightarrow 4$ acetylations

AUT-AU 2-D GE of histone extract

Changes of histone H4 acetylated forms in dependence on incubation time (2 mM VPA)

MALDI-MS

2-D AUT-AU GE

spot intensity

Characterization of Post-Translational Modifications of Histones

e.g. in Sidoli S. et al., J. Vis. Exp. 111:e54112 (2016).

Filter-Aided Sample Preparation Procedure for Mass Spectrometric Analysis of Plant Histones

C7250

Ledvinova D.. et al, Front. Plant Sci., 9, article 1373 (2018)

44

Filter-Aided Sample Preparation Procedure for Mass Spectrometric C7250 Analysis of Plant Histones

45 Ledvinova D.. et al, Front. Plant Sci., 9, article 1373 (2018)

Inter-individual variations of Histone Modification Patterns

cooperation with Prof. Fajkus group, CEITEC-MU

two Arabidopsis thaliana ecotypes Columbia 0 (Col-0) and Wassilewskija (Ws) grown from seeds collected from a single parent plant (Single) and a set of parent plants (Mixed).

Numbers of plants and repeated analyses of each plant using LC-MS/MS needed to detect 1.5-, 1.75-, and 2-fold changes in protein abundance with 95% confidence and 80% power are shown. C7250

46

Charakterization of protein complexes *functional proteomics*

@>80% proteins is functional only as a part of complex

@ ~ 10000 types of interactions

Aloy P., Russell R. B.: Nat. Biotechnol. 22 (10), 1317-1321 (2004)

C7250

Purification of protein complexes

in vivo expression of bait protein with a tag

T. Köcher, G. Superti-Furga: Nat. Methods, 4(10), 807-815 (2007).

MS capabilities in protein complex analysis

- identification of individual complex members including their PTMs
- confirmation of interaction partners (exclusion of nonspecific interactors)
- determination of complex stoichiometry
- determination of 3D structure of complex (cross-linking)

Gavin A.-C. et al.: Nature, 440 (30), 631-636.

Identification of individual interaction partners

Confirmation of true interaction partners

non-specific interaction 1:1

W. Yang et al., Proteomics 2008, 8, 832-851

Sequence confirmation and determination of OBP protein isoforms de novo sequencing

Myodes glareolus

- e unknown genome
- In antibodies

2D gel electrophoresis

MS/MS of selected spots

C7250

cooperation with prof. Stopka FS CU, Prague

Stopková R., Zdráhal Z., Ryba Š. et al, BMC Genomics 2010, 11:45

Sequence confirmation and determination of OBP protein isoforms

RNA analysis

(FS CU Prague)

RNA isolation cDNA synthesis PCR with Aphrodisin primers (hamster) purification cloning sequencing initial aminoacid sequence

proteomic analysis

(FS CU/Proteomics CF)

protein isolation 2D GE

in-gel digestion MALDI-MS/MS

de novo corrected AA sequence (Blast, new proteins)

database of OBP protein sequences identification of protein isoforms

Sequence confirmation and determination of OBP protein isoforms MALDI-MS/MS a LC-MS/MS manual spectra interpretation

original sequence - QAELEGKWVTTAIAADNIDTIEEEGPMR (OBP3)

DAELEGTWYTTAIAADNVDTIEEEGPLR

C7250

HAELEGTWYTTAIAADNVDTIEEEGPLR

MS Imaging

MALDI-MS imaging

samples:

fresh frozen tissue sections

individual cells or clusters of cells isolated by laser-capture microdissection or contact blotting of a tissue on a membrane target.

MS analysis

scanning of sample area point by point

image corresponds to planar distribution of individual m/z

distribution of peptides (proteins, lipids,...)

C7250

MALDI-MS imaging

Figure 3. Neurotensin was added to the ink of a printer. The mass spectrometry image (a) $(100 \times 50 \text{ pixels}, 3 \times 1.5 \text{ mm})$ obtained of the protonated neurotensin peak matches with the optical image (b).

M. Stoeckli, T.B. Farmer, R.M. Caprioli: J Am Soc Mass Spectrom, 10, 67-71 (1999)

MALDI-MS imaging

Figure 8. IMS analysis of a 12- μ m coronal mouse brain section. (a) Photomicrograph of a Cresyl Violet-stained section showing different anatomic brain substructures. (b) MALDI-MS protein profile obtained after homogeneous matrix deposition averaging all of the individual spectra acquired from the section. (c-g) Ion density maps obtained at different *m*/*z* values with an imaging resolution of 100 μ m. The ion density maps are depicted as pseudocolor images with white representing the highest protein concentration and black the lowest.

Chaurand et al: Anal. Chem. 2004, 76, 1145-1155

C7250

Degradation of Ang III and Ang-(1-7) in mouse kidney sections.

The end