HW 3	Inorganic Materials	Name:	
	Chemistry		
Points:	C7780	Date due:	
Max. 100 points	Fall 2018		

1. (30 pts.) Use the ligand field theory to explain why Mn_3O_4 is a normal spinel while Fe_3O_4 is an inverse spinel. Hint: draw diagrams of energy levels of d-electrons for ions in tetrahedral and octahedral sites, use approximation $\Delta_T = 4/9 \Delta_0$ for ligand field splitting energy, consider all MO_4 and MO_6 moieties as high spin complexes, calculate ligand field stabilization energy in terms of Δ_0 for both normal and inverse arrangement of ions, compare them and find which is more stable.

2. (**30 pts**) Mixed metal oxides could be prepared by sol-gel reactions from aqueous solutions of metal salts.

a) Order these ions Al³⁺, Ba²⁺, Cs⁺, H⁺, Li⁺, Mg²⁺ according to the increasing value of hydration enthalpy: $M^{z^+} + n H_2O \rightarrow [M(H_2O)_n]^{z^+} \Delta H_{hydration}$

b) For a hydrolytic reaction $[M(H_2O)_N]^{z^+} + h H_2O \rightarrow [M(OH)_h(H_2O)_{N-h}]^{(z-h)^+} + h H_3O^+$

 $\Delta H^{\circ} = (75.2 - 9.6 z) \text{ kJ mol}^{-1}$ and $\Delta S^{\circ} = (-148.4 + 73.1 z) \text{ J K}^{-1} \text{ mol}^{-1}$

Write equation that gives a measure of spontaneity of reaction (= write a formula relating this state function to ΔH° and ΔS°). Calculate, for which of the above listed ions is this reaction spontaneous?

3. (**40 pts.**) Calculate the wall thickness of a hexagonal MCM-41 mesoporous material, assume that it possesses cylindrical pores.

a) First, calculate the d(100) = interplanar distance in the (100) plane from the XRD diffractogram. CuK α radiation was used with $\lambda = 1.542$ Å. Diffraction maximum was found at 2.14 °20.

b) Now, derive the formula relating the interplanar distance d(100) to the hexagonal mesoporous parameter a_0 and calculate its value.

c) Derive the formula relating the diameter D_p of a pore to specific surface area SA (870 m²/g) and total pore volume V_p (0.683 cm³/g). Assume cylindrical pores.

d) Finally, calculate the wall thickness (*wt*) of MCM41 material.