HW 3	Inorganic Materials Chemistry	Name:	
Points:	C7780	Date due:	
Max. 100 points	Fall 2018		

1. ($\mathbf{3 0} \mathbf{p t s}$.) Use the ligand field theory to explain why $\mathrm{Mn}_{3} \mathrm{O}_{4}$ is a normal spinel while $\mathrm{Fe}_{3} \mathrm{O}_{4}$ is an inverse spinel. Hint: draw diagrams of energy levels of d-electrons for ions in tetrahedral and octahedral sites, use approximation $\Delta_{\mathrm{T}}=4 / 9 \Delta_{\mathrm{O}}$ for ligand field splitting energy, consider all MO_{4} and MO_{6} moieties as high spin complexes, calculate ligand field stabilization energy in terms of Δ_{O} for both normal and inverse arrangement of ions, compare them and find which is more stable.
2. ($\mathbf{3 0} \mathbf{~ p t s) ~ M i x e d ~ m e t a l ~ o x i d e s ~ c o u l d ~ b e ~ p r e p a r e d ~ b y ~ s o l - g e l ~ r e a c t i o n s ~ f r o m ~ a q u e o u s ~ s o l u t i o n s ~ o f ~}$ metal salts.
a) Order these ions $\mathrm{Al}^{3+}, \mathrm{Ba}^{2+}, \mathrm{Cs}^{+}, \mathrm{H}^{+}, \mathrm{Li}^{+}, \mathrm{Mg}^{2+}$ according to the increasing value of hydration enthalpy: $\mathrm{M}^{2+}+\mathrm{n}_{2} \mathrm{O} \rightarrow\left[\mathrm{M}\left(\mathrm{H}_{2} \mathrm{O}\right)_{\mathrm{n}}\right]^{2+} \quad \Delta \mathrm{H}_{\text {hydration }}$
b) For a hydrolytic reaction $\left[\mathrm{M}\left(\mathrm{H}_{2} \mathrm{O}\right)_{\mathrm{N}}\right]^{2+}+\mathrm{h} \mathrm{H}_{2} \mathrm{O} \rightarrow\left[\mathrm{M}(\mathrm{OH})_{\mathrm{h}}\left(\mathrm{H}_{2} \mathrm{O}\right)_{\mathrm{N}-\mathrm{h}}\right]^{(z-\mathrm{h})+}+\mathrm{h} \mathrm{H}_{3} \mathrm{O}^{+}$
$\Delta \mathrm{H}^{\circ}=(75.2-9.6 \mathrm{z}) \mathrm{kJ} \mathrm{mol}^{-1} \quad$ and $\quad \Delta \mathrm{S}^{\circ}=(-148.4+73.1 \mathrm{z}) \mathrm{J} \mathrm{K}^{-1} \mathrm{~mol}^{-1}$
Write equation that gives a measure of spontaneity of reaction (= write a formula relating this state function to $\Delta \mathrm{H}^{\circ}$ and $\Delta \mathrm{S}^{\circ}$). Calculate, for which of the above listed ions is this reaction spontaneous?
3. (40 pts.) Calculate the wall thickness of a hexagonal MCM-41 mesoporous material, assume that it possesses cylindrical pores.
a) First, calculate the $d(100)=$ interplanar distance in the (100) plane from the XRD diffractogram. $\mathrm{CuK} \alpha$ radiation was used with $\lambda=1.542 \AA$. Diffraction maximum was found at $2.14^{\circ} 2 \theta$.

b) Now, derive the formula relating the interplanar distance $d(100)$ to the hexagonal mesoporous parameter a_{0} and calculate its value.

c) Derive the formula relating the diameter D_{p} of a pore to specific surface area SA $\left(870 \mathrm{~m}^{2} / \mathrm{g}\right)$ and total pore volume $V_{\mathrm{p}}\left(0.683 \mathrm{~cm}^{3} / \mathrm{g}\right)$. Assume cylindrical pores.

d) Finally, calculate the wall thickness ($w t$) of MCM41 material.
