Chemical changes/reactions induced by ultrasound

No direct interaction of ultrasound field with molecules (in contrast to photochemistry, ...)

•Liquid phase reactions – chemical reactions driven by cavitation effects

• Solid state reactions – introduction of defects = speeding up diffusion

Sound

Sound = pressure waves = periodic compression/expansion cycles traveling through a medium possessing elastic properties (gas, liqud, solid)

Liquids and gases – longitudinal pressure waves – compression/rarefaction Solids – longitudinal and transverse waves

The energy is propagated as deformations (tensile/compressive stress) in the media

The molecules oscillate about their original positions and are not propagated

The propagation of a sound wave = the transfer of vibrations from one molecule to another

Longitudinal Pressure Waves

Sound

In a typical liquid, the speed of sound decreases as the temperature increases, at all temperatures.

The speed of sound in water is almost five times greater than that in air (340 m s⁻¹)

Substance	Speed of sound, <i>u</i> [m s
Air	343
Helium	965
Water	1482
Lead	1960
Steel	5960
Granite	6000

Speed of Sound

The speed of sound (*u*)

 $u^2 = 1/\kappa_{\rm S}\rho = \left[\partial P/\partial\rho\right]_{\rm S} \sim 1/(\langle (V)2\rangle)$

 $\kappa_{s} = adiabatic compressibility$ $\rho = density$ P = pressure $\int_{100}^{100} \int_{100}^{100} \int_{10$

Sound Intensity

Sound Intensity = Power / area = Watts/m²

Source of Sound	Intensity (W/m2)	Sound level (dB)
Jet Airplane 30 m away	10 ²	140
Air-raid Siren, nearby	1	120
Threshold of Pain	10 -1	120
Concert	~ 10 ⁻¹	115
Riveter	10 -3	100
Busy Traffic	10 ⁻⁵	70
Normal Conversations	10 ⁻⁶	60
Whisper	10 ⁻¹⁰	20
Threshold of Hearing	10 ⁻¹²	0

0 dB (10⁻¹² W/m²) 10 dB = 10 as intense 20 dB = 10² as intense 30 dB = 10³ as intense 120 dB = 10¹² as intense

Acoustic Pressure

 $P_a = P_A \sin 2\pi f t$

 P_a acoustic pressure P_A pressure amplitude f sound frequency $c = \lambda f$ (for 20 kHz, $\lambda = 7.5$ cm) $P_{total} = P_a + P_h$

compression displacement (X) graph Pressure (P) graph Pressure (P) graph

P_h hydrostatic pressure

Acoustic Pressure

$$P_A = \sqrt{2I\rho c}$$

P_A = driving pressure amplitude [Pa]

I = irradiation intensity [W m⁻²]

 $(500 \text{ W system - } 1.3 \ 10^5 \text{ W m}^{-2})$

 $\rho =$ liquid density [kg m⁻³]

Compression and rarefaction (expansion) regions

c = sound velocity in liquid [m s⁻¹]

(Water 1482 m s⁻¹)

 $P_A = 620\ 700\ Pa = 6.2\ bar$

Ultrasound

Utrasound frequencies from 20 kHz to 50 MHz

Generation of Ultrasound

Transducer – a device converting one type of energy into another

gas driven	whistle (F. Galton), liquid atomizer	
	siren	
liquid driven	liquid whistle homogeniser, a jet of liquid passed through an orifice on a thin metal blade, vibrations, cavitation, mixing of immiscible liquids, ketchup, mayonnaise	
electromechanical	magnetostrictive, Ni, Co/Fe, Al/Fe, Tb/Dy/Fe alloys shrink when placed in mg. field, solenoid, pulses, upper limit 100 kHz, cooling	
	piezoelectric, oposite charges applied on crystal sides, contraction/expansion, quartz, Pb(Zr/Ti)O ₃ ceramics (PZT), up to MHz	

Generation of Ultrasound

Ultrasound Processor VCX 500 W

Frequency 20 kHz

0 to 40 °C

Argon (flow rate 62 cm³ min⁻¹)

TIME of ultrasound treatment PULSE irradiation and a dwell time 2:2 TEMP maximum temperature 50 °C AMPL amplitude 50 %

Ti alloy horn, minimum lenght is a half-wavelength of sound in a material, 26 cm for 20 kHz in Ti, multiples of 13 cm

vibration amplitude 5 - 50 µm

Sandwich transducer operating at 1-200 kHz

Hydrodynamic Cavitation

the passage of liquid through an orifice plate

the kinetic energy/velocity of the liquid increases at the expense of the pressure

throttling causes the pressure to fall (Bernoulli) below the threshold pressure for cavitation (vapor pressure)

cavities are generated

the liquid jet expands, the pressure recovers

energetic collapse of the cavities

Hydrodynamic Cavitation

Lord Rayleigh for the British Admiralty 1895

cavitation erosion of propeller blades

The University of Texas at Austin

$$R\ddot{R} + \frac{3}{2}\dot{R}^{2} = \frac{1}{\rho}[p_{g} - P_{0} - P(t)] - 4\nu\frac{\dot{R}}{R} - \frac{2\sigma}{\rho R}$$

.

Snapping Shrimp

snaps a claw shut to create a water jet speed of 30 m/s, or 100 km/h a drop of the pressure to below the vapor pressure of water - cavitation bubbles acoustic pressures of up to 80 kPa at a distance of 4 cm The pressure wave is strong enough to kill

small fish

M. Versluis, B. Schmitz, A. von der Heydt, D. Lohse, How Snapping Shrimp Snap: Through Cavitating Bubbles. Science 289, 2114–2117 (2000)

D. Lohse, B. Schmitz, M.Versluis, Nature 413, 477-478 (2001)

Stable vs. Transient Cavitation

Cavitation effects = creation, growth, and implosive collapse of bubbles $(1-2 \mu s)$ in a liquid = implosion HOT SPOT (1 ns)

stable cavitation - bubbles oscillate for many cycles

transient cavitation - transient cavities expand rapidly collapse violently

Cavitation effects = creation, growth, and implosive collapse of bubbles in a liquid

Bubble formation = breakage of liquid during **expansion**, overcoming tensile strength (pure water 1500 bar, only 6.2 bar available)

Weak spots needed = dissolved gas molecules, solid particles, trapped gases

Bubble growth (300 μ s), energy absorption, size oscillations critical size (170-300 μ m) = most efficient energy absorption, rapid growth, inefficient energy absorption, collapse

Bubbles collapse = spherically symmetrical implosion, shear forces, adiabatic compression, life time 1-2 μ s

Hot spot = end of the collapse temperature of the gas inside bubble 5 000 - 20 000 °C (for 1 ns)

surrounding liquid layer 2000 °C

pressure 500 – 1500 bar

Extreme cooling rates 10¹⁰ K s⁻¹ red hot steel poured into water 2500 K s⁻¹ Homogeneous Sonochemistry Two-Site Mechanism

Cavity interior Filled with gases and vapors

temperatures 5 000 – 20 000 °C pressure 500 – 1500 bar

Surrounding liquid layer

temperatures 2000 °C

Bulk liquid

Shock waves, shear forces

How to Measure the Temperature inside a Bubble ?

Sonoluminescence - Light generated during the implosive collapse of bubbles in liquids irradiated with ultrasound

95% H2SO4(aq.)Kenneth S. Suslick
University of Illinoisunder Ar20 kHz (14 W/cm²)Ti horn directly immersedT = 298 K

- Apparent blackbody temperature
- Ar emission
- SO and O₂⁺ emission

8 000 – 15 000 K

Temperature/Pressure inside a Bubble Neppiras Equation

$$T_{\max} = T_0 \frac{P_a(\gamma - 1)}{O} \qquad P_1$$

$$P_{\max} = Q \left(\frac{P_a(\gamma - 1)}{Q} \right)^{\frac{\gamma}{\gamma - 1}}$$

 $P_a = acoustic pressure$

 T_0 = solution temperature

 $\gamma = C_p / C_v$

Q = gas pressure inside a bubble upon initiation of the collapse, at its maximum size

Gas	$\gamma = C_p / C_v$
Kr	1.66
Ar	1.66
Не	1.63
O ₂	1.41

Fate of Bubbles under Ultrasonic Irradiation

Rectified diffusion – during expansion phase the bubble has larger surface area – more gas diffuses inside than during compression gets out

D. F. Gaitan, L. A. Crum, 1990

a method to trap a single sonoluminescing bubble within an acoustic standing wave field

Standing acoustic wave field

One bubble trapped

The bubble oscillates for many cycles

Bubble sonoluminescence

C. A. and V. Bjerknes

The force on an object in a liquid depends on its volume and the pressure gradient, the time averaged force drives the bubble towards the antinode of sound pressure and keeps it there.

Proper conditions for a single sonoluminescing bubble within an acoustic standing wave field

Red – MBSL in dodecane Blue – MBSL in water, 16 kHz Green – SBSL in water, 43 kHz Black – blackbody curve for 16200 K

Red - bubble radius Green - bubble temperature Blue - acoustic pressure 1.3 bar/25 kHz

Multi Bubble Sonoluminescence MBSL

Multi-bubble sonoluminescence Spatial and temporal average 250 bar

Sonoluminescence

Light generated during the implosive collapse of bubbles in liquids irradiated with ultrasound

Apparent blackbody temperature (all 4 spectra)

12500 ± 1500 K

Sonoluminescence

95% H₂SO₄(aq.)

blackbody temperature

Ar emission

an optically opaque plasma core

Sonoluminescence

95% H₂SO₄(aq.)

SO and O₂⁺ emission with vibronic progression

1580 ± 110 K at 3.3 bar 2470 ± 170 K at 4.2 bar 3480 ± 240 K at 5.1 bar

Sonofusion Fraud

$$D + D \rightarrow {}^{3}He(0.82MeV) + n(2.45MeV)$$

 $D + D \rightarrow T(1.01MeV) + H(3.02MeV)$

Calorimetry

- P = power, W
- **P** el = input power to generator
- P hf = high-freq. power output
- P th = power input into liquid

$$P_{th} = \frac{dT}{dt} c_p m$$

Calorimetry

P = power, W T = temperature, K t = time, s c_p = heat capacity, J g⁻¹ K⁻¹

2.08

 $=\frac{dT}{dt}c_{p}m$

m = mass, g Volume 50 cm³ Argon atmosphere Error 5% heat capacity, J g⁻¹ K⁻¹ Water 4.2

Tetraglyme

Chemical dosimetry

The Weissler reaction

Volume 50 cm³ KI 0.1 M CCl₄ 0.2 cm³ Time 30 min $CCl_4 + H_2O \longrightarrow Cl_2 + CO + 2 HCl$ $2 KI + Cl_2 \longrightarrow I_2 + 2 KCl$ $I_2 + 2 S_2O_3^{2-} \longrightarrow 2 \Gamma + S_4O_6^{2-}$

 $I_3^ \lambda_{max} = 355 \text{ nm}$ $\epsilon = 26303 \text{ dm}^3 \text{ mol}^{-1} \text{ cm}^{-1}$

Weissler Reaction

$$CCl_4 + H_2O \longrightarrow Cl_2 + CO + 2 HCl$$

 $2 \text{ KI} + \text{Cl}_2 \longrightarrow \text{I}_2 + 2 \text{ KCl}$

 $I_2 + 2 S_2 O_3^{2-} \longrightarrow 2 I^- + S_4 O_6^{2-}$

Chemical dosimetry

The Fricke reaction

Volume 50 cm³ (NH₄) Fe(SO₄)₂.6H₂O 0.001 M

$$H_2O \longrightarrow H^{\cdot} + OH^{\cdot}$$

 $Fe^{2+} + OH^{\cdot} \longrightarrow Fe^{3+} + OH^{-}$

H₂SO₄ 0.4 M NaCl 0.001 M Time 30 min

Fe³⁺ $\lambda_{max} = 304 \text{ nm}$ $\epsilon = 2197 \text{ dm}^3 \text{ mol}^{-1} \text{ cm}^{-1}$

Fricke Reaction

Chemical dosimetry

Porphyrin decomposition ratio

 $1 - R_{TPPS} = 1 - \frac{c_{TPPS}}{c_{TPPS}^0}$

TPPS 3.3 10⁻⁶ M Volume 50 cm³

TPPS $\lambda_{max} = 412 \text{ nm}$ $\epsilon = 500000 \text{ dm}^3 \text{ mol}^{-1} \text{ cm}^{-1}$

Porphyrin Decomposition

Reactor Optimization

cavitating bubbles in the optimised cell (water, 20 kHz, $P_{us} = 10$ W) and simulated intensity distribution for the same geometry

Solid surfaces = implosion, microjets, shock waves 200 μm minimum particle size at 20 kHz for microjets

surface erosion removal of unreactive coatings (oxides, nitrides, carbonaceous) fragmentation of brittle materials, increased surface area

Solid particles in liquid = shock waves

high speed interparticle collisions (500 km/s)

surface smoothing, surface coating removal Ni catalytic activity in hydrogenation increased 10⁵ fold by NiO removal

localized melting of metal particles at the impact point fragmentation, increased surface area intercalation rates enhanced 200 fold in layered oxides and sulfides (V_2O_5 , MoO_3 , MoS_2 , ZrS_2 , TaS₂)

Metal powders

Cr (mp 2130 K) and Mo (mp 2890 K) agglomerate

W (mp 3683 K) does not

temperature at the point of impact ~ 3000 °C

Before ultrasound

30 min. ultrasound

Cavitational Corrosion of the Tip

Control of Sonochemical Reactions

sound intensity - minimum for cavitation threshold, depends on frequency, optimum intensity for given reaction conditions, at high powers great number of bubbles hinder sound transmission, decoupling of a liquid from the source, breakdown of transducer material, $10 - 100 \text{ W cm}^{-2}$

sound frequency - 20 – 100 kHz, the higher the frequency, the higher power needed to actuate cavitation, stronger cavitation effects, rarefaction phase shortens at high frequency

sound attenuation - proportional to the frequency, more power needed at high frequencies

Effect of Frequency on Cavitation in Water

The frequency dependence of the intensity required to produce cavitation for degassed water at room temperature. The intensity required to produce vaporous cavitation above the frequency of 100 kHz rises rapidly.

Control of Sonochemical Reactions

volatile reactants - primary reaction site inside the bubbles, diameter 200 µm, 5000 °C, easy bubble formation, more reactant vapors inside bubbles, but the cavitation is cushioned

 $Fe(CO)_5$ $Fe(acac)_3$ $FeSO_4$

nonvolatile reactants - reaction in the thin layer (200 nm) surrounding the bubble, 2000 °C, less cushioning, more energetic cavitation (collapse)

high boiling solvents - high vapor pressure inside the bubble cushions the implosion, nonvolatile solvents give less cushioning, more energetic cavitation less cavitation in viscous liquids, viscosity resists shear forces low surface tension facilitates cavitation, in water add surfactants

Control of Sonochemical Reactions

temperature - higher temperature increases vapor pressure of a medium, lowers viscosity and surface tension, many bubbles formed at temperatures close to solvent boiling point, a barrier to sound transmission, reaction rates decrease with increasing temperature, more vapors in bubbles

ambient gas energy developed on bubble collapse: monoatomic (Ar) > diatomic (N₂) > triatomic (CO₂) Xe: low thermal conductivity, heat of the collapsing cavity retained He: high thermal conductivity, heat of the collapsing cavity dissipitated, no reaction

external pressure - higher pressure suppresses bubble formation but makes cavitation more energetic, optimum pressure for a given frequency

Effect of Temperature on Cavitation in Water

The effect of temperature on cavitation and its associated hysteresis effect for tap water. The increase in intensity as the temperature is increased can be observed before it falls away at the boiling point. When the temperature is allowed to fall an increase in intensity is found in the region of 50-60 °C. This is quite a significant effect and appears to occur in all liquids.

Sonochemical Reactions

Solid surfaces = implosion, microjets, shock waves

200 μm minimum particle size at 20 kHz for microjets surface erosion removal of unreactive coatings (oxides, nitrides, carbonaceous) fragmentation of brittle materials, increased surface area

Li, Mg, Zn, Al, Cu react at room temperature

 $MCl_5 + Na + CO \rightarrow M(CO)_5^-$ (M = V, Nb, Ta)

Mo + 6 CO \rightarrow Mo(CO)₆ r. t., 1 bar, normally needs 300 bar, 300 °C

 $\begin{array}{rcl} R_2SiCl_2 + Li & \rightarrow & [-SiR_2-SiR_2-]_n + LiCl \\ monomodal MW distribution \end{array}$

Homogeneous Sonochemical Reactions

Liquids = heating/cooling by cavity implosions

 $H_2O \rightarrow H^{\cdot} + OH^{\cdot} \rightarrow H_2 + H_2O_2$

precursor decomposition:

metals $Fe(CO)_5 \rightarrow Fe + 5 CO$

oxides $Ga^{3+} + H_2O \rightarrow Ga(O)(OH)$, diaspore

nitrides, carbides, sulfides

alkane cracking polymer degradation, lower MW, surface modification emulsification of immiscible liquids (oil-water, Hg-organics, polymer-inorganics)

M(acac)_n as Precursors

 $M(acac)_3$

- Well studied class of compounds
- Many elements form acac complexes
- Metal complexes precursors in CVD, sol-gel, thermolysis routes to oxides
- Easily chemically modified
- Volatile, organics soluble
- Nontoxic

Chemistry of M(acac)_n **Precursors**

Thermal decompositon pathway

Ismail, H. M. J. Anal. Appl. Pyrolysis 1991, 21, 315–326.

Ligand Removal by Water

Pinkas, J.; Huffman, J. C.; Baxter, D. V.; Chisholm, M. H.; Caulton, K. G. *Chem. Mater.* 1995, 7, 1589–1596.

Sonochemical Synthesis of Iron Oxide Nanoparticles

Cao, X.; Prozorov, R.; Koltypin, Y.; Kataby, G.; Felner, I.; Gedanken, A. *J. Mater. Res.* 1997, 12, 402–406. Cao, X.; Koltypin, Yu.; Prozorov, R.; Katabya, G.; Gedanken, A. *J. Mater. Chem.* 1997, 7, 2447–2451.

Amorphous product, by heating to 700 °C converted to α-Fe₂O₃ 20–40 nm

Nikitenko, S. I.; Moisy, Ph.; Seliverstov, A. F.; Blanc, P.; Madic, C. *Ultrasonics Sonochem.* 2003, 10, 95–102.

Sonochemical Synthesis of Iron Oxide Nanoparticles

Defect spinel

Corundum

J. Pinkas, V. Reichlova, R. Zboril, Z. Moravec, P. Bezdicka, J. Matejkova: Sonochemical synthesis of amorphous nanoscopic iron(III) oxide from Fe(acac)₃

Ultrasonic Sonochem. 2008, 15, 256-264

SEM of Nanoscopic Fe₂O₃

Particle size 20 - 30 nm

Spherical shape

Uniform size distribution

WD 3.0mm

IR Spectrum of Sono-Fe₂O₃

IR Spectrum of Sono-Fe₂O₃

Decomposition of Acac Ligands

Speculation about the nature of residual organic groups

Deacon-Phillips Rules

 $\Delta = v_{as}(COO) - v_s(COO)$ $\Delta CH_3COO^- = 164 \text{ cm}^{-1}$

 Δ larger than ionic form = unidentate Δ smaller than ionic form = bidentate Δ comparable to ionic form = bridging

Deacon, G. B.; Phillips, R. J. Coord. Chem. Rev. 1980, 3, 227–250.

TEM proves amorphous character of sono-Fe₂O₃

110 1.5.25

Electron diffraction

Crystallization of Amorphous Fe₂O₃ under TEM Beam

Electron diffraction

Maghemite or Magnetite

Time under TEM beam

5 nm

HR-TEM

Fe₂O₃ calcined at 300 °C

Crystallization induced by heating (300 °C)

Fe₂O₃ calcined at 300 °C

Smaller particle size on calcination – why?

20 nm

20 nm

Specific Surface Area

Surface area 48 to 260 m² g⁻¹ (BET) depending on H_2O content

BET surface area of the Fe₂O₃ heated to different temperatures during 12h outgassing periods

The oxide surface area increases as the acetate groups are removed, then the particle size increases because of sintering

Composite Particles of Sono-Fe₂O₃

HR-TEM (5 nm bar)

5 nm

TEM (20 nm bar) after heating to 250 °C Organic matrix partially removed

20 r/m

Composite Particles of Fe₂O₃

TEM (10 nm bar)

10 nm

Iron oxide particle size 2 to 3 nm

Embedded in organic matrix

XRD

of amorphous Fe₂O₃

heated dynamically in air

up to 250, 300, and 360 °C

Maghemite

 $\gamma - Fe_2O_3$

TEM of Fe₂O₃ Calcined at 600 °C

HT-XRD of Sono-Fe₂O₃ 280 - 390 °C

Ramp 1 °C min⁻¹, 1 min equilb., 30 min data collect., 10 °C steps

Hematite Particle Size

Dependence of the coherence length, D (nm) of α -Fe₂O₃ on the crystallization temperature under dynamic-isothermal conditions of the HT-XRD measurement