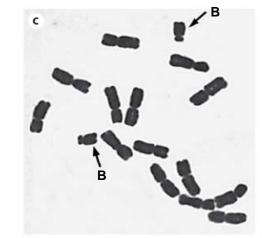

B chromosomes


B chromosomes Nº1348: Crepis capillaris am Brachycome rye (Secale cereale) dichromosomatica Crepis capillaris B

B chromosomes

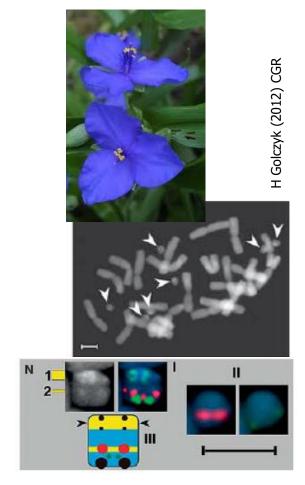
(1) dispensable

- (2) usually smaller than A chromosomes
- (3) do not pair/recombine with A chromosomes at meiosis
- (4) their inheritance is irregular, non-Mendelian (univalents)
- (5) meiotic elimination in some species is counter-balanced by processes of drive at mitosis, and less frequently at meiosis (equilibrium frequencies in populations)
- (6) neutral effects; negative and quantitative effects on the phenotype when present in high numbers (reduced fertility)
- (7) they lack any known major gene loci, but rDNA sequences are known in a few species
- (8) they contribute greatly to intraspecific genome size variation
- (9) they have no obvious adaptive properties
- (10) their mode of origin remains a mystery

14 A and 2 B chromosomes in rye

B chromosomes

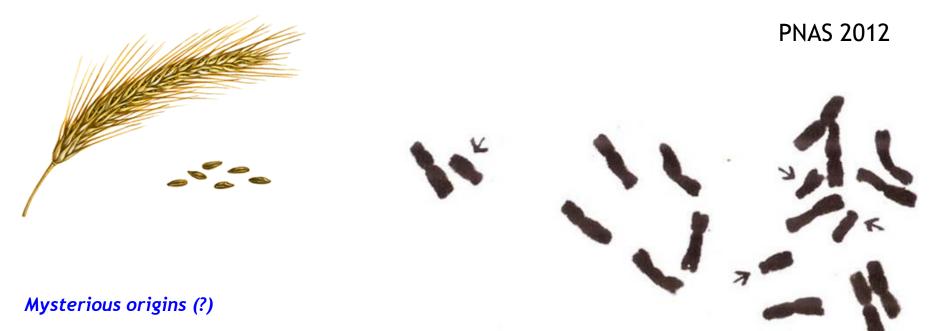
The occurrence of Bs across angiosperms seems to be not random: their presence is correlated with genome size - higher frequency in families with large genomes


How frequent?

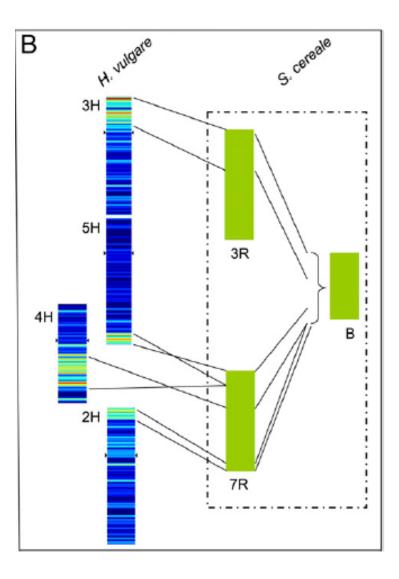
Bs in about 9% of angiosperm species monocots: 8% (Poaceae, Liliales and Commelinales) eudicots: 3% (Asteraceae)

How many?

- usually in low numbers (0-5)
- exceptions: Silene maritima (0-15), Brachycome lineariloba (0-22) or Allium schoenoprasum
- more Bs than As in maize (2n = 20 As + 0-34 Bs)
- number can vary between tissues: grasses Aegilops speltoides


and Ae. mutica - Bs exist in aerial organs but not in roots

Tradescantia virginiana (2n=24)


Selfish supernumerary chromosome reveals its origin as a mosaic of host genome and organellar sequences

Mihaela Maria Martis^a, Sonja Klemme^b, Ali Mohammad Banaei-Moghaddam^b, Frank R. Blattner^b, Jiří Macas^c, Thomas Schmutzer^b, Uwe Scholz^b, Heidrun Gundlach^a, Thomas Wicker^d, Hana Šimková^e, Petr Novák^c, Pavel Neumann^c, Marie Kubaláková^e, Eva Bauer^f, Grit Haseneyer^f, Jörg Fuchs^b, Jaroslav Doležel^e, Nils Stein^b, Klaus F. X. Mayer^a, and Andreas Houben^{b,1}

- Seem to arose in different ways in different species
- Generally thought to originate from A chromosomes
- Proposed origins (examples): from centric fragments after an unequal reciprocal translocation or by excision from A chromosomes

Multichromosomal Origin of Rye B Chromosomes and Sequences Located on B Chromosomes

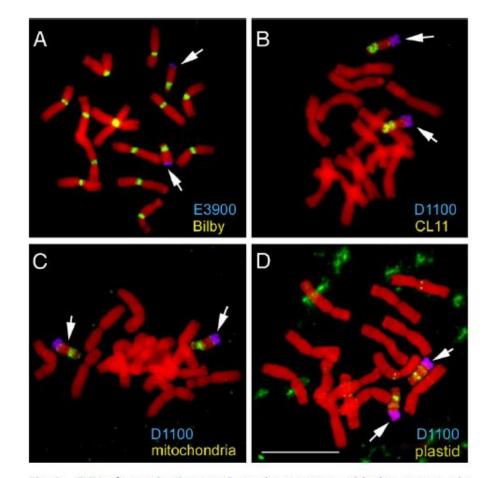
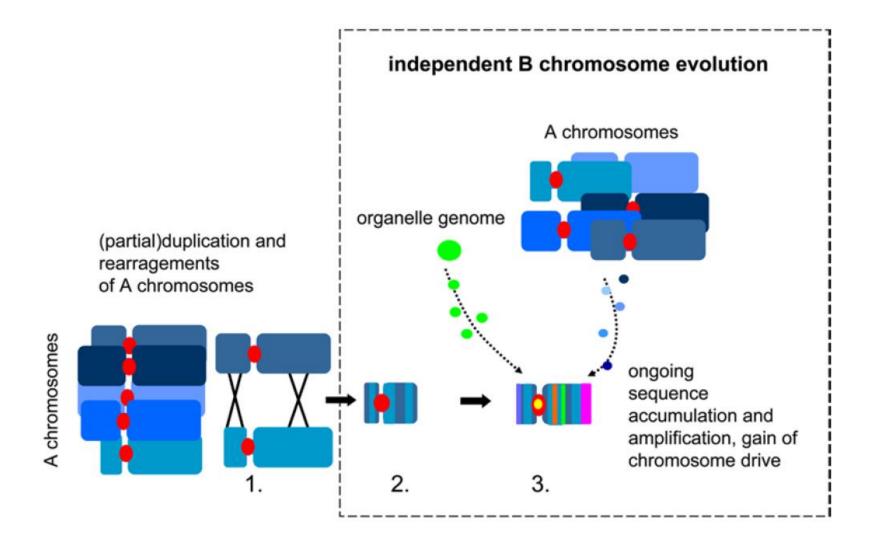



Fig. 2. FISH of rye mitotic metaphase chromosomes with the centromeric retrotransposons *Bilby* (*A*), the B-specific pericentromeric Ty1/copia repeat CL11 (*B*), mitochondrial DNA (*C*), and plastid DNA (*D*). B chromosome-specific satellite repeats E3900 and D1100 were used for identifications of the Bs. The Bs are indicated by arrows. (Scale bar: 10 μ m.)

B chromosomes as a "genomic sponge"

Model of Origin and Evolution of Rye B Chromosomes

How a supernumerary B chromosome survives over time?

- transmission higher than Mendelian \rightarrow kept in populations
- drive (pre-meiotic, meiotic, post-meiotic) = preferential maintenance of Bs
- post-meiotic drive common in plants during gametophyte maturation (examples: rye, maize)

Rye

Male gamete Pollen mother cell Pollen tetrad Microspore Pollen grain mitosis I: 2 chromatids of the B chromosome do not separate Migration of the nucleus Meiosis Dissociation at anaphase and are included in the generative nucleus Mitosis Pollen grain mitosis II: both spermatids have an unreduced number of Bs Migration of the generative cell Mitosis II (- a similar nondisjunction process may occur in the female gametophytes) Generativ Spermatids Vegetative cell


Pollen grain mitosis I:

Asymmetry of the mitotic spindle (\rightarrow vegetative and generative nucleus)

Nondisjunction control factor on B chromosome (sequence unknown) \rightarrow ? noncoding RNA influencing the differential sister-chromatid cohesion of As and Bs (= B chromosome chromatids not separated)

? B-specific centromeric repeats acting as a neocentromere (centromeric drive \rightarrow nondisjunction)

Holocentric chromosomes

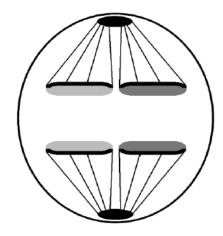
Angiosperm species with holokinetic chromosomes

Juncaceae

Cyperaceae

Myristica fragrans (Myristicaceae)

Drosera (Droseraceae)


Chionographis (Melanthiaceae)

Holocentric chromosomes

difuse kinetochor \rightarrow

chromosome segregation in anaphase

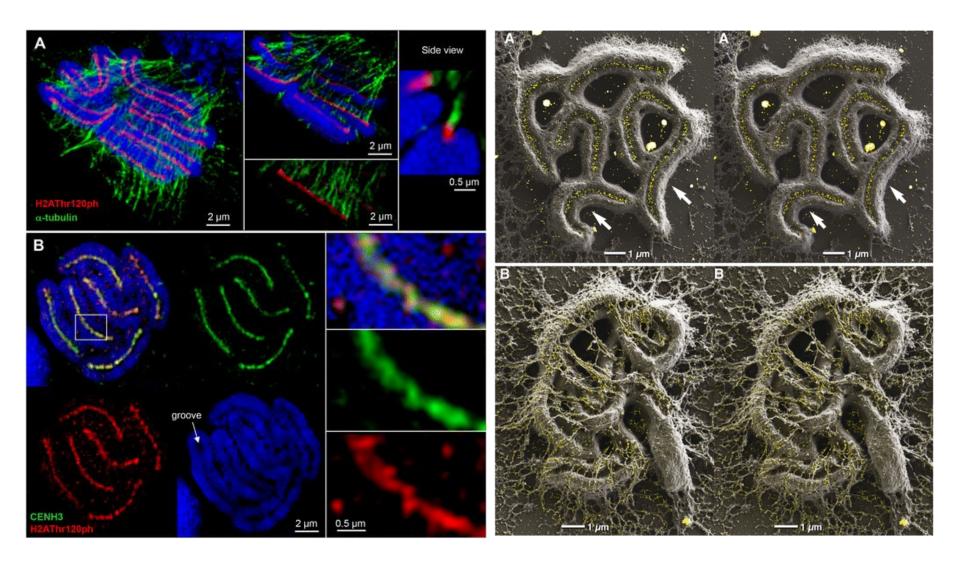
holocentric vs. monocentric chromosomes

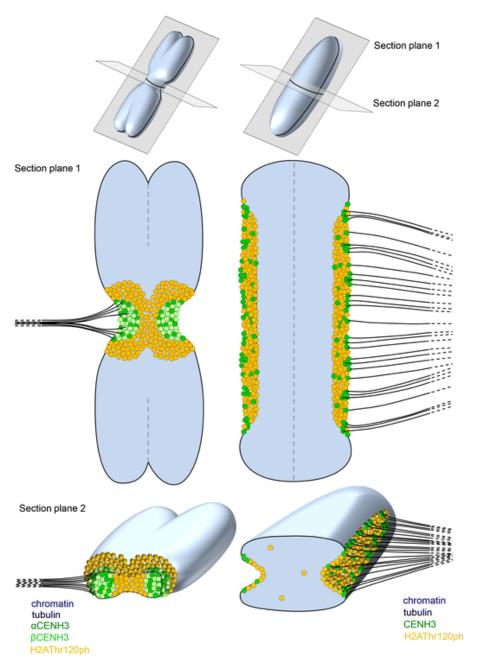
 holocentrics: huge variation in chromosome numbers [the largest number of chromosomes in animals (2n = 446) is found in the blue butterfly *Polyommatus atlantica* with holokinetic chromosomes]

- in c. 5,500 angiosperm species
- chromosome numbers from n=2 up to n=110
- chromosome fission (agmatoploidy) and fusion (symploidy)

 \rightarrow extensive chromosome number variation

Variation in chromosome number in some holocentric plant genera (Bureš et al. 2013)


Family / Genus	Range	Haploid chromosome number (n)	
Droseraceae			
Drosera ^{a, b, c}	13.3-fold	3-7, 9-17, 20, 23, 30, 32, 36, 40	
Melanthiaceae			
Chionographis ^d	1.8-fold	12, 21, 22	
Juncaceae			
Luzula ^{a, b, e}	14.0 - fold	3, 6-16, 18, 21, 23, 24, 26, 31, 33, 35, 36, 42	
Juncus ^{a, b}	10.6 - fold	9, 10, 13, 15–24, 30, 32, 34, 35, 40, 42, 45, 50, 53, 54, 60, 66, 67, 85	
Cyperaceae			
Carex ^{f, g}	11.6 - fold	5-47, 50, 52-58	
Eleocharis ^{f, h}	36.0-fold	3-16, 18-30, 36-44, 47-50, 68, 86-92, 100, 108	
Cyperus ^f	22.4-fold	5, 8, 9, 12, 13, 15-32, 34-45, 47-50, 52-60, 62-64, 66-69, 76, 80, 93, 98, 104, 110, 112	
Rhynchospora ^{f, i}	12.5-fold	2, 4–13, 15, 18–22, 24, 25	
	•		
^a Bolkovskikh et al. (1969)		^b Golldblatt et al. (2010)	^c Rivadavia et al. (2003)


Bolkovskikn et al. Gondolatt et al. (2010) ^d Tanaka and Tanaka (1979) ^e Nordenskiöld (1951); Kirschner (1992) ^f Roalson (2008) ^h Strandhede (1965b, 1966); Bureš (1998)

^g Rotreklová et al. (2011)

ⁱ Luceño et al. (1998); Vanzela et a. (2000, 2003)

Holocentric chromosomes, centromeres and microtubules

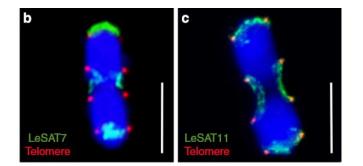
Model of the centromere organization of mono- and holocentric plant chromosomes

Microtubules (tubulin) attach at CENH3, but not at H2AThr120ph. The microtubule bundle formation is less pronounced at holocentromeres.

active centromeres have H2AThr120ph -

phosphorylation of threonine 120 of

histone H2A

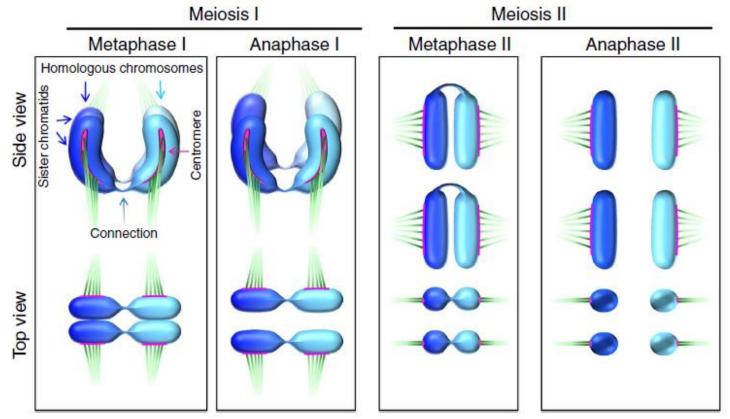

DOI: 10.1038/ncomms5979

OPEN

Alternative meiotic chromatid segregation in the holocentric plant *Luzula elegans*

Stefan Heckmann^{1,*,†}, Maja Jankowska^{1,*}, Veit Schubert¹, Katrin Kumke¹, Wei Ma¹ & Andreas Houben¹

- chromosomes are structurally and functionally holocentric throughout meiosis
- an inverted sequence of sister chromatid segregation occurs during meiosis
- terminal satellite DNA repeat-enriched chromatin threads assist the pairwise movement and the linkage of homologous non-sister chromatids up to metaphase II to enable the faithful formation of haploid gametes



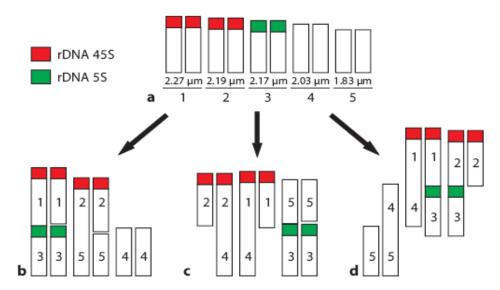
DOI: 10.1038/ncomms5979

OPEN

Alternative meiotic chromatid segregation in the holocentric plant *Luzula elegans*

Stefan Heckmann^{1,*,†}, Maja Jankowska^{1,*}, Veit Schubert¹, Katrin Kumke¹, Wei Ma¹ & Andreas Houben¹

Chromosomes align at metaphase I in such a manner that **sister chromatids** rather than homologous chromosomes are **separated during meiosis I**. Homologous non-sister chromatids are terminally linked **by satellite DNA-enriched chromatin threads** until metaphase II to ensure faithful transmission of holocentric chromatids.



Holocentric chromosomes in Eleocharis


Chromosome reduction in *Eleocharis maculosa* (Cyperaceae)

C.R.M. da Silva^{a, b} M.S. González-Elizondo^c A.L.L. Vanzela^a

CGR 122 (2008)

Fig. 3. Idiograms showing the symploidy pathways to formation of chromosome races in *Eleocharis maculosa*. The chromosome arrangement in the idiogram follows possible meiotic pairing. (**a**) Chromosome races with 2n = 10. The μ m values correspond to the average of the size of each pair. (**b**-**d**) Chromosome race with 2n = 8, 7 and 6, respectively.

Holocentric chromosomes

- holocentric vs. monocentric chromosomes
- in c. 5,500 angiosperm species
- chromosome numbers from n=2 up to n=110
- chromosome fission (agmatoploidy)and fusion (symploidy)
 - \rightarrow extensive chromosome number variation
- enigma of *Luzula* karyotypes

IoS1. Luzula spicata DC.

Spiked Woodrush.

- \rightarrow "euploid" chromosome numbers based on x=6
- \rightarrow large (L), medium (M) and small (S) chromosomes; relation is 1L = 2M = 4S
- \rightarrow large chromosomes: 4 ploidy levels (2x with 12L, 4x with 24L, 6x with 36L, 8x with 48L) medium chromosomes: 24M
 - small chromosomes: 48S (L. sudetica)
- \rightarrow concerted fission/agmatoploidy
- \rightarrow mechanism unknown