
Motivation
Function

Homework

6. Functions

Ján Dugáček

October 25, 2018

Ján Dugáček 6. Functions

Motivation
Function

Homework

Table of Contents

1 Motivation

2 Function
Exercise
Operators
Generic functions
Lambdas
Exercise

3 Homework
Homework
Advanced homework

Ján Dugáček 6. Functions

Motivation
Function

Homework

Motivation

Can you think of a comfortable way to calculate
A · (B · A) · C · A, where A, B and C are matrices expressed as
arrays?

Ján Dugáček 6. Functions

Motivation
Function

Homework

Exercise
Operators
Generic functions
Lambdas
Exercise

Function

f l o a t squa r e (f l o a t x) {
f l o a t powered = x ∗ x ;
r e t u r n powered ;

}
// . . .

f l o a t d i s t a n c e = squa r e (x − a) + squa r e (y − b) ;

There is no keyword that defines a function
Function declaration starts with the type it returns, then
there’s its name followed by types of arguments it takes and it
ends by a block of code
Arguments have to be named in order to be used in the
function
The value behind the return keyword is the value returned by
the function

Ján Dugáček 6. Functions

Motivation
Function

Homework

Exercise
Operators
Generic functions
Lambdas
Exercise

Function #2

s t d : : s t r i n g even (i n t x) {
x = x % 2 ;
i f (x == 1)

r e t u r n "no" ;
e l s e

r e t u r n " ye s " ;
}

There can be any number of return statements, the first one
the execution reaches exits the function
Variable x is a copy of the argument the function received,
changing it has no outside effect
Two functions can have the same name as long as they have
different argument types

Ján Dugáček 6. Functions

Motivation
Function

Homework

Exercise
Operators
Generic functions
Lambdas
Exercise

Function #3

vo i d swapVars (f l o a t& x , f l o a t& y) {
f l o a t o r i g = x ;
x = y ;
y = o r i g ;

}

The ampersand after the variable type (&) makes it a reference
Editing a variable through a reference changes the variable
used to call the function
The void keyword means that no variable is returned and
return is unnecessary

Ján Dugáček 6. Functions

Motivation
Function

Homework

Exercise
Operators
Generic functions
Lambdas
Exercise

Function #4

f l o a t sum(cons t s t d : : v e c to r <f l o a t >& vec) {
f l o a t t o t a l = 0 ;
f o r (f l o a t v a l : vec)

t o t a l += va l ;
r e t u r n t o t a l ;

}

References are mainly used to prevent copying large objects
that would take a lot of time (such as containers, strings, ...)
const is a modifier that prevents a variable from being edited;
it’s useful to mark you don’t want to edit it and you will not
be able to edit it accidentally

Ján Dugáček 6. Functions

Motivation
Function

Homework

Exercise
Operators
Generic functions
Lambdas
Exercise

Exercise

1 Write a function that checks if x is divisible by y and use it in
an interactible program

2 Write a function that returns the average of numbers in a
vector

3 Write a function that appends one vector at the end of another
4 Write a function that computes matrix multiplication
5 Calculate A · (B · A) · C · A, where A, B and C are matrices

expressed as easy::vector<easy::vector<float» (or
std::vector)

Ján Dugáček 6. Functions

Motivation
Function

Homework

Exercise
Operators
Generic functions
Lambdas
Exercise

Operators

f l o a t o p e r a t o r ^(f l o a t num , con s t s t d : : s t r i n g& num2) {
r e t u r n pow(num , s td : : s t o f (num2)) ;

}

Operator is a function called as an operation
It’s a normal function, it just may be called more conveniently

f l o a t x = y ^ s td : : s t r i n g ("3") ;

Operators can be defined only if one of the arguments isn’t a
primitive type (string, array, vector, ...)

Ján Dugáček 6. Functions

Motivation
Function

Homework

Exercise
Operators
Generic functions
Lambdas
Exercise

Generic functions

template<typename T>
T sum(cons t s t d : : v e c to r <T>& vec) {

T t o t a l = 0 ;
f o r (T c u r r e n t : vec)

t o t a l += cu r r e n t ;
r e t u r n t o t a l ;

}

Can be applied on any vector, but will not compile if the type
in vector can’t be set to 0 or summed
The type T is determined based on arguments when compiling
If necessary, the type of T can be specified

f l o a t sum = sum<f l o a t >(theVec to r) ;

Ján Dugáček 6. Functions

Motivation
Function

Homework

Exercise
Operators
Generic functions
Lambdas
Exercise

Lambdas

f l o a t x = 2 ;
auto func = [&] (i n t y) {

x = (x + y) ∗ 2 ;
} ;
func (y) ;

Lambda functions are local functions that are stored in
variables
A lambda can have access to variables in its context
Use [=] instead of [&] to use copies of the variables (it’s
necessary if the lambda outlives these variables)

Ján Dugáček 6. Functions

Motivation
Function

Homework

Exercise
Operators
Generic functions
Lambdas
Exercise

Exercise

1 Write a function that sums numbers in two vectors of the
same length, returning the vector of results (vector sum from
algebra)

2 Change the function so that it could be called using the +
operator

Advanced exercices:
1 Create a cube function that calculates third power of any type

of numeric variable (without using pow)
2 Write a vector-summing function that can be used on vectors

of any numeric type (but both have the same type)
3 Change the function so that it could be called using the +

operator

Ján Dugáček 6. Functions

Motivation
Function

Homework

Homework
Advanced homework

Homework

Write a vector subtracting function that removes all
occurrences of elements in the vector in second argument (in
sequence) from the vector in the first argument
You have two weeks to do it

Ján Dugáček 6. Functions

Motivation
Function

Homework

Homework
Advanced homework

Advanced Homework

Create an operator * that can be used to multiply matrices of
type std::array<std::array<T,S1>,S2>
You have two weeks to do it

template<typename T, i n t S>
T sum(cons t s t d : : a r r ay <T, S> a r r a y) {

T t o t a l = 0 ;
f o r (i n t i = 0 ; i < S ; i++)

t o t a l += a r r a y [i] ;
r e t u r n t o t a l ;

}

Ján Dugáček 6. Functions

	Motivation
	Function
	Exercise
	Operators
	Generic functions
	Lambdas
	Exercise

	Homework
	Homework
	Advanced homework

