
Classes
A very brief introduction to the elementary basics of pointers

Homework

9. Classes

Ján Dugáček

November 21, 2018

Ján Dugáček 9. Classes

Classes
A very brief introduction to the elementary basics of pointers

Homework

Table of Contents

1 Classes
Motivation
struct
Methods
class
Exercise
Inheritance

2 A very brief introduction to the elementary basics of pointers
Motivation
std::shared_ptr
Naked pointer
Empty pointers
std::unique_ptr
Exercise

3 Homework

Ján Dugáček 9. Classes

Classes
A very brief introduction to the elementary basics of pointers

Homework

Motivation
struct
Methods
class
Exercise
Inheritance

Motivation

It sucks to have a heterogenous table stored in a vector of
vectors

data [x] [1] = (data [x − 1] [1] + data [x + 1] [2]) / 2 ;
// . . .
data [x] . f x = (data [x − 1] . f x + data [x + 1] . f x) / 2 ;

Ján Dugáček 9. Classes

Classes
A very brief introduction to the elementary basics of pointers

Homework

Motivation
struct
Methods
class
Exercise
Inheritance

std::pair

s t d : : p a i r <in t , f l o a t > a ;
a . f i r s t = 3 ;
a . second = 3 . 5 ;
s t d : : v e c to r <s td : : p a i r <in t , f l o a t >> v ;
v . push_back (a) ;
v . push_back (s td : : make_pair (3 , 3 . 5)) ;

std::pair is a convenient way to create small classes of two
elements of preset types, accessed as first and second

They shine when set as pairs of values in vectors and other
containers
std::make_pair is a function that returns a std::pair
object with types as its two arguments

Ján Dugáček 9. Classes

Classes
A very brief introduction to the elementary basics of pointers

Homework

Motivation
struct
Methods
class
Exercise
Inheritance

struct

s t r u c t f u n c t i o nPo i n t {
boo l v a l i d ;
f l o a t x ;
f l o a t f x ;

} ;
s t d : : v e c to r <fun c t i o nPo i n t > func ;
f u n c t i o nPo i n t p o i n t { f a l s e , 1 , 2} ;
p o i n t . v a l i d = t r u e ;
func . push_back (po i n t) ;

struct creates new type of variable that is composed of other
types
The variables it contains can be accessed using the dot after
variable name
The variables inside are called members

Ján Dugáček 9. Classes

Classes
A very brief introduction to the elementary basics of pointers

Homework

Motivation
struct
Methods
class
Exercise
Inheritance

struct #2

s t r u c t emergency {
boo l nuc learWar = f a l s e ;
boo l a l i e n I n v a s i o n = f a l s e ;
boo l l e a k i n g T o i l e t = f a l s e ;

} ;
emergency s i t u a t i o n ;
l e a k i n g T o i l e t = t r u e ;
s t d : : cout << s i t u a t i o n . nuc learWar << s td : : e nd l ;

You can set the default values of the variables

Ján Dugáček 9. Classes

Classes
A very brief introduction to the elementary basics of pointers

Homework

Motivation
struct
Methods
class
Exercise
Inheritance

Methods

s t r u c t vec3D {
f l o a t x ;
f l o a t y ;
f l o a t z ;
v o i d no rma l i s e () {

f l o a t l e n g t h = s q r t (x ∗ x + y ∗ y + z ∗ z) ;
x /= l e ng t h ; z /= l e n g t h ; y /= l e ng t h ;

}
} ;
// . . .
vec . n o rma l i s e () ;

Functions defined in structs (called methods) can access and
modify its variables
They are called in a similar way than members are accessed

Ján Dugáček 9. Classes

Classes
A very brief introduction to the elementary basics of pointers

Homework

Motivation
struct
Methods
class
Exercise
Inheritance

Methods #2

s t r u c t qua t e r n i o n {
f l o a t r e a l , i , j , k ;
q u a t e r n i o n op e r a t o r+(cons t qua t e r n i o n& o) {

qua t e r n i o n r e s u l t ;
r e s u l t . r e a l = r e a l + o . r e a l ;
r e s u l t . i = r e a l + o . i ;
r e s u l t . j = r e a l + o . j ;
r e s u l t . k = r e a l + o . k ;
r e t u r n r e s u l t ;

}
} ;
// . . .
quat3 = quat1 + quat2 ;

Same applies to operators, allowing you to get normally
working algebraic types
Uses one less argument, because the object left from the
operator is the method’s object itself

Ján Dugáček 9. Classes

Classes
A very brief introduction to the elementary basics of pointers

Homework

Motivation
struct
Methods
class
Exercise
Inheritance

Constructor and destructor

s t r u c t s u p e r S t r u c t {
s u p e r S t r u c t () {

s td : : cout << " Supe rS t r u c t has been c r e a t e d !\ n" ;
}
~ s u p e r S t r u c t () {

s td : : cout << " Supe rS t r u c t has been d e s t r o y ed !\ n" ;
}

} ;
// . . .
s u p e r S t r u c t supe r ;

Constructor is a method called when the object is created
Destructor is a method called when the object is being
deallocated

Ján Dugáček 9. Classes

Classes
A very brief introduction to the elementary basics of pointers

Homework

Motivation
struct
Methods
class
Exercise
Inheritance

Constructor

s t r u c t keepe r {
s td : : v e c to r <f l o a t >& vec ;
con s t i n t s i z e ;
k e epe r (s t d : : v e c to r <f l o a t >& vec)
: vec (vec) , s i z e (vec . s i z e ()) {

}
} ;

Constructors can have an initialisation section that can set
constant variables and references

Ján Dugáček 9. Classes

Classes
A very brief introduction to the elementary basics of pointers

Homework

Motivation
struct
Methods
class
Exercise
Inheritance

class

c l a s s P r i v a c y {
i n t s e c r e t ;

p u b l i c :
v o i d s e t S e c r e t (i n t newSecret) {

s e c r e t = newSecret ;
}

p r i v a t e :
i n t r e v e a l S e c r e t () {

r e t u r n s e c r e t ;
}

} ;

class is like struct, but its members are private by default and can be
accessed only by methods of that class
Members or methods after the public declaration are accessible from
everywhere
Here, the secret is quite hard to get from the objects
struct can also have private members, but they are public by default

Ján Dugáček 9. Classes

Classes
A very brief introduction to the elementary basics of pointers

Homework

Motivation
struct
Methods
class
Exercise
Inheritance

Exercise

1 Write a function that transforms an inconvenient convenient
vector of vectors into a vector of std::pairs

2 Create a class that has a method that consecutively returns
strings like 0000, 0001, ... 0042, ..., 0997 etc.

3 Create a radionuclide class that has a chance to change its
decomposed member when a certain method is called

4 Create a rock class that represents a rigid body in
gravitational field, give it a method that makes its properties
develop in time

Ján Dugáček 9. Classes

Classes
A very brief introduction to the elementary basics of pointers

Homework

Motivation
struct
Methods
class
Exercise
Inheritance

Advanced exercise

1 Create a triplet class that is like std::pair, but it contains
three elements

2 Create a class that represents numbers in modular arithmetic
and implement some of its operators

Ján Dugáček 9. Classes

Classes
A very brief introduction to the elementary basics of pointers

Homework

Motivation
struct
Methods
class
Exercise
Inheritance

Inheritance

s t r u c t toRead {
uns i gned i n t i nd ex ;

} ;
s t r u c t warn ing : p u b l i c toRead {

s td : : s t r i n g t e x t ;
} ;
s t r u c t message : p u b l i c toRead {

s td : : s t r i n g t e x t ;
u s e r au tho r ;

} ;

structs warning and message inherit members and methods
of toRead
They can be assigned to a variable of type toRead, allowing
the same function to access their index member

Ján Dugáček 9. Classes

Classes
A very brief introduction to the elementary basics of pointers

Homework

Motivation
struct
Methods
class
Exercise
Inheritance

Advanced exercise

1 Create a class that represents arithmetic functions composed
of variables, addition, subtraction, multiplication and division
(the easiest way to do it is to make a tree structure of classes
using inheritance)

Ján Dugáček 9. Classes

Classes
A very brief introduction to the elementary basics of pointers

Homework

Motivation
std::shared_ptr
Naked pointer
Empty pointers
std::unique_ptr
Exercise

Motivation

Normal variable assignment is deep copy, the whole object is
copied
This is a problem for larger objects or objects we want to
access from more locations
Reference is a shallow copy, the variable may have a different
name but address the same variable
References are fine when used as function arguments, but
objects often outlive the blocks they are created in
Pointers are more powerful references

Ján Dugáček 9. Classes

Classes
A very brief introduction to the elementary basics of pointers

Homework

Motivation
std::shared_ptr
Naked pointer
Empty pointers
std::unique_ptr
Exercise

std::shared_ptr

s t d : : shared_ptr<HugeObject>
makeHugeObject (con s t s t d : : s t r i n g& f i l e) {

s td : : i f s t r e am i n (f i l e) ;
s t d : : shared_ptr<HugeObject> made

= s td : : make_shared<HugeObject >(i n) ;
r e t u r n made ;

}
// . . .
s t d : : shared_ptr<HugeObject> huge = makeHugeObject ("megadat") ;

std::shared_ptr is a class that contains a single object that
doesn’t copy it if copied
All copies of the shared pointer contain the same object
The object stops existing when the last shared pointer is deallocated
You have to make sure the object will not contain a copy of the
shared pointer (or some other circular reference), otherwise it will
keep existing until the program exits (it’s called memory leak)

Ján Dugáček 9. Classes

Classes
A very brief introduction to the elementary basics of pointers

Homework

Motivation
std::shared_ptr
Naked pointer
Empty pointers
std::unique_ptr
Exercise

std::shared_ptr #2

s t d : : shared_ptr<s td : : s t r i n g > krupa
= s td : : make_shared<s td : : s t r i n g >("A") ;

krupa−>push_back (’B ’) ;
s t d : : s t r i n g be t t e rK rupa = ∗ krupa ;
krupa−>append ("CD") ;
s t d : : s t r i n g& l i t e r a t eK r u p a = ∗ krupa ;
krupa−>append ("E") ;

Accessing members of the object in std::shared_ptr is done
through the -> operator
Use the left asterisk * to obtain the object inside (it’s not a
copy if not assigned to a non-reference variable)
std::shared_ptr is much like a reference, but it survives the
deletion of the original and can be replaced at the cause of
slightly harder usage

Ján Dugáček 9. Classes

Classes
A very brief introduction to the elementary basics of pointers

Homework

Motivation
std::shared_ptr
Naked pointer
Empty pointers
std::unique_ptr
Exercise

Naked pointer

s t d : : s t r i n g ∗ superKrupa = krupa . ge t () ;
s t d : : cout << ∗ superKrupa << std : : e nd l ;
superKrupa−>push_back (’F ’) ;
s t d : : s t r i n g ∗ krupaPt r = &bet t e rKrupa ;

Naked pointer allows accessing the variable as other pointer
types, but it’s just a number and has no methods
It can be obtained from any variable using the left & operator
If accesseed after the object was deleted, bad mojo will
happen!
It can be useful to allow the object inside a std::shared_ptr
to keep access to an object that holds the std::shared_ptr
It can also be used instead of reference if for some reasons a
reference cannot do the trick

Ján Dugáček 9. Classes

Classes
A very brief introduction to the elementary basics of pointers

Homework

Motivation
std::shared_ptr
Naked pointer
Empty pointers
std::unique_ptr
Exercise

Empty pointers

krupa . r e s e t () ;
superKrupa = n u l l p t r ;
i f (superKrupa)

s td : : s t r i n g << "There i s a superKrupa " << std : : e nd l ;

Unlike references, pointers can be empty
An empty pointer contains address 0 (for readability, it’s
written as nullptr)
Accessing an empty pointer causes the program to reliably
crash:

∗ ((f l o a t ∗) n u l l p t r) = 0 ;

An empty pointer is considered false, a non-empty one is
considered true

Ján Dugáček 9. Classes

Classes
A very brief introduction to the elementary basics of pointers

Homework

Motivation
std::shared_ptr
Naked pointer
Empty pointers
std::unique_ptr
Exercise

std::unique_ptr

s t d : : unique_ptr<HugeObject> makeHugeObject
(con s t s t d : : s t r i n g& f i l e) {

s td : : i f s t r e am i n (f i l e) ;
s t d : : unique_ptr<HugeObject> made

= s td : : make_unique<HugeObject >(i n) ;
r e t u r n s td : : move (made) ;

}
// . . .
s t d : : unique_ptr<HugeObject> huge = makeHugeObject ("megadat") ;

std::unique_ptr is very much like std::shared_ptr, but it
cannot be copied
It can be moved using std::move, a function that clears the
original variable and saves it into the one it’s assigned to
If you have to access it from elsewhere, you can use references
or naked pointers
Like naked pointer, it’s faster than std::shared_ptr

Ján Dugáček 9. Classes

Classes
A very brief introduction to the elementary basics of pointers

Homework

Motivation
std::shared_ptr
Naked pointer
Empty pointers
std::unique_ptr
Exercise

Exercise

1 Use std::shared_ptr to create a class that keeps the
following lines in a tree structure when it parses, writes and
allows accessing the following markup

Tools
Hammers

Small hammers
Big hammers

Screwdrivers
Cross Screwdrivers

Ján Dugáček 9. Classes

Classes
A very brief introduction to the elementary basics of pointers

Homework

Homework

Write a function that analyses a line of noisy data (can be a
vector) where it finds the point where it starts increasing and
the point where it stops increasing and returns the interval
where it increases and the amount it increased in a struct
You have two weeks to do it

Ján Dugáček 9. Classes

	Classes
	Motivation
	struct
	Methods
	class
	Exercise
	Inheritance

	A very brief introduction to the elementary basics of pointers
	Motivation
	std::shared_ptr
	Naked pointer
	Empty pointers
	std::unique_ptr
	Exercise

	Homework

