1. Introduction

- OH , a prominent flame emitter, absorber. Useful for $\mathrm{T}, \mathrm{X}_{\mathrm{OH}}$ measurements.

The vibrational structure of the system was gradually recognized. ${ }^{(2-4)}$ It is given in Table 1 which lists the heads of all the bands found until now with an estimate of their intensities according to Tanaka and Koana ${ }^{(4)}$. For the bands that are underlined, new measurements and a revision of the analysis are given in this report. For the other bands the references indicate where the most complete data can be found. More accurate data on the intensities of a number of bands are given further on in this report (Table 6).

Table 1

	0	1	2	3	4
0	3064 (10)	3428 (7) ${ }^{1}$			
1	2811 (9)	3122 (9)	3185 (6) ${ }^{1}$		
2	2609 (4) ${ }^{4}$	$\underline{2875}(9)^{3}$	$3185(6)^{3,5}$		
3	2444 (1) ${ }^{2,3}$	2677 (5) ${ }^{2,3}$	$\underline{2945}$ (7) ${ }^{3}$	$\underline{3254} \mathbf{(4)}^{3}$	
4		2517 (2) ${ }^{3}$	2753 (4) ${ }^{3}$	3022 (5) ${ }^{3}$	3331 (4) ${ }^{3}$

2. Energy levels

- Term energies

- Separation of terms: Born-Oppenheimer approximation
- $G(v)=\omega_{e}(v+1 / 2)-\omega_{e} x_{e}(v+1 / 2)^{2}$
- Sources of $T_{e}, \omega_{e}, \omega_{e} x_{e} \Rightarrow$ Herzberg
- Overall system : $\mathrm{A}^{2} \Sigma^{+} \leftarrow \mathrm{X}^{2} \Pi$
in $\left[\mathrm{cm}^{-1}\right]$

$\mathbf{A}^{2} \boldsymbol{\Sigma}^{+}$	$\mathbf{T}_{\mathbf{e}}$	$\boldsymbol{\omega}_{\mathbf{e}}$	$\boldsymbol{\omega}_{\mathrm{e}} \mathbf{x}_{\mathbf{e}}$	$\mathbf{X}^{2} \boldsymbol{\Pi}$	$\mathbf{T}_{\mathbf{e}}$	$\boldsymbol{\omega}_{\mathbf{e}}$	$\boldsymbol{\omega}_{\mathbf{e}} \mathbf{x}_{\mathbf{e}}$
	32682.0	3184.28	97.84		0.0	3735.21	82.21

Let's first look at the upper state \Rightarrow Hund's case b!

2. Energy levels

- Hund's case b $(\wedge=0, S \neq 0)$ - more standard, especially for hydrides

Recall:

- $\quad \Sigma, \Omega$ not rigorously defined
- $\mathrm{N}=$ angular momentum without spin
- $\quad S=1 / 2$-integer values
- $\quad \mathrm{J}=\mathrm{N}+\mathrm{S}, \mathrm{N}+\mathrm{S}-1, \ldots,|\mathrm{~N}-\mathrm{S}|$
- $\quad i=1,2, \ldots$
$\mathrm{F}_{\mathrm{i}}(\mathrm{N})=$ rotational term energy

Now, specifically, for OH ?

2. Energy levels

- The upper state is $A^{2} \Sigma^{+}$

For OH:

- $\quad \Lambda=0, \therefore \Sigma$ not defined \Rightarrow use Hund's case b
- $\mathrm{N}=0,1,2, \ldots$
- $S=1 / 2$
- $J=N \pm 1 / 2$
- F_{1} denotes $\mathrm{J}=\mathrm{N}+1 / 2$
F_{2} denotes $\mathrm{J}=\mathrm{N}-1 / 2$

Common to write either $F_{1}(N)$ or $F_{1}(J)$

2. Energy levels

- The upper state: $\mathrm{A}^{2} \Sigma^{+}$

2. Energy levels

- The ground state: $X^{2} \sqcap(\wedge=1, S=1 / 2)$

Hund's case a
$\Lambda \neq 0, S \neq 0, \Sigma$ defined

Hund's case b
$\Lambda=0, S \neq 0, \Sigma$ not defined

- Note:

1. Rules less strong for hydrides
2. OH behaves like Hund's a @ low N like Hund's b @ large N
\Rightarrow at large N, \vec{L} couples more to N, \wedge is less defined, S decouples from A-axis
3. Result? $\mathrm{OH} \mathrm{X}^{2} \Pi$ is termed "intermediate case"

2. Energy levels

- The ground state: $X^{2} \sqcap$

Notes:
3. For "intermediate/transition cases"

$$
\begin{aligned}
& F_{1}(N)=B_{v}\left\{(N+1)^{2}-\Lambda^{2}-\frac{1}{2}\left[4(N+1)^{2}+Y_{v}\left(Y_{v}-4\right) \Lambda^{2}\right]^{1 / 2}\right\}-D_{v}[N(N+1)]^{2} \\
& F_{2}(N)=B_{v}\left\{N^{2}-\Lambda^{2}+\frac{1}{2}\left[4 N^{2}+Y_{v}\left(Y_{v}-4\right) \Lambda^{2}\right]^{1 / 2}\right\}-D_{v}[N(N+1)]^{2}
\end{aligned}
$$

where $Y_{v} \equiv A / B_{v}(<0$ for $O H) ; A$ is effectively the moment of inertia
Note: $\mathrm{F}_{1}(\mathrm{~N})<\mathrm{F}_{2}(\mathrm{~N})$
$\stackrel{\text { For small } \mathrm{N}}{ }$
Behaves like Hund's a, ie., symmetric top, with spin splitting $\wedge A$ For large N

Behaves like Hund's b, with small (declining) effect from spin

$$
\begin{aligned}
& F_{1} \rightarrow B_{v}\left[(N+1)^{2}-\Lambda^{2}-(N+1)\right] \\
& F_{2} \rightarrow B_{v}\left[N^{2}-\Lambda^{2}+N\right] \\
& \qquad F_{1}-F_{2} \rightarrow B_{v}\left[(N+1)^{2}-N^{2}-(2 N+1)\right] \rightarrow 0
\end{aligned}
$$

2. Energy levels

- The ground state: $X^{2} \Pi$
- Notes:

4. Some similarity to symmetric top

$$
J
$$

$$
\mathrm{T}_{\mathrm{e}}=\mathrm{T}_{0}+\mathrm{A} \wedge \Sigma
$$

3/2

1/2 constant difference of $2\left(A-B_{v}\right)$ for same J

$$
\begin{gathered}
F(J)=B J(J+1)+(A-B) \Omega^{2} \\
(A-B) \Omega^{2} \approx-158.5 \Omega^{2}
\end{gathered}
$$

(A for $\mathrm{OH} \sim-140, \mathrm{~B} \sim 18.5$), $\Omega=3 / 2,1 / 2$
$\Rightarrow \quad \Omega=3 / 2$ state lower by $316 \mathrm{~cm}^{-1}$
Actual spacing is only $188 \mathrm{~cm}^{-1}$, reflects that hydrides quickly go to Hund's case b

2. Energy levels

- The ground state: $X^{2} \Pi$
- Notes:

5. Role of \wedge-doubling

$$
\left.\begin{array}{l}
F_{i c}=F_{i}(J)+\delta_{c} J(J+1) \\
F_{i d}=F_{i}(J)+\delta_{d} J(J+1)
\end{array}\right\} F_{i d}<F_{i c}
$$

- $\quad F_{i c}(J)-F_{i d}(J) \approx 0.04 \mathrm{~cm}^{-1}$ for typical J in OH

- c and d have different parity (p)
- Splitting decreases with increasing N

Now let's proceed to draw transitions, but first let's give a primer on transition notation.

3. Allowed radiative transitions

- Transition notations

Full description: $\mathrm{A}^{2} \Sigma^{+}\left(\mathrm{v}^{\prime}\right) \leftarrow \mathrm{X}^{2} \Pi\left(\mathrm{v}^{\prime \prime}\right){ }^{Y} \mathrm{X}_{\alpha \beta}\left(\mathrm{N}^{\prime \prime}\right.$ or J")

$$
{ }^{Y} X_{\alpha \beta}\left(N^{\prime \prime} \text { or } J^{\prime \prime}\right)
$$

$$
\text { where } \begin{aligned}
Y & -\Delta N(O, P, Q, R, S \text { for } \Delta N=-2 \text { to }+2) \\
& X-\Delta J(P, Q, R \text { for } \Delta J=-1,0,+1) \\
& \alpha=i \text { in } F_{i}^{\prime} ; \text { i.e., } 1 \text { for } F_{1}, 2 \text { for } F_{2} \\
& \beta=i \text { in } F_{i}^{\prime} ; \text {; i.e., } 1 \text { for } F_{1}, 2 \text { for } F_{2}
\end{aligned}
$$

- Notes:

Strongest trans. $\begin{aligned} & \text { e.g., } R_{1}(7) \text { or } R_{1} 7\end{aligned}\left[\begin{array}{ll}1 . & Y \text { suppressed when } \Delta N=\Delta J \\ 2 . & \beta \text { suppressed when } \alpha=\beta\end{array}\right.$
3. Both $\mathrm{N} "$ and $\mathrm{J} "$ are used

Example: ${ }^{s} \mathrm{R}_{21}$:
$\Delta J=+1, \Delta N=+2$
$\mathrm{F}^{\prime}=\mathrm{F}_{2}\left(\mathrm{~N}^{\prime}\right)$
$\mathrm{F}^{\prime \prime}=\mathrm{F}_{1}(\mathrm{~N} ")$

- General selection rules
- Parity must change $+\rightarrow-$ or $\rightarrow+$
- $\Delta \mathrm{J}=0, \pm 1$
- No Q $(J=0)$ transitions, $J=0 \rightarrow J=0$ not allowed

$$
\begin{array}{ll}
O_{12}(K)=F_{1}(K-2)-f^{\prime}{ }_{2}(K) & J-1 \rightarrow J \\
P_{1}(K)=F_{1}(K-1)-f_{1}(K) & J-1 \rightarrow J \\
P_{2}(K)=F_{2}(K-1)-f_{2}(K) & J-1 \rightarrow J \\
P_{12}(K)=F_{1}(K-1)-f_{2}(K) & J \rightarrow J \\
Q_{1}(K)=F_{1}(K)-f^{\prime}{ }_{1}(K) & J \rightarrow J \\
Q_{21}(K)=F_{2}(K)-f^{\prime}{ }_{1}(K) & J-1 \rightarrow J \\
Q_{2}(K)=F_{2}(K)-f^{\prime}{ }_{2}(K) & J \rightarrow J \\
Q_{12}(K)=F_{1}(K)-f^{\prime}(K) & J+1 \rightarrow J \\
R_{1}(K)=F_{1}(K+1)-f_{1}(K) & J+1 \rightarrow J \\
R_{21}(K)=F_{2}(K+1)-f_{1}(K) & J \rightarrow J \\
R_{2}(K)=F_{2}(K+1)-f_{2}(K) & J+1 \rightarrow J \\
S_{21}(K)=F_{2}(K+2)-f^{\prime}{ }_{1}(K) & J+1 \rightarrow J \tag{51}
\end{array}
$$

The following remarks will make it easier to utilize the results of the earlier papers.
In the previous publications often different notations were used. In the papers by Heurlinger ${ }^{(9)}$, Watson ${ }^{(10,14)}$, Fortrat ${ }^{(13)}$, Dieke ${ }^{(2)}$, the numbering of the lines is $K+1$ of the final state and the indices 1 and 2 of the levels are interchanged, e.g. $R_{2}(5)$ of the present paper was $R_{1}(6)$.

Mulliken ${ }^{(17)}$ uses the notation for case (a), i.e. he numbers the lines, and names the branches by their J values. He indicates by a prefixed superscript the type of branch as follows:

Present paper $O_{12} P_{1} P_{2} P_{12} Q_{1} Q_{21} Q_{2} Q_{12} R_{1} R_{21} R_{2} S_{21}$
Mulliken $\quad{ }^{P P} P \quad P_{1} P_{2}{ }^{P} Q \quad Q_{1} Q_{P} \quad Q_{2} Q_{B} \quad R_{1} R_{Q} R_{2}{ }^{R R} R$
The later papers usually use a notation similar to Mulliken's notation or the one adopted in the present paper.

3. Allowed radiative transitions

- Allowed transitions

Allowed rotational transitions from $N^{"}=13$ in the $A^{2} \Sigma^{+} \leftarrow X^{2} \Pi$ system

- 12 bands possible (3 originating from each lambda-doubled, spin-split X state)
- Main branches: $\alpha=\beta$; Cross-branches: $\alpha \neq \beta$
- Cross-branches weaken as N increases

3. Allowed radiative transitions

- Allowed transitions

Allowed rotational transitions from $N "=13$ in the $A^{2} \Sigma^{+} \leftarrow X^{2} \Pi$ system

Notes:

- A given J" (or N ") has12 branches (6 are strong; $\Delta \mathrm{J}=\Delta \mathrm{N}$)
- $\quad+\leftrightarrow-$ rule on parity
- $\quad \mathrm{F}_{1 \mathrm{c}}-\mathrm{F}_{1 \mathrm{~d}} \approx 0.04 \mathrm{~N}(\mathrm{~N}+1)$ for $\mathrm{OH} \Rightarrow$ for $\mathrm{N} \sim 10, \wedge$-doubling is $\sim 4 \mathrm{~cm}^{-1}$, giving clear separation
- If upper state has \wedge-doubling, we get twice as many lines!

3. Allowed radiative transitions

- Allowed transitions

Allowed rotational transitions from $\mathrm{N}^{\prime \prime}=13$ in the $\mathrm{A}^{2} \Sigma^{+} \leftarrow \mathrm{X}^{2} \Sigma^{+}$system

- Note:

1. The effect of the parity selection rule in reducing the number of allowed main branches to 4
2. The simplification when $\wedge=0$ in lower state, i.e., no \wedge-doubling

4.1. Oscillator strengths

- Absorption oscillator strength

$$
\begin{aligned}
& =f_{v^{\prime \prime} v^{\prime}}=\text { band oscillator strength }
\end{aligned}
$$

Notes: $q_{v " v^{\prime}}$ and $S_{J^{\prime \prime} J^{\prime}}$ are normalized

- $\quad \sum_{v^{\prime}} q_{v^{\prime \prime} v^{\prime}}=1 \quad \sum_{J^{\prime}}^{v^{\prime}} S_{J^{\prime \prime} J^{\prime}}=\left(2 J^{\prime \prime}+1\right) \underbrace{(2 S+1) \delta}_{g^{\prime \prime}=4 \text { for } \mathrm{X}^{2} \Pi}{ }^{(2 S+1} \wedge=0$ (Σ state), 2 otherwise
this sum includes the S values for all states with J"

4.1. Oscillator strengths

Is $S_{J^{\prime \prime} J^{\prime}}=S_{J^{\prime} J^{\prime \prime}}$? \Rightarrow Yes, for our normalization scheme!

- From $g_{1} f_{12}=g_{2} f_{21}$, and recognizing that $2 \mathrm{~J}+1$ is the ultimate (non removable) degeneracy at the state level, we can write, for a specific transition between single states

In this way, there are no remaining electronic degeneracy and we require, for detailed balance, that $f_{e l}=f_{e l}{ }^{\prime}, q_{v^{\prime \prime} v^{\prime}}=q_{v^{\prime} v^{\prime \prime}}$ and $S_{J^{\prime \prime} J^{\prime}}=S_{J^{\prime} J^{\prime \prime}}$

- Do we always enforce $\sum_{J^{\prime}} S_{J^{\prime \prime} J^{\prime}}=\left(2 J^{\prime \prime}+1\right)$ for a state? \Rightarrow No!
- But note we do enforce $\sum_{J^{\prime \prime}} S_{J^{\prime \prime}}=\left(2 J^{\prime \prime}+1\right)(2 S+1) \delta(14.17)$

$$
\text { and } \sum_{J^{\prime \prime}}^{J^{\prime}} S_{J^{\prime \prime} J^{\prime}}=\left(2 J^{\prime}+1\right)(2 S+1) \delta \quad \text { (14.19) }
$$

where, for $\mathrm{OH} \mathrm{A}^{2} \Sigma \leftarrow \mathrm{X}^{2} \Pi,(2 S+1)=2$ and $\delta=2$.

- When is there a problem?
- Everything is okay for $\Sigma-\Sigma$ and $\Pi-\Pi$, where there are equal "elec. degeneracies", $\mathrm{i}, \mathrm{e} ., \mathrm{g} \mathrm{g}_{\mathrm{el}}=$ $g_{\text {el }}$. But for $\Sigma-\Pi$ (as in OH), we have an issue. In the $X^{2} \Pi$ state, $g_{\text {el }}=4$ (2 for spin and 2 for $\Lambda-$ doubling), meaning each J is split into 4 states. Inspection of our $\mathrm{H}-\mathrm{L}$ tables for $\mathrm{S}_{\mathrm{J}^{\prime \prime} \mathrm{J}}$ for OH $A^{2} \Sigma \leftarrow X^{2} \Pi$ (absorption) confirms $\Sigma S_{J^{\prime \prime} J}$ from each state is $2 J^{\prime \prime}+1$. All is well. But, in the upper state, ${ }^{2} \Sigma$, we have a degeneracy $g_{\text {el }}^{\prime}$ of 2 (for spin), not 4 , and now we will find that the sum of $\sum_{J{ }^{\prime \prime}} S_{J^{\prime},{ }^{\prime \prime}}$ is twice $2 J^{\prime}+1$ for a single J^{\prime} when we use the H-L values for $S_{J^{\prime \prime} J}$ for $S_{J^{\prime} J^{\prime \prime}}$. However, as there are 2 states with J^{\prime}, the overall sum $\sum_{J{ }^{\prime}} S_{J J, n}=\left(2 J^{\prime}+1\right) 4$ as required by (14.19)

4.1. Oscillator strengths

- Absorption oscillator strength for f_{00} in $O H A^{2} \Sigma^{+}-X^{2} \Pi$

Source	$\mathbf{f}_{\mathbf{0 0}}$
Oldenberg, et al. (1938)	0.00095 ± 0.00014
Dyne (1958)	0.00054 ± 0.0001
Carrington (1959)	0.00107 ± 0.00043
Lapp (1961)	0.00100 ± 0.0006
Bennett, et al. (1963)	0.00078 ± 0.00008
Golden, et al. (1963)	0.00071 ± 0.00011
Engleman, et al. (1973)	0.00096
Bennett, et al. (1964)	0.0008 ± 0.00008
Anketell, et al. (1967)	0.00148 ± 0.00013

4.1. Oscillator strengths

- Absorption oscillator strength

Transition	$\mathrm{S}_{\mathrm{JJJ}} /(\mathbf{2 J " + 1)}$	$\boldsymbol{\Sigma F} \mathrm{F}_{1}(\mathrm{~J})$	$\boldsymbol{\Sigma F} \mathrm{F}_{2}(\mathrm{~J})$	$\boldsymbol{\Sigma}\left[\mathrm{F}_{1}(\mathrm{~J})+\mathrm{F}_{2}(\mathrm{~J})\right]$
$\mathrm{Q}_{12}(0.5)$	0.667	0	2	2
$\mathrm{Q}_{2}(0.5)$	0.667			
$\mathrm{R}_{12}(0.5)$	0.333			
$\mathrm{R}_{2}(0.5)$	0.333			
$\mathrm{P}_{1}(1.5)$	0.588	2	2	4
$\mathrm{P}_{12}(1.5)$	0.078			
$\mathrm{P}_{21}(1.5)$	0.392			
$\mathrm{P}_{2}(1.5)$	0.275			
$\mathrm{Q}_{1}(1.5)$	0.562			
$\mathrm{Q}_{12}(1.5)$	0.372			
$\mathrm{Q}_{21}(1.5)$	0.246			
$\mathrm{Q}_{2}(1.5)$	0.678			
$\mathrm{R}_{1}(1.5)$	0.165			
$\mathrm{R}_{12}(1.5)$	0.235			
$\mathrm{R}_{21}(1.5)$	0.047			
$\mathrm{R}_{2}(1.5)$	0.353			
$\mathrm{P}_{1}(2.5)$	0.530	2	2	4
$\mathrm{P}_{12}(2.5)$	0.070			
$\mathrm{P}_{21}(2.5)$	0.242			
$\mathrm{P}_{2}(2.5)$	0.358			
$\mathrm{Q}_{1}(2.5)$	0.708			
$\mathrm{Q}_{12}(2.5)$	0.263			
$\mathrm{Q}_{21}(2.5)$	0.214			
$\mathrm{Q}_{2}(2.5)$	0.757			
$\mathrm{R}_{1}(2.5)$	0.256			
$\mathrm{R}_{12}(2.5)$	0.173			
$\mathrm{R}_{21}(2.5)$	0.050			
$\mathrm{R}_{2}(2.5)$	0.379			

Transition	$\mathrm{S}_{\mathrm{JJJ}} /(\mathbf{2 J " + 1)}$	$\boldsymbol{\Sigma F} \mathrm{F}_{1}(\mathrm{~J})$	$\Sigma \mathrm{F}_{2}(\mathrm{~J})$	$\Sigma\left[\mathrm{F}_{1}(\mathrm{~J})+\mathrm{F}_{2}(\mathrm{~J})\right]$
$\mathrm{P}_{1}(3.5)$	0.515	2	2	4
$\mathrm{P}_{12}(3.5)$	0.056			
$\mathrm{P}_{21}(3.5)$	0.167			
$\mathrm{P}_{2}(3.5)$	0.405			
$Q_{1}(3.5)$	0.790			
$\mathrm{Q}_{12}(3.5)$	0.195			
$\mathrm{Q}_{21}(3.5)$	0.170			
$\mathrm{Q}_{2}(3.5)$	0.814			
$\mathrm{R}_{1}(3.5)$	0.316			
$\mathrm{R}_{12}(3.5)$	0.131			
$\mathrm{R}_{21}(3.5)$	0.044			
$\mathrm{R}_{2}(3.5)$	0.402			
$\mathrm{P}_{1}(9.5)$	0.511	2	2	4
$\mathrm{P}_{12}(9.5)$	0.016			
$\mathrm{P}_{21}(9.5)$	0.038			
$\mathrm{P}_{2}(9.5)$	0.488			
$\mathrm{Q}_{1}(9.5)$	0.947			
$\mathrm{Q}_{12}(9.5)$	0.050			
$\mathrm{Q}_{21}(9.5)$	0.048			
$\mathrm{Q}_{2}(9.5)$	0.950			
$\mathrm{R}_{1}(9.5)$	0.441			
$\mathrm{R}_{12}(9.5)$	0.035			
$\mathrm{R}_{21}(9.5)$	0.014			
$\mathrm{R}_{2}(9.5)$	0.462			

Hönl-London factors for selected OH transitions

