 OH, a prominent flame emitter, absorber. Useful for T, XOH measurements. 2 1. Introduction Selected region of A2Σ+←X2Π(0,0) band at 2000K 1517  Term energies 4 2. Energy levels  Separation of terms: Born-Oppenheimer approximation  G(v) = ωe(v + 1/2) – ωexe(v + 1/2)2  Sources of Te, ωe, ωexe  Herzberg  Overall system : A2Σ+←X2Π        JFvGnTJvnE e ,, elec. q. no. vib. q. no. ang. mom. q. no. Electronic energy Vibrational energy Angular momentum energy (nuclei + electrons) A2Σ+ Te ωe ωexe X2Π Te ωe ωexe 32682.0 3184.28 97.84 0.0 3735.21 82.21 in [cm-1] Let’s first look at the upper state  Hund’s case b!  Hund’s case b (Λ=0, S≠0) – more standard, especially for hydrides 5 2. Energy levels Recall:  Σ, Ω not rigorously defined  N = angular momentum without spin  S = 1/2-integer values  J = N+S, N+S-1, …, |N-S|  i = 1, 2, … Fi(N) = rotational term energy Now, specifically, for OH?  The upper state is A2Σ+ 6 2. Energy levels For OH:  Λ = 0, ∴ Σ not defined  use Hund’s case b  N = 0, 1, 2, …  S = 1/2  J = N ± 1/2  F1 denotes J = N + 1/2 F2 denotes J = N – 1/2 Common to write either F1(N) or F1(J)  The upper state: A2Σ+ 7 2. Energy levels  for pure case b  ∴ the spin-splitting is γv(2N+1)  function of v; increases with N                111 11 2 2 2 1   NNNDNNBNF NNNDNNBNF vvv vvv      21 OHforcm1.0constantsplitting Av  Notes:  Progression for A2Σ+  “+” denotes positive “parity” for even N [wave function symmetry]  Importance? Selection rules require parity change in transition γv(2N+1) ~ 0.1(5) ~ 0.5cm-1 for N2 Compare with ∆νD(1800K) = 0.23cm-1  The ground state: X2Π (Λ=1, S=1/2) 8 2. Energy levels  Note: 1. Rules less strong for hydrides 2. OH behaves like Hund’s a @ low N like Hund’s b @ large N  at large N, couples more to N, Λ is less defined, S decouples from A-axis 3. Result? OH X2Π is termed “intermediate case” L  Hund’s case a Hund’s case b Λ ≠ 0, S ≠ 0, Σ defined Λ = 0, S ≠ 0, Σ not defined  The ground state: X2Π 9 2. Energy levels  Notes: 3. For “intermediate/transition cases” where Yv ≡ A/Bv (< 0 for OH); A is effectively the moment of inertia Note: F1(N) < F2(N)                    22/12222 2 22/12222 1 144 2 1 1414 2 1 1                 NNDYYNNBNF NNDYYNNBNF vvvv vvvv For large N       NNBF NNBF v v   22 2 22 1 11      0121 22 21  NNNBFF v For small N Behaves like Hund’s a, i.e., symmetric top, with spin splitting ΛA Behaves like Hund’s b, with small (declining) effect from spin  The ground state: X2Π 10 2. Energy levels  Notes: 4. Some similarity to symmetric top Showed earlier that F1 < F2 N 3 2 1 J 5/2 3/2 1/2 J 7/2 5/2 3/2 F1: J = N + 1/2 F2: J = N – 1/2 Ω = 3/2 Ω = 1/2 Te = T0 + AΛΣ For OH, A = -140 cm-1  Te = T0 + (-140)(1)(1/2), Σ = 1/2 + (-140)(1)(-1/2), Σ = -1/2  ∆Te = 140 cm-1 Not too far off the 130 cm-1 spacing for minimum J 130 Hund’s a → 2|(A-Bv)| Recall: Hund’s case a has constant difference of 2(A-Bv) for same J F(J) = BJ(J+1) + (A-B)Ω2 (A–B)Ω2 ≈ -158.5Ω2 (A for OH~ -140, B ~ 18.5), Ω = 3/2, 1/2  Ω = 3/2 state lower by 316 cm-1 Actual spacing is only 188 cm-1, reflects that hydrides quickly go to Hund’s case b Hund˚uv typ a  The ground state: X2Π 11 2. Energy levels  Notes: 5. Role of Λ-doubling Showed earlier that F1 < F2         icid diid ciic FF JJJFF JJJFF       1 1    Fic(J) – Fid(J) ≈ 0.04 cm-1 for typical J in OH  c and d have different parity (p)  Splitting decreases with increasing N N 3 2 1 J 5/2 3/2 1/2 J 7/2 5/2 3/2 F1: J = N + 1/2 F2: J = N – 1/2 Ω = 3/2 Ω = 1/2 p + – – + + – p – + + – + – Now let’s proceed to draw transitions, but first let’s give a primer on transition notation.  Transition notations  General selection rules  Parity must change + → – or – → +  ∆J = 0, 1  No Q (J = 0) transitions, J = 0 → J = 0 not allowed 12 3. Allowed radiative transitions Full description: A2Σ+ (v')←X2Π (v") YXαβ(N" or J") where Y – ∆N (O, P, Q, R, S for ∆N = -2 to +2) X – ∆J (P, Q, R for ∆J = -1, 0, +1) α = i in Fi'; i.e., 1 for F1, 2 for F2 β = i in Fi"; i.e., 1 for F1, 2 for F2  "or" JNXY   Notes: 1. Y suppressed when ∆N = ∆J 2. β suppressed when α = β 3. Both N" and J" are used Strongest trans. e.g., R1(7) or R17 Example: SR21: ∆J = +1, ∆N = +2 F' = F2(N') F" = F1(N") 1521  Allowed transitions 13 3. Allowed radiative transitions Allowed rotational transitions from N"=13 in the A2Σ+←X2Π system  12 bands possible (3 originating from each lambda-doubled, spin-split X state)  Main branches: α = β; Cross-branches: α ≠ β  Cross-branches weaken as N increases F1(13) F1c(13) F1d(13) State or level a specific v",J",N",and Λ-coupling  Allowed transitions 14 3. Allowed radiative transitions Allowed rotational transitions from N"=13 in the A2Σ+←X2Π system  Notes:  A given J" (or N") has12 branches (6 are strong; ∆J = ∆N)  + ↔ – rule on parity  F1c–F1d ≈ 0.04N(N+1) for OH  for N~10, Λ-doubling is ~ 4cm-1, giving clear separation  If upper state has Λ-doubling, we get twice as many lines!  Allowed transitions 15 3. Allowed radiative transitions Allowed rotational transitions from N"=13 in the A2Σ+←X2Σ+ system  Note: 1. The effect of the parity selection rule in reducing the number of allowed main branches to 4 2. The simplification when Λ=0 in lower state, i.e., no Λ-doubling  Absorption oscillator strength 17 4.1. Oscillator strengths     1"2 notationshorthandinor 1"2 '" '"'"'" '" '"'"',',',',',",",",","     J S qff J S qff JJ vvnnJJ JJ vvnnJvnJvn elec. vib. spin ang. mom. Λ-doubling elec. osc. strength F-C factor H-L factor '"vvf = band oscillator strength (v',v") fv'v" (0,0) 0.00096 (1,0) 0.00028  Notes: qv"v' and SJ"J' are normalized   1 ' '" v vvq      2 Xfor4" ' '" 121"2 elg J JJ SJS  this sum includes the S values for all states with J" 1 for Λ = 0 (Σ state), 2 otherwise For OH A2Σ+–X2Π  Is SJ"J' = SJ'J"?  Yes, for our normalization scheme!  From g1f12 = g2f21, and recognizing that 2J+1 is the ultimate (non removable) degeneracy at the state level, we can write, for a specific transition between single states In this way, there are no remaining electronic degeneracy and we require, for detailed balance, that and  Do we always enforce for a state?  No!  But note we do enforce (14.17) and (14.19) where, for OH A2Σ←X2Π, (2S+1) = 2 and δ = 2.  When is there a problem?  Everything is okay for Σ-Σ and Π-Π, where there are equal “elec. degeneracies”, i,e., g"el = g'el. But for Σ-Π (as in OH), we have an issue. In the X2Π state, gel = 4 (2 for spin and 2 for Λdoubling), meaning each J is split into 4 states. Inspection of our H-L tables for SJ"J' for OH A2Σ←X2Π (absorption) confirms ΣSJ"J' from each state is 2J"+1. All is well. But, in the upper state, 2Σ, we have a degeneracy g'el of 2 (for spin), not 4, and now we will find that the sum of is twice 2J'+1 for a single J' when we use the H-L values for SJ"J' for SJ'J". However, as there are 2 states with J', the overall sum as required by (14.19) 18 4.1. Oscillator strengths     1'2 '1'2 1"2 "1"2 "' "' '" '"     J S qfJ J S qfJ JJ vvel JJ vvel  1"2 ' '"  JS J JJ "''" JJJJ SS  " "' J JJS "''",'" vvvvelel qqff    121"2 ' '"  SJS J JJ   121'2 " '"  SJS J JJ  41'2 " "'  JS J JJ  Absorption oscillator strength for f00 in OH A2Σ+–X2Π 19 4.1. Oscillator strengths Source f00 Oldenberg, et al. (1938) 0.00095 ± 0.00014 Dyne (1958) 0.00054 ± 0.0001 Carrington (1959) 0.00107 ± 0.00043 Lapp (1961) 0.00100 ± 0.0006 Bennett, et al. (1963) 0.00078 ± 0.00008 Golden, et al. (1963) 0.00071 ± 0.00011 Engleman, et al. (1973) 0.00096 Bennett, et al. (1964) 0.0008 ± 0.00008 Anketell, et al. (1967) 0.00148 ± 0.00013  Absorption oscillator strength 20 4.1. Oscillator strengths Hönl-London factors for selected OH transitions Transition SJ"J'/(2J"+1) ΣF1(J) ΣF2(J) Σ[F1(J)+F2(J)] Q12(0.5) 0.667 0 2 2 Q2(0.5) 0.667 R12(0.5) 0.333 R2(0.5) 0.333 P1(1.5) 0.588 2 2 4 P12(1.5) 0.078 P21(1.5) 0.392 P2(1.5) 0.275 Q1(1.5) 0.562 Q12(1.5) 0.372 Q21(1.5) 0.246 Q2(1.5) 0.678 R1(1.5) 0.165 R12(1.5) 0.235 R21(1.5) 0.047 R2(1.5) 0.353 P1(2.5) 0.530 2 2 4 P12(2.5) 0.070 P21(2.5) 0.242 P2(2.5) 0.358 Q1(2.5) 0.708 Q12(2.5) 0.263 Q21(2.5) 0.214 Q2(2.5) 0.757 R1(2.5) 0.256 R12(2.5) 0.173 R21(2.5) 0.050 R2(2.5) 0.379 Transition SJ"J'/(2J"+1) ΣF1(J) ΣF2(J) Σ[F1(J)+F2(J)] P1(3.5) 0.515 2 2 4 P12(3.5) 0.056 P21(3.5) 0.167 P2(3.5) 0.405 Q1(3.5) 0.790 Q12(3.5) 0.195 Q21(3.5) 0.170 Q2(3.5) 0.814 R1(3.5) 0.316 R12(3.5) 0.131 R21(3.5) 0.044 R2(3.5) 0.402 P1(9.5) 0.511 2 2 4 P12(9.5) 0.016 P21(9.5) 0.038 P2(9.5) 0.488 Q1(9.5) 0.947 Q12(9.5) 0.050 Q21(9.5) 0.048 Q2(9.5) 0.950 R1(9.5) 0.441 R12(9.5) 0.035 R21(9.5) 0.014 R2(9.5) 0.462