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III — Lattice subsystem

III.1 Hamiltonian of the lattice and the harmonic approximation

A careful acount of the theory of lattice vibrations is given in Cely’s monograph. For
this reason, we discuss here only some crucial aspects of the theory. We refer the

reader to the monograph, where appropriate.

Adiabatic approximation

• Physical insight: Electrons move much faster than the nuclei. They can be assumed
to “feel” the current spatial configuration of the nuclei (or ions). The nuclei, on the

other hand, can be assumed to feel the average configuration of the electrons.
• Translated into the language of equations.

Hamiltonian function for the system of electrons and nuclei:

H = Te + Ve + Ve−n + Tn + Vn . (1)

Schrödinger equation:
HΨ = EΨ , Ψ = Ψ(r,R) . (2)

The adiabatic approximation consists in restricting the space of wavefunctions under

consideration to functions of the form

Ψ(r,R) = ψm(r, {R})χ(R) , (3)

where ψm is an eigenfunction of the electronic hamiltonian He,

He({R}) = Te + Ve + Ve−n({R}) , (4)

He({R})ψm = ǫmψm . (5)

The standard variational condition (or, alternatively, insertion of the expression 3
into the Schrödinger equation 2 and neglection of “small terms”) leads to the following

equation for the function χ

Hnχ = Eχ (6)

with
Hn = Tn + Vn + ǫm({R}) . (7)

Usually ǫm in the preceding equation is replaced with ǫGS (GS ... ground state). It can

be easily shown that this description is consistent with the physical picture of electrons
responding to the current configuration of the nuclei and the nuclei responding to the

average configuration of the electrons.
The problem defined by the hamiltonian 1 has been splitted into two parts: the

electronic part characterized by the hamiltonianHe of Eq. 4 and that of the nuclei cha-
racterized by the hamiltonianHn of Eq. 7, the so called hamiltonian of the crystal lattice.

The two parts are connected only by the ǫm-term in Eq. 7 which provides a substantial

contribution to the effective potential energy W (R) of the nuclei defined by

W (R) = Vn(R) + ǫm({R}) . (8)
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Harmonic approximation

Nuclei in a solid move around a certain equilibrium configuration

{R01, R02, ... , R0N} (9)

corresponding to the global or a local minimum of W . The potential W can be ex-
panded into the Taylor series, see Eq. (5.2) in Cely’s monograph. The first-order term

vanishes because the expansion is about a minimum. In the harmonic approximation
only the second order term is retained, the higher order terms neglected. Physical

picture: it is assumed that the atomic displacements are so small that they do not
bring the system out of the region, where the parabolic approximation toW is reliable.

III.2. Classical approach: EQM and the “Bloch theorem” for the crystal lattice
Classical equations of motion (see Cely’s monograph for definitions of the symbols):

MJ
d2uα(J)

dt2
= −

N
∑

K=1

z
∑

β=x

Aαβ(J,K)uβ(K) , (10)

where u(J) is the displacement vector of the J-th nucleus, RJ = R0J + u(J), and

Aαβ(J,K) =
∂2W

∂uα(J)∂uβ(K)
(11)

are the so called force constants.
For a crystal lattice, the index J can be replaced by two indices: m specifying the

position of the unit cell and µ specifying the position of the nucleus within the unit
cell. It follows from the tranlation symmetry that

Aαβ(mµ, nν) = Aαβ(Rn − Rm, µν) , (12)

where Rn is the vector connecting the origin of the coordinate system with the lattice

point labelled as n. As a consequence, it is possible to find a complete set of solutions
of the equations 10 of the form [see Eq. (5.15) in Celý]

u(mµ, t) = uµe
−iωteiq·Rm . (13)

This is an analogue of the Bloch theorem. The physical meaning of the wave vector q

is the following: when going from the unit cell with the lattice vector Rm to the unit

cell with the vector Rn the phase of the atomic displacements changes by eiq·(Rn−Rm).
By inserting the expression on the right hand side of Eq. 13 into Eq. 10 we obtain

[cf. (5.18)]
∑

ν,β

[Bαβ(q, µν) − ω2Mµδαβδµν ]uνβ = 0 , (14)

µ, ν = 1, 2, ..., s, where s is the number of atoms per unit cell, α, β = x, y, z, and

Bαβ(q, µν) =
∑

h

Aαβ(Rh, µν)e
iqRh . (15)

The set of equations 14 does not represent a standard eigenvalue problem because
of the presence of the factor Mµ in the square bracket. An eigenvalue problem can
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be obtained, however, by introducing the reduced displacements wµ, µ = 1, 2, ... s,

[cf. (5.26)],

wµ =
√

Mµuµ (16)

and the dynamical matrix Dαβ(q, µν) [cf. (5.27)],

Dαβ(q, µν) = (MµMν)
−1/2Bαβ(q, µν) . (17)

After some arrangments of Eq. 14 we obtain [cf. (5.28)]:
∑

νβ

[Dαβ(q, µν) − ω2δα,βδµν ]wνβ = 0 or (D(q) − ω2I3s)w = 0 , (18)

which is already a canonical eigenvalue problem. For any q (usually in the first BZ)

we obtain a set of eigenvalues

ω1(q), ω2(q), ω3(q), ... , ω3s(q) (19)

(the corresponding functions of q are called the dispersion relations) and the corre-
sponding set of eigenvectors (in the 3s-dimensional space!)

w1(q),w2(q), ... ,w3s(q) . (20)

The corresponding normalized eigenvectors

e1(q), e2(q), ... , e3s(q) (21)

are sometimes also called the polarization vectors. The dynamical matrix satisfies

the equation D(−q) = D∗(q) and it is therefore always possible to choose a set of
polarization vectors such that ej(−q) = ej

∗(q).

Normal coordinates, transformation of the hamiltonian

into the form corresponding to a set of harmonic oscillators
Displacement of the µ-th atom in the m-th unit cell in the state, where only one mode

(wavevector q,phonon branch j) is excited:

umµα ∼ ejµα(q)e[iqRm−ωj(q)t] . (22)

General solution of the problem: a superposition of terms of the type 22.
Generalized or normal coordinates - see Eq. (5.33) and (5.34).

Hamiltonian in terms of the normal coordinates [cf. (5.37)]:

H =
∑

q∈BZ

3s
∑

j=1

(

1

2
P (q, j)P (−q, j) +

ω2
j (q)

2
Q(q, j)Q(−q, j)

)

. (23)

New real coordinates Ξ(q, j) a Π(q, j) [cf. (5.41)]:

Ξ =
1

2
[Q(q, j) +Q(−q, j)] +

i

2ωj(q)
[P (q, j) − P (−q, j)] , (24)

Π =
iωj(q)

2
[−Q(q, j) +Q(−q, j)] +

1

2
[P (q, j) + P (−q, j)] . (25)
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Hamiltonian in terms of Ξ a Π [cf. (5.42)],

H =
∑

q∈BZ

3s
∑

j=1

(

1

2
Π2(q, j) +

ω2
j (q)

2
Ξ2(q, j)

)

, (26)

has precisely the same form as that of a set of independent harmonic oscillators. The

quantum-mechanical treatment of the problem leading to the concept of phonons has
already been explained earlier when describing excited states of a chain of atoms.

III.3. Examples of dispersion relations and polarization vectors
• Dispersion relations of some simple materials (Pb,KBr,Ge,NaCl ...) are shown in

Kittel; Ashcroft/Mermin; Celý.
• Polarization vectors for a 2D lattice possessing two non-equivalent nuclei per unit

cell - a schematic representation.

(a) 

(b)

(c)

(d)

(e)

(a) Crystal structure, the box shows the unit cell; (b) TA-mode; (c) LA-mode; (d)

TO-mode; (e) LO-mode. The polarization vectors of the long-wavelength limit are
shown in the boxes.

• Polarization vectors for some high-Tc cuprate superconductors - see the file Kova-
leva.pdf.

4


