F9180: Diagnostické metody 2

#### Time-Correlated Single Photon Counting Methods

#### Tomáš Hoder

Doporučená literatura:

[1] D.V.O'Connor and D.Phillips - Time-correlated Single Photon Counting, 1984
 [2] W.Demtroeder - Atoms, Molecules and Photons, 2006

[3] **W.R.Ware** – Techniques of pulse fluorometry *Time-Resolved Fluorescence Spectroscopy in Biochemistry and Biology (NATO ASI Series A: Life Sciences)* 

vol 69, ed R.B.Cundall and R.E.Dale (New York: Plenum), 1983

[4] K.V.Kozlov et al. 2001 Spatio-temporally resolved spectroscopic diagnostics of the barrier discharge in air at atmospheric pressure, *J.Phys.D:Appl.Phys.* 34 3164
[5] W.Becker 2007 Advanced Time-correlated Single Photon Counting Techniques
[6] W.Becker 2014 TCSPC Handbook

## Overview

- TC-SPC technique/idea
- Time scales, where we can use it, where not
- Light emission, fluorescence, quenching
- Sensitivity, StNR, time resolution, PMT transit
- Use in plasma-physics and synchronization
- Selected examples for gas discharge quantitative spectroscopy

### **TC-SPC** technique



### **TC-SPC** basics



Instead of having problems with slow analogue PMT signal ... TC-SPC obtains light intensity by counting pulses as a digital units in subsequent time channels:

- free of gain noise of PMT
- free of electronic noise of accidental signals to PMT
- high signal-to-noise ratio (to PMT background counting rate)
- higher time-resolution (Transit Time Spread << Single Photoelectron Response/Transit time)



Fig. 102: Single-photon pulses delivered by a R5900 PMT (left, 1 ns / div) and output signal of the PMT at a photon detection rate of  $10^7 \text{ s}^{-1}$  (right, 100 ns / div). Operating voltage -900V, signal line terminated with 50  $\Omega$ .



Fig. 103: Detector signal for fluorescence detection at a pulse repetition rate of 80 MHz

#### TC-SPC solves:

- Problems of triggering/synchro recording of irregular emission events
- Problems of time resolution no limitation by transit times or SER (single electron response) of detectors
- Problems of sensitivity statistical principles
   behind the accumulative recordings

#### Convolution -> cross-correlation

- 1. Express each function in terms of a dummy variable  $\tau$ .
- 2. Reflect one of the functions:  $g(\tau) \rightarrow g(-\tau)$ .
- 3. Add a time-offset, *t*, which allows  $g(t \tau)$  to slide along the  $\tau$ -axis.
- 4. Start *t* at  $-\infty$  and slide it all the way to  $+\infty$ . Wherever the two functions intersect, find the integral of their product. In other words, compute a sliding, weighted-sum of function  $f(\tau)$ , where the weighting function is  $q(-\tau)$ .

The resulting waveform (not shown here) is the convolution of functions f and g.

If f(t) is a unit impulse, the result of this process is simply g(t), which is therefore called the impulse response. Formally:

$$\int_{-\infty}^{\infty} \delta(\tau) g(t-\tau) d\tau = g(t)$$



(δ-fce)

$$(f \star g)(t) \stackrel{\text{def}}{=} \overline{f}(-t) \star g(t)$$



#### Relevant integral transformations:





#### Gated cameras:

- Time resolution from seconds to usually 2ns (new models down to 200 or even 50ps)
- Almost impossible to synchronize to time-irregular emission events (random shot is the time consuming solution)
- Sensitivity of the recording is given by the StNR of given device. Usually the noise increases linearly with number of accumulation cycles. Weak signals are not easy to record.



<u>Time-to-amplitude converter</u> ... first time 1961 by Koechlin (Thesis, Uni Paris)

#### Start-stop TCSPC:

- Time resolution from hundreds of nanoseconds to 10ps
- Possible to synchronize to timeirregular emission events with the same high resolution in time
- Sensitivity of the recording is given by the StNR of given synchronization arrangement. Poisson statistics is the limiting mechanism.
- Limited for high-frequency repetition emission events. Limited by the speed of electronics of the counter dealing with high-frequency input.



#### Reversed start-stop TCSPC:

- Time resolution from hundreds of nanoseconds to 10ps
- Possible to synchronize to time-irregular emission events
- Sensitivity of the recording is given by the StNR of given synchronization arrangement. Poisson statistics is the limiting mechanism.
- No limitation for high-frequency repetition emission events. Input processing only for the "main" signal.



#### Streak cameras:

- Time resolution down to units of picoseconds (some new models down to hundreds of femtoseconds)
- Sensitivity of the recording comparable to the TC-SPC



## Pump-and-probe technique:

- Time resolution down to femtoseconds using femtosecond laser pulses
- Possible to synchronize due to the synchronous generation of the fluorescence by the pumping laser pulse.

#### Light emission, fluorescence

If an atom is excited (for instance by absorption of a photon, or by collisions with electrons) into a state with energy  $E_i$  above that of the ground state, it can spontaneously relax back into a lower state with energy  $E_j$  by emitting a photon  $hv = E_i - E_j$ . This spontaneous emission is called **fluorescence**. This lower state  $E_j$  may be still above the ground state  $E_k$ . In this case it can further relax into the ground state by photon emission or by a collision-induced transition.



$$dN_{i} = -A_{ij}N_{i} dt$$
$$N_{i}(t) = N_{i}(0) e^{-A_{i}t}$$
$$T_{i} = 1/A_{i}$$

$$\mathbf{t}_{i} = \frac{1}{N_{0}} \int_{N_{0}}^{0} \mathbf{t} \cdot d\mathbf{N}_{i}(\mathbf{t})$$
$$= -\int_{0}^{\infty} \mathbf{t} \mathbf{A}_{i} e^{-\mathbf{A}_{i} \mathbf{t}} d\mathbf{t} =$$

After the mean lifetime  $\Box_i \Box = \tau_i$  the initial population  $N_i(t = 0)$  has decreased to  $N_i(0)/e$ .

#### Light emission, fluorescence



**Fig. 7.3.** (a) Spatial radiation characteristics of a classical oscillating electric dipole. (b) The expectation value  $\Box p_k \Box = -e \Box r_k \Box$  of the quantum mechanical dipole moment in level  $|k\Box|$  determined by its wave function  $\psi_k$ 

#### Light emission, fluorescence

For a transition  $E_i \rightarrow E_k$  the wave functions of both states have to be taken into account, because the transition probability depends on both wave functions  $\psi_i$ and  $\psi_k$ . We therefore define the expectation value of the so-called **transition dipole moment**  $M_{ik} = \Box p_{ik} \Box$  as the integral

$$\boldsymbol{M}_{ik} = \boldsymbol{e} \int \boldsymbol{\psi}_i^{\Box} \boldsymbol{r} \boldsymbol{\psi}_k \, \mathrm{d} \boldsymbol{\tau} \quad , \qquad (7.13)$$

where the two indices  $i = (n_i, l_i, m_{l_i}, m_{s_i})$  and  $k = (n_k, l_k, m_{l_k}, m_{s_k})$  are abbreviations for the four quantum numbers of each state.

Replacing the classical average  $\overline{p^2}$  in (7.12) by the quantum mechanical expression



**Fig. 7.4.** Mean radiation power  $\Box p_i k \Box$  emitted by  $N_i$  excited atoms as fluorescence on the transition  $|i \Box \rightarrow |k \Box$ 

one atom emits a photon on the transition  $|\mathbf{l}| \rightarrow |\mathbf{k}|$  the average power emitted by  $N_i$  atoms (Fig. 7.4) is

$$\mathbf{P} = \mathbf{N}_i \mathbf{A}_{ik} \mathbf{h} \mathbf{v}_{ik} = \mathbf{N}_i \mathbf{A}_{ik} \hbar \boldsymbol{\omega}_{ik} . \tag{7.16}$$

The comparison of (7.15) with (7.16) yields the relation

$$\mathbf{A}_{ik} = \frac{2}{3} \frac{\boldsymbol{\omega}_{ik}^3}{\boldsymbol{\varepsilon}_0 h \mathbf{c}^3} |M_{ik}|^2$$

#### Radiative lifetime measurement

After the mean lifetime  $t_i \square = \tau_i$  the initial population  $N_i(t = 0)$  has decreased to  $N_i(0)/e$ .





$$A_{in} = A_i \frac{\Gamma_{in}/(\Pi V_{in})}{\sum_n I_{in}/(h V_{in})}$$

$$(k = n)$$

$$\mathbf{A}_{ik} = \frac{2}{3} \frac{\boldsymbol{\omega}_{ik}^3}{\boldsymbol{\varepsilon}_0 \boldsymbol{h} \boldsymbol{c}^3} |\boldsymbol{M}_{ik}|^2$$

## Effective lifetime and quenching





**Fig. 7.16.** Inverse effective lifetime  $1/\tau_{eff}$  as a function of the density  $n_{\rm B}$  of collision partners B (Stern–Volmer plot)



#### Effective lifetime and quenching



**Figure 6.** Stern–Volmer plot of the N<sub>2</sub><sup>+</sup>( $B^{2}\Sigma_{u}^{+}, v = 0$ ) quenching rate in pure N<sub>2</sub>. The linear fit gives a slope of  $(2.5871 \pm 0.027) \times 10^{7} \text{ Torr}^{-1} \text{ s}^{-1}$  and an intercept of  $(1.5228 \pm 0.055) \times 10^{7} \text{ s}^{-1}$ . The inverse of the intercept,  $\tau = 65.67 \pm 2.37 \text{ ns}$  is in good agreement with the 62.33 ns radiative lifetime of [24].



**Figure 7.** Stern–Volmer plot of the N<sub>2</sub><sup>+</sup>( $B^{2}\Sigma_{u}^{+}$ , v = 0) quenching rate in N<sub>2</sub> + 50%O<sub>2</sub>. The linear fit gives a slope of (2.8236 ± 0.0128) × 10<sup>7</sup> Torr<sup>-1</sup> s<sup>-1</sup> and an intercept of (1.5752 ± 0.0178) × 10<sup>7</sup> s<sup>-1</sup>. The inverse of the intercept,  $\tau = 63.48 \pm 0.72$  ns, is in good agreement with the 62.33 ns radiative lifetime of [24].

$$k_{\rm mix} = \frac{1}{2}k_{\rm N_2} + \frac{1}{2}k_{\rm O_2}$$

#### Dilecce et al. 2010 J.Phys.D

### **TC-SPC** technique



#### Convolution >>> cross-correlation

- 1. Express each function in terms of a dummy variable  $\tau$ .
- 2. Reflect one of the functions:  $g(\tau) \rightarrow g(-\tau)$ .
- 3. Add a time-offset, *t*, which allows  $g(t \tau)$  to slide along the au-axis.
- 4. Start *t* at  $-\infty$  and slide it all the way to  $+\infty$ . Wherever the two functions intersect, find the integral of their product. In other words, compute a sliding, weighted-sum of function  $f(\tau)$ , where the weighting function is  $q(-\tau)$ .

The resulting waveform (not shown here) is the convolution of functions f and g.

If f(t) is a unit impulse, the result of this process is simply g(t), which is therefore called the impulse response. Formally:

 $(f \star q)(t) \stackrel{\text{def}}{=} \overline{f}(-t) \star q(t)$ 

$$\int_{-\infty}^{\infty} \delta(\tau) g(t-\tau) d\tau = g(t)$$



(δ-fce)

 $(f \star g)(\tau) \stackrel{\text{def}}{=} \int_{-\infty}^{\infty} \overline{f}(t) g(\tau + t) dt$  $(f \star g)(\tau) \stackrel{\text{def}}{=} \sum_{\infty}^{\infty} f(t) g(\tau + t)$ 

### **TCSPC** statistics scheme

N<sub>A</sub> number of counts (anode pulses) in i-th interval



#### TC-SPC statistics basics 1

$$w_i = q z_i$$

$$p_l(i) = \frac{(w_i)^l}{l!} e^{-w_i} \sum_{l=0}^{\infty} p_l = 1$$

$$p_{0}(i) = e^{-w_{i}}$$

$$p_{1}(i) = w_{i}e^{-w_{i}}$$

$$p_{l>1}(i) = 1 - p_{0}(i) - p_{1}(i)$$

$$= 1 - e^{-w_{i}} - w_{i}e^{-w_{i}}$$

$$= 1 - (1 + w_{i})e^{-w_{i}}.$$

Photoelectrons generated by impinged photons on the cathode with given quantum efficiency.

The probability of emission of *l* photoelectrons in the *i*-th interval is given by the **Poisson distribution**.

The Taylor series of the exponential function is  $(1-w_i+w_i^2/2+...)$ , we take the first two.

### **TCSPC** statistics scheme

N<sub>A</sub> number of counts in i-th interval

![](_page_23_Figure_2.jpeg)

#### TC-SPC statistics basics 2

$$N_{\rm A} = N_{\rm E} [p_1(i) + p_{l>1}(i)]$$

 $w_i \ll 1$ , then

After a large number of excitation pulses  $N_E$ , the number of anode pulses  $N_A$  in the *i*-th interval.

After developing to Taylor series, as shown before:

$$p_{l>1}(i) = w_i^2 \ll w_i$$

And it follows:

$$\begin{split} N_{\rm A} &\approx N_{\rm E} (w_i + w_i^2) \\ &\approx N_{\rm E} w_i \\ &= N_{\rm E} q z_i. \end{split}$$

Therefore the number of anode pulses  $N_A$  is proportional to the intensity of the fluorescence at time  $t_i$ .

### **TCSPC** statistics scheme

N<sub>A</sub> number of counts in i-th interval

![](_page_25_Figure_2.jpeg)

#### TC-SPC statistics basics 3

$$N_{\rm A} \approx N_{\rm E}(w_i + w_i^2)$$
$$\approx N_{\rm E}w_i$$
$$= N_{\rm E}qz_i.$$

Relation of  $N_A$  to number of Counts in the *i*-th channel  $N_i$ :

$$N_{\rm A} = \frac{N_i}{1 - \frac{1}{N_{\rm E}} \sum_{j=1}^{i-1} N_j}$$

Because the TAC detects only the first photon in given time interval for a given excitation cycle, *N<sub>A</sub>* is not the number of counts in the *i*-th channel *N<sub>i</sub>*. The true relation is given left.

number of detected anode pulses

$$\sum_{j} N_{j} \leqslant N_{\mathrm{D}}$$

if  $N_{\rm D} \ll N_{\rm E}$  it follows that  $N_i = N_{\rm A}$ 

Consequently the count in channel *i* is a measure of the fluorescence intensity at time  $t_i$ .

#### **TC-SPC** statistics basics 4

Generally,  $N_{\rm D}$  is measured at the output of the TAC and  $N_{\rm D}/N_{\rm E}$  kept below a certain limit. If  $N_{\rm D}$  is not very much less than  $N_{\rm E}$ , data can be corrected using Equation 2.10 provided that  $w_i \ll 1$  (see Section 6.4). Collection at high  $N_{\rm D}/N_{\rm E}$  ratios need not lead to distorted curves if pile-up inspection is performed (see Section 5.2.5(b)). However, it is simpler and probably just as efficient, when data transfer and analysis are taken into account, to keep the ratio  $N_{\rm D}/N_{\rm E}$  below a certain value.

![](_page_27_Figure_2.jpeg)

#### PILE-UP effect

#### Other issues to be aware of

- Color effect (consequence of photoeffect)
- Afterpulsing (consequence of PMT setup)
- Ultra-short reflections
- ..

## Sensitivity and precision

- The effect of **PMT noise** is greatly reduced by the mode of TAC operation >>> enhanced Signal-to-Noise ratio (up to 100x noise reduction)
- Noise due to the dark counts on PMT (cooling, background subtraction ...)
- Noise due to the counting error, number of counts in each channel  $I(t_i)$  follows a Poisson distribution with a standard deviation  $\sigma_i$  given by  $\sigma_i = (I(t_i))^{1/2}$
- It follows that **to have 5% precision** in the number of  $N_i$  counts in *i*-th channel, where the the curve decayed to 1% of its maximum value, one has:  $0.05=1/\sigma_i = 1/(N_i)^{1/2}$ and  $N_i$  is 400, that means one has to measure 40000 counts in maximum
- Signal-to-Noise ratio is given as well by the Poisson distribution and is equal to the standard deviation:

$$SNR = \sqrt{N_i}$$

 Dynamic range (ratio between the largest and smallest value of measured quantity): for ICCD typically 1000:1, streak 10000:1, for TCSPC usually 100000:1 and more

### Comparison

Fundamental comparison of TCSPC, Gated II-CCD and Streak

|                                   | TCSPC                                                                                                                                                                                     | Gated II-CCD                                                                                                                   | Streak                                                                                                  |
|-----------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------|
| Recording method                  | Records temporal<br>traces, but only at a<br>single wavelength<br>at spectra, but only<br>at a single wave-<br>length at a time.<br>The spectral axis<br>must be scanned<br>sequentially. | Records full spectra,<br>but only at a single<br>time position at a<br>time. The time axis<br>must be sampled<br>sequentially. | Records full<br>2-dimensional<br>time-resolved<br>spectra simultane-<br>ously, without any<br>scanning. |
| Can exploit high rep-rate sources | yes                                                                                                                                                                                       | no                                                                                                                             | yes                                                                                                     |
| Can exploit low rep-rate sources  | no                                                                                                                                                                                        | yes                                                                                                                            | yes                                                                                                     |
| Yields Poisson statistics         | yes                                                                                                                                                                                       | no                                                                                                                             | yes                                                                                                     |
| Typical lifetime ranges           | ps to ns                                                                                                                                                                                  | ns to ms                                                                                                                       | sub-ps to ms                                                                                            |

Hamamatsu News 2009

#### PMT and MCP structure

![](_page_31_Figure_1.jpeg)

Micro Channel Plate (MCP) Cross Section

![](_page_31_Figure_3.jpeg)

Gain of up to 10<sup>8</sup>

![](_page_31_Picture_5.jpeg)

#### PMT resolution, transit time

Leading edge discrimination

CFD

![](_page_32_Figure_3.jpeg)

pulse-height-induced timing jitter avoided

Becker 2006 Advanced TCSPC techniques

#### PMT resolution, transit time

![](_page_33_Figure_1.jpeg)

Fig. 175: Single electron response (SER) of different photomultipliers

Due to the random nature of the detector gain, the pulse amplitude varies from pulse to pulse.

Becker 2006 Advanced TCSPC techniques

#### PMT transit time spread

![](_page_34_Figure_1.jpeg)

#### PMT transit

| Dhotomultiplier                                         |                                | Configuration                                                |                    | Dowede   |
|---------------------------------------------------------|--------------------------------|--------------------------------------------------------------|--------------------|----------|
|                                                         |                                | (upper frequency)                                            | 1 1 S (IIS)        | Dynode   |
| Hamamatsu                                               | R928                           | Side-on (300 MHz) <sup>b</sup>                               | 0.9                | 9 stage  |
|                                                         | R1450                          | Side-on                                                      | 0.76               | 10 stage |
|                                                         | R1394                          | Head-on                                                      | 0.65               | 10 stage |
|                                                         | R7400                          | Compact PMT,<br>TO-8 (900 MHz)                               | 300 ps             | _        |
|                                                         | H5023                          | Head-on (1 GHz)                                              | 0.16               | 10 stage |
| RCA C31000M<br>8852                                     | C31000M                        | Head-on                                                      | 0.49               | 12 stage |
|                                                         | 8852                           | Head-on                                                      | 0.70               | 12 stage |
| Philips                                                 | XP2020Q                        | Head-on                                                      | 0.30               | 12 stage |
| Hamamatsu R1294U<br>R1564U<br>R2809U<br>R3809U<br>R2566 | R1294U                         | Nonproximity MCP-PMT                                         | 0.14               | 2 MCP    |
|                                                         | R1564U                         | Proximity focused<br>MCP-PMT, 6 micron<br>(1.6–2 GHz)        | 0.06               | 2 MCP    |
|                                                         | Proximity MCP-PMT,<br>6 micron | 0.03 <sup>d</sup>                                            | 2 MCP              |          |
|                                                         | R3809U                         | Proximity MCP-PMT<br>Compact size, 6 micron                  | 0.025 <sup>d</sup> | 2 MCP    |
|                                                         | R2566                          | Proximity MCP-PMT with a grid, 6 micron (5 GHz) <sup>c</sup> | _                  | 2 MCP    |

#### **Table 4.1**. Transient Time Spreads of Conventional and MCP PMTs<sup>a</sup>

<sup>a</sup>Revised from [81].

<sup>b</sup>Numbers in parentheses are the approximate frequencies where the response is 10% of the low-frequency response. The H5023 has already been used to 1 GHz.

<sup>c</sup>From [86].

<sup>d</sup>From [87].

#### Lakowicz 2006 Principles of fluorescence spectroscopy

#### **TC-SPC** review

light intensity > 0.01 to 0.1 photons per signal period  $\rightarrow$  Pile-Up Problem

![](_page_36_Figure_2.jpeg)

Relatively slow recording speed and long data acquisition times

 $\rightarrow$  high repetition rates and low dead time (approx. 100 ns; i.e. 10<sup>7</sup> photons/s)

Becker 2006 Advanced TCSPC techniques

# Use in plasma-physics and signal synchronization

- Short discharges with high repetition: rf discharges, barrier discharges, Trichel pulsing corona, self-pulsing sparks
- Synchronization via light pulse, current pulse, laser excitation or TTL of applied voltage waveform

#### Kinetic scheme dependent example

- Streamer discharges generated in atmospheric pressure air
- Spectra is dominated by the second positive system of molecular nitrogen
- Relatively weak bands of first negative system are present as well

![](_page_38_Figure_4.jpeg)

#### Kinetic scheme dependent example

- Streamer discharges generated in atmospheric pressure air
- Spectra is dominated by the second positive system of molecular nitrogen
- Relatively weak bands of first negative system are present as well

$$\begin{aligned} &e + N_2 (X^1 \Sigma_g^+)_{\nu=0} \longrightarrow N_2^+ (B^2 \Sigma_u^+)_{\nu'=0} + 2e, & \Delta E = 18.7 \text{ eV}; \\ &e + N_2 (X^1 \Sigma_g^+)_{\nu=0} \longrightarrow N_2 (C^3 \Pi_u)_{\nu'=0} + e, & \Delta E = 11.0 \text{ eV}; \\ &N_2^+ (B^2 \Sigma_u^+)_{\nu'=0} \longrightarrow N_2^+ (X^2 \Sigma_u^+)_{\nu''=0} + h\nu, \ \lambda = 391.5 \text{ nm}, \tau_0^B = 64.0 \text{ ns} \\ &N_2 (C^3 \Pi_u)_{\nu'=0} \longrightarrow N_2 (B^3 \Pi_g)_{\nu''=0} + h\nu, \ \lambda = 337.1 \text{ nm}, \tau_0^C = 36.6 \text{ ns} \\ &N_2^+ (B^2 \Sigma_u^+)_{\nu'=0} + N_2 / O_2 \longrightarrow \text{products}, \ \tau_{\text{eff}}^B = 0.045 \text{ ns} \\ &N_2 (C^3 \Pi_u)_{\nu'=0} + N_2 / O_2 \longrightarrow \text{products}, \ \tau_{\text{eff}}^C = 0.640 \text{ ns} \end{aligned}$$

#### Kinetic scheme dependent example

• Streamer discharges generated in atmospheric pressure air

$$\frac{\mathrm{d}n_{\mathrm{B}}(x,t)}{\mathrm{d}t} = k_{\mathrm{B}}(E/N)n_{\mathrm{N}_{2}}n_{\mathrm{e}}(x,t) - \frac{n_{\mathrm{B}}(x,t)}{\tau_{\mathrm{eff}}^{\mathrm{B}}}$$
$$\frac{\mathrm{d}n_{\mathrm{C}}(x,t)}{\mathrm{d}t} = k_{\mathrm{C}}(E/N)n_{\mathrm{N}_{2}}n_{\mathrm{e}}(x,t) - \frac{n_{\mathrm{C}}(x,t)}{\tau_{\mathrm{eff}}^{\mathrm{C}}}$$

$$\frac{\frac{\mathrm{d}I_{\mathrm{B}}(r,t)}{\mathrm{d}t} + \frac{I_{\mathrm{B}}(r,t)}{\tau_{\mathrm{eff}}^{\mathrm{B}}}}{\frac{\mathrm{d}I_{\mathrm{C}}(r,t)}{\mathrm{d}t} + \frac{I_{\mathrm{C}}(r,t)}{\tau_{\mathrm{eff}}^{\mathrm{C}}}} \frac{\tau_{\mathrm{eff}}^{\mathrm{B}}}{\tau_{\mathrm{eff}}^{\mathrm{C}}} = R_{\mathrm{FNS/SPS}}(E/N)$$

#### Trichel pulse corona

• Breakdown in negative corona Trichel pulse

![](_page_41_Figure_2.jpeg)

![](_page_41_Figure_3.jpeg)

FIG. 3. Experimentally obtained FNS and SPS signals of positive streamer in its early stage together with determined electric field development for Trichel pulse in negative corona discharge.<sup>41</sup> Delays of the FNS and SPS signals maxima to the electric field maximum are denoted. The uncertainty of the obtained delay values is not worse than  $\pm 20$  ps.

### Setup for corona and calibration

![](_page_42_Figure_1.jpeg)

Figure 1: Experimental setup for the E/N determination in TP discharge. DC: direct current power supply; PMT: photomultiplier; CFD: constant fraction discriminator; TAC: time-to-amplitude converter; ADC: analog-to-digital converter.

#### Calibration

• Streamer discharges generated in atmospheric pressure air

![](_page_43_Figure_2.jpeg)

#### Trichel pulse electric field

![](_page_44_Figure_1.jpeg)

$$1 \,\mathrm{Td} = 10^{-21} \,\mathrm{Vm}^2$$

![](_page_44_Figure_3.jpeg)

#### Limits for TCSPC on streamers

![](_page_45_Figure_1.jpeg)

FIG. 4. Experimentally obtained SPS signal of positive streamer propagating towards dielectric cathode in barrier discharge arrangement<sup>42</sup> with depicted coordinates for the estimation of the delay dilatation (a). The dilatation of the delay  $\delta delay$  as well as the increase of the emitted intensity of the SPS signal from the streamer head is shown in part (b).

#### Quantum mechanics based example

![](_page_46_Figure_1.jpeg)

FIG. 2. Typical  $\pi$  polarized spectra of the He I 492.1 nm line and its forbidden counterpart. Discharge conditions: (a) 200 mbar and  $U_{gap}$ =490 V; (b) 800 mbar and  $U_{gap}$ =670 V.

Obradovic 2008 APL

#### Quantum mechanics based example

![](_page_47_Figure_1.jpeg)

FIG. 2. The polynomial best fits of the calculated wavelength separation DI <sub>AF</sub> of *p* components of the 402.6 nm line and its forbidden line:  $m_{upper}$  5 0!  $m_{lower}$ 5 0 transition ~dashed line!,  $m_{upper}$ 5 1!  $m_{lower}$ 5 1 transition ~dotted line! and average between *m*5 0 and *m*5 1 displacements, Eq. ~3! ~solid line!. For the 492.1 nm and 447.1 lines only average values **@** lid lines, Eqs. ~1! and ~2!, respectively#are given. The results ~scattered graphs! of the experimental testing of Eqs. ~1!-~3!, obtained by measuring DI <sub>AF</sub> for all three He I lines vs electric field strength determined from the *p* shape of  $H_b$  profile in helium–hydrogen mixture, are also given.

Kuraica 1997 APL

#### RF discharge in helium at 1atm

![](_page_48_Figure_1.jpeg)

Navratil 2015 TCSPC results

#### Quantum mechanics based example

![](_page_49_Figure_1.jpeg)

**Figure 5.** Time-development of electric field strength at the driven electrode obtained from the fit of forbidden and field-free component. Solid and the dotted line denote the applied RF voltage development and the development of intensity integrated over the spectral profile, respectively.

Navratil 2015 TCSPC results

## Summary

- The principles and technical realization of the TCSPC technique were introduced
- The measured fluorescence from the atomic/molecular transitions was followed back to its origin
- Selected examples of quantitative highresolution spectroscopy were presented