124 Probability and confidence Chap. 7 * 7.2 Confidence levels 125
the problem. Any attempt to base the initial belief on guesswork or i i
must be unscientific and unreliable. The only strict way to justify an init
degree of belief is by the equally likely method introduced in section
As we saw, this does not work in a continuous case.

Bayes’ theorem turns this round to say
plm,|m)oc e m a2,

If you want to do this, then that is fine, but do it with your eyes open. The
conclusion rests on the initial uniform distribution which, as stressed earlier,
is not automatic. You could have interpreted this as a measure of m?2, about
which you are equally ignorant initially, and assumed that all values of m?
(instead of m,) are equally likely. Then you would get a different result.

To discuss such experimental results and confidence levels in the frequency
interpretation, one is forced into a slightly contorted view-point. This is
described in the next section.

P2

*7.1.6 Conclusions on Probability

Thus probability can be considered as the limit of a frequency, X
objective number or as a subjective degree of belief. This has been a
quick look at a very deep subject, and you should be aware that t
serious differences even within these camps. Beware, too, of names:
people refer to the frequency definition of probability as ‘objectiv
Bayesians call the frequentists ‘classical’, and the frequentists call the e
likely school ‘classical’.

Why have we opened this can of worms? There is no point in arguin
claims of rival schools: you can adopt whatever definition you please, ;
use arguments about the merits of different definitions as an a
conversation topic. What matters is that you should be aware of w
are doing, and do not mix up thoughts, ideas, and formulae from the dif
definitions. ,

Most scientists, if challenged, would claim to belong to the freq
school. Propensities and Bayesian statistics are strictly unorthod
heretical. However, although we claim to adopt the frequency definiti it
our innermost hearts we probably think of probabilities as objective n
and often talk in language appropriate to Bayesian probabilities. In pa
any attempt to interpret the results of an experiment falls into the t
repeatability.

Suppose you measure the mass of the electron as 520 + 10ke
is a clear statement; you have obtained a result of 520keV/c?
apparatus of known resolution 10keV/c?. You may then say
basis of your value, that ‘the mass of the electron probably li
to 520keV/c?’ or even make the more numerically detailed state
‘the value lies between 510 and 530, with a 68% probability’. Either s
is, in von Mises’ view, ‘unscientific’ and incompatible with you
adherence to the frequency definition. The electron has just or
(it happens to be 511keV/c?) and it either lies within your error,
outside it. ‘

Such statements are mlly ums subjective, Bayesian, argumen
the experiment you know nothing about m,, so you consider all possibi
oqually likely. casurement m of resolutio

‘That’s a great deal to make one word mean’,
Alice said in a thoughtful tone.

‘When I make a word do a lot of work like that’,
said Humpty Dumpty, ‘I always pay it extra.’

=

— Lewis Carroll

L}

We warn the reader that there is no universal
convention for the term ‘confidence level.’

— The Review of Particle Properties, 1986
7.2 CONFIDENCE LEVELS

- Confidence levels appear as a part of descriptive statistics, as ways of
- describing the spread of a distribution, especially in the tails. We will look
 at their definition and properties in this context first; they are very basic and
; slmple In the next section we go on to the more subtle business of their use
in estimation, and the results of measurements.

¥7.2.1 Confidence Levels in Descriptive Statistics

Suppose cereal packets are produced accordmg to a Gaussian distribution
of mean 520g and standard devmioﬁ 10g. The table of the integrated
Gaussian, Table 3.2, then télls, ts will wemh more than
510 and less than 530g. So if
“that the weight of a p
- correct 68% of the time. W&
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A, The central interval: The probabilities above and below the interval are
equal, ie. [*,, P(x)dx = [¥, P(x)dx = (1 - Q)/2.

The central interval is usually the most sensible and the best one to use.
However, for the Gaussian distribution (and indeed for any symmetric
{istribution) the three definitions are all equivalent anyway, so the problem *
does not often appear.

Two other useful forms are the one-tailed limits, the upper and lower limits.
At the stated confidence level, the packet weights lie below the upper limit, i.e.
X

" p(dx=C (1.5)

= o0

Prob(x <x+)=J'

Fig. 7.1. The 90% central confidence

interval for a Gaussian distribution. and one does not care what their weights are at low values. Similarly, the

‘weights lie (at the stated confidence level) above the lower limit

Prob(x > x_) = Jw P(x)dx=C (7.6)

X -

1; a probability according to the standard definition as a frequen
the numl?er of cereal pqckets coming off the production line is la
The:‘e is a lot of choice about the confidence to quote. Con
are 68% or 10, 95.4% (20), 90% (1.640), 95% (1.960) and 99%
is a trade-off between a narrow interval and low confidence. Yo
w1tl'1 great confidence that the weight lies within very wide limits; i
:grtlze l)t govy; more precisely the confidence lessens. In practice ,9(1
o) himits are commonly met with; 99% limi jor
Setfoctionms y ; 99% limits are occasionally
For non-Gaussian distributions th. i aboy
v e correspondence listed abo
con!}dence levels and number of o no longer applies. If someone
Sees‘}; att' for a nlc;n-Gaussian distribution they may mean two
1ons, or they may in fact mean i i
bnbioiuiar S , rather misleadingly, 95.
Having chosen the value, there is still i
: , a choice over the ran
three conventional ways of choosing the limits of an interval arouﬁc

~and whether they exceed it by a little or a lot is irrelevant.

Careful! Tt must be emphasized that the upper limit of a 95% central
confidence interval, and the 95% upper limit, are not the same thing. The
former has 97.5%, of the probability content below it and 2.5% above; the
latter has 95% below and 57 above.

"'7.2.2 Confidence Intervals in Estimation

Suppose we want to know the value of a parameter X, and have estimated
it from the data, giving a result x. We know about the resolution of our
measurements, and thus V(x) and its square root ¢. The problem is to turn
our knowledge of x and ¢ into a statement, of the confidence level type, about
- the true value X.

The naive answer is to turn it round and say ‘X lies within x —a and
x+ 0, with 68% confidence, and within x — 2¢ and x4+ 2ag, with 95%
- confidence’. However, as described in section 7.1.6, this apparently simple
- statement is dynamite, containing hidden Bayesian assumptions. Anyone still
tempted to think in these terms is invited to consider the following example,
.~ which shows that applying probabilities like this is just wrong!

X4
Prob(x_ <x<xy) = J P(x)dx=C
X _
~ Example An impossible probability ,
The weight of an empty dish is measured as 25.30 +0.14g. A sample of powder is
placed on the dish, and the combined weight measured as 2550+ 0.14g By
subtraction, and combination. of éf - weight of the powder is 0.2018:20
~ This is a perfectly sensible res ol MM
- find a more accurate bal : ]
However, look what ha

and additional requirements as follows:

1. The symmetric interval: x_ and x, are equidistant from uie m
Xp=p=p—x_. o
2‘. ‘ The shor;est .mterval: the limits are such that the interval is as
pogsible, subject to equation 7.4; i.e. x, — x_ is a minimum, |
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this is 5% or less. Likewise the value of X for which our value of x is x  is
the lower limit X _. We therefore quote the 90% confidence interval for the
true value X as the range X_ to X ..

When X _ and X, are constructed in this way, we can still say the true
value of X lies in the range X _ < X< X, with 90% probability. This looks
like a statement about X, but in fact it is a statement about X, and X_.
Suppose the true value of X is Xy, and it is measured many times. The many
(different) measurements will, by construction, lie within the range x _ to Xy
(inclusive) as evaluated for Xg in 90% of all cases, while the other 10% will
not. Points inside the belt are within their horizontal limits (x_ and x for
this X') and also their vertical limits (X_ and X for this x). Points outside
violate both bounds. The 90% of measurements within the x_ to x range
ilso have X in the range X _ to X ;. So X, will lie within the limits X _ to
X, with a probability of 90%. Although a particular statement obta.ine.d at,
' say, a 90% confidence level (e.g. m, lies within 510 and 515keV/c?) is either
right or wrong, if you take a large number of such statements then 90% of
them will be true.

that there is a 32%, chance of the weight being more than 1o from the
is evenly split, makmg a 16% chance that the weight is negative. This, a
to say, is absurd.

We will now approach the problem more carefully, using the
limit definition of probability. For a particular value of X, t
probability distribution function for x:P(x; X). For a conventional
ment of resolution ¢ it is a Gaussian for x with mean X and standard.
o; for a number of (Poisson) events it is the Poisson formula o
mean X. In general, it presumably peaks at or near x = X and f:
either side. From it we can construct a confidence interval —let us
central interval—so that, for a particular value of the real X, the valuy
measurement x will lie (with 90% probability) within the region
For a different X, there are different limits. Thus x_ and x, canbec
as functions of X. This can be nicely shown on a diagram (Figui
runs vertically, and a horizontal line at a particular value of X cuts t
shown, enabling the values of the limits x _ and x, for this X to
on the horizontal axis. The region between the two curves is ¢
confidence belt. The key to these plots is that they are constructed ho
before you ever see the data, using the probability distribution P(
read vertically when you have a measurement.

Now you make an actual measurement x. The x_ curve give
of X for which x is the appropriate x_. This is the desired upper
This is not saying that X has a 5% probability of exceeding X , —
previously condemned as naive and even heretical. It means that i
X is X, or greater, then the probability of getting a measurement sma

*7.2.3 Confidence Levels from Gaussians

For a Gaussian distribution this conversion from horizontal to vertical is
very simple—indeed, deceptively so. Given a measurement x of the mean X,
and knowing o, a 90% confidence interval for X requires the values X _ and
- X, such that (looking at the confidence diagram)

j — e~ (=X 4yt 0,05 = J
oV2n
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Fig. 7.2, A confidence diagram.
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The equation for X _ requires that x lies some number of stan
deviations (in this case 1.64) above X _. This is the same as saying that

must lie the same number of ¢ below the measured x, which can be wrif

in the form
[P
—x 0./21

and such confidence limits can be found for Gaussian estimators
the usual table of the Gaussian integral. The curves in Figure 7.2 bec
in Figure 7.3, two straight lines with unit gradient, x, = X + no
constructed horizontally, X, = x + no when read vertically, where n is ‘
68% confidence, 1.64 for 90% confidence, etc., as given by the tabl
integrated Gaussians. The confidence interval for X obtained fro
measurement x is merely x + no.

e (27 4y = 0,05

In fact, so it seems to us, confidence-interval theory has the d
of its principal virtue: it attains its generality at the price of |
unable to incorporate prior knowledge into its state

—Kendall and
% 7.2.4 Measurement of a Constrained Quantity

Now consider the case where we know that there are definite limit
which it would be physically impossible to exceed. Take the mass of an
as an example: irrespective of any measurement, it has to be positive.

We will use a 20 (95.4%) central interval as an illustration. The tru
has some positive value—let suppose it is 0.1g. This is measured
resolution of 0.2 g, so a measurement x gives a confidence interval x

There is a 2.3% probability that the measurement will be greater t
From this we will quote limits which are wrong, but the 2.3% pro
for this is part of the game and acceptable.

If the measurément lies in the range 0.4 to 0.5, we will quote similar
and this time they will be true. If it falls a bit below 0.4, say to 0.3, th
are —0.1 to 0.7; the lower limit can be modified to 0.0 on the basis of
sense, and they are still true. This continues all the way dow
measurement of —0.3.

Below —0.3 we again make statements which are false, this time
the upper limit will be less than the true value of 0.1. Again the sm
probability is acceptable,

b i

urement of —0.5, we have to quote a

- symmetric, shortest, and \ | ¥
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—0.9 to — 0.1. This is patently ridiculous. In using a 95.4% confidence level
we know that 4.6% of our statements will be untrue, and accept the odds.
We now have independent evidence that this particular statement is one of
those 4.6%. In such a case, we would be pretty stupid to make it. However,
our confidence level approach based on the frequency distribution can tell
us nothing more.

That such measurements give nonsensical limits is obvious. More
dangerous are measurements like — 0.39. The 2o limits are then —0.79 to
0.01. Changing the lower limit from —0.79 to 0.0 is permissible, in that it
cannot alter the truth or falsehood of the statement. This gives a very narrow
interval of 0.00 to 0.01, with 95.4% confidence. To make such a state-
ment is strictly true, and at the same time totally dishonest. Once
your quoted confidence interval covers a region of impossible values, you
are in trouble. .

If you get in a hole like this, Bayesian statistics provides the only means of
escape. When faced with a Gaussian measurement x, of a true value X, the
Bayesian does not construct any confidence diagram, but invokes equation
7.3. In this equation the conditional p (result|theory) is just the Gaussian
distribution probability density for a measurement x arising from a true X
with resolution o. The p(result) in the denominator does not matter as it is
taken care of in the final normalisation. p (theory) represents the intrinsic
probability distribution for X. Normally this is handled by a rather
disingenuous assumption of complete ignorance: nothing is known about X,

so all values are equally likely, so the initial p( X) is uniform and constant.
Taking care of the normalisation gives

e—(x —X)?/202

oV2n

and confidence levels for X can be constructed as desired, as described
in section 7.2.1. They are (because of the symmetry in the Gaussian between
X and x) exactly the same as those we obtained using the frequency

p(X|x) =

~ method.

Our extra knowledge—that X must be positive —is easily incorporated.

: The initial p(X) is now a step function, zero for X < 0 and constant for

X > 0. Equation 7.3 gives, after normalisation.

e—(x—X)%/20
P(X|x) = ST (x > 0). (7.7)
~ Confidence levels can be praduced from this as desired, using Table 3.3.
.~ The distribution is now n G is a choice between the

WA ANE e
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Example ~Bayesian approach to confidence
A mass is measured as — 0.5 + 0.2 g. The integral in the denominator of equatl
is 0.0062, from the probability of exceeding 2.5¢ in Table 3.3. This table also
the probability of exceeding 3.24¢ as 0.0006, which is 10%, of the previous fig
the 90% confidence upper limit is —0.5+3.24 x 0.2=0.15g.

Although this usage is probably the only way to make mea
statements from such results, you do so in the knowledge that had y
another variable—X? or /X or 1/X—the resulting limits wo
incompatible. Your assumption of complete ignorance means different
when applied to different forms of the same basic variable.

#7.2.5 Binomial Confidence Intervals

For the binomial distribution the observed variable (call it r) is dis
whereas the ‘true’ value (call it R) is continuous. For discrete va
the integrals in equations 7.4, 7.5, and 7.6 are replaced by summatio
subtle difference in the inequality signs now matters: the two-tail
(equation 7.4) is inclusive (r lies within the range r_ to r.), and the t
r_ and r, are included in the sum, but the one-tailed intervals (eq
7.5 and 7.6) are exclusive (r is less than r,,...) and the term for r, or
excluded. H

Wishing to form, say, a 95% central confidence interval for a
will not in general be possible to choose an r,. such that 3* P(r; R
For safety we round r, up, and select it such that 34" P(r; R) > 0.9
similarly round r_ down. This means that our final statement wxll
at least 95% of the time, and possibly more.

The two confidence diagram curves become staircase-like, as the ho
coordinate is discrete. Confidence limits can be constructed from thy
before, with summations replacing integrals. Care over the det
definitions is required when fixing the limits of the sums. Thus if m
are found in n binomial trials, limits on the individual probability p
by finding p_ and p, such that (using the 959, central limits as an €

n
Y. P(r;p.,n)=0975

r=m+1

These are known as the Clopper—Pearson confidence limits.

m—1
Y. P(r;p-,n)=0975.

r=0

it

Examplc A binomial confidence interval
In a sample of 20 fizzgig 4 are obloid. What are the 95% confidence limi :

3P(r;p-, 20)=0.975.
p=0.057, the probabilities of 0 to 3 su
‘ \vhich sum to 0975, :

#*7.2.6 Poisson Confidence Intervals
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The upper limit is given by 3.2°P(r; p,, 20) = 0,975, which is easier to handle as
SeP(r;p,,20)=0.025.

For p =0.437, the probabilities of 0 to 4 successes are 0.00001, 0.0002, 0.001, and
0.005, and 0.018, which sum to 0.025.

The limits are thus, with 95% confidence, 0.057 to 0.437.

If n events are observed from a Poisson process of unknown mean N, the
90%, upper limit (for example) is the value N, such that

$ P(r;N.)=090

(7.8a)
r=n+1
or, equivalently,
Zo P(r; N ,)=0.10. (7.8b)

In English, this means: if the true value of N is really N ,, the probability of
getting a result n which is this small (or smaller) is only 10%, and for N larger
than N, it is even smaller. Thus we say we are ‘90% confident’ that N is not

 greater han N, and averaging over many such statements we will be right

9 times out of 10.
Likewise for the 90% lower limit you require N _ such that

n—1 4
r;o P(r; N_)=0.90. (7.9

These equations for N, and N _ (which, by the way, are real numbers, not

~ integers) can be solved by iteration. Some are given in the following table.

TABLE 7.1.
SOME POISSON LIMITS

Upper”® Lower
90% 95% 99% 90%, 95% 99%
n=0 230 3.00 4.61 — — —
1 3.89 4.74 - 011 0.05 0.01
2 5.32 6.30 0.53 0.36 015
3 6.68 LTS . 0.44
4 799 9.15
5 9.27 10.51
6 10.53 11.84
7 11.77
8 12.99
9 1421
10 15,41,,
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Note that if no events are observed, this can give an upper limit on t

number, but no lower limit.

% 7.2.7 Several Variables—Confidence Regions

If two (or more) variables are being estimated simultaneously then
confidence limits on both of them is, in the words of Kendall and St
matter of very considerable difficulty’. One may have to be satisfied
establishment of a confidence region in the parameter space, wit n,
the true parameters lie (with a certain confidence). This is very rel
maximum likelihood estimation, which provides a natural framework
estimation of several variables, as discussed in section 5.3.4.
Consider first an ML estimate of a single parameter. As shown inis
5.3.3, in the large N limit the values of the parameter a at which
likelihood function is 0.5 less than its peak value are the ‘one sig
of the estimate. These can be taken as Gaussian measurements an
as in section 7.2.3, where the ‘one sigma’ limits were shown to gi
confidence interval. Thus the range of a for which the log likelihoo
within 0.5 of its peak value constitutes the 68%, confidence interval.
by the argument of invariance, it can also plausibly be taken as such a
For more than one parameter the likelihood function is harder
the large N limit, surfaces of constant probability are ellipses
parameters, hyperellipses for more than two. For small N the su
more complicated, but still exist and can, for two parameters, be di
One can thus present the ellipse (or whatever) at which In L falls o
and say that the true parameter values lie within it, at some confide
However, this level is no longer 68°,. We have moved from the
to the multidimensional Gaussian; large values of the exponent are |
more likely, and are given by the y? distribution, with number of
freedom equal to the number of parameters. So for two parameters
sigma’ confidence region gives the 39%; confidence region, and
parameters the level is even less. For a given number of parame
desired confidence level, the value of y? is found from tables (such
8.1), and the boundary of the confidence region is given by the ¢
surface) at which In L falls from its peak value by half this amou
for example, for two variables the 90%, confidence region is give
parameters for which In L is within 2.3 of its maximum value.

*7.3 STUDENT'S r DISTRIBUTION

When you make a measurement of known resolution—for exan}t“' “
measure the weight of a ball-bearing to be 13.5g, using a balan.
known to have a resolution of 0.1 g—then you quote the answe

you can see that t is a unit
~ (looking at equation. 7.10 or 7.1
- of ¢ in the numerator cancel$ Oiir
-t to contain only the observed
- of freedom in the x?, is N if equ
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resolution (i.e. 13.5+ 0.1g), and the statement is interpreted as a confidence
interval for a Gaussian distribution, as discussed in section 7.2.3.

This is fine provided you know the resolution—when your balance comes

~ with a convenient label on it telling you its accuracy. Of course it often

does, and usually when making measurements you have eg}ablished the
performance of the apparatus. But sometimes this is not the case. (This is
particularly true in the social sciences, where dispersion arises due to a spread
in the basic data sample, rather than from measurement. So Student’s ¢ is a
topic more familiar to doctors and economists than physicists and chemists.)

What do you do then? You have to take several measurements and look
at the spread. A single measurement gives you an honest estimate, but tells
you nothing about the accuracy. ¢ is not known a priori, but has to be
estimated from a sample of several values: we do not have the true value o,

but only the estimate ¢. If u is known we use (cf. equation 5.12)

6= (1.10)
If u is unknown we use (cf. equation 5.14)
N ———
=s5= - X)*. T.11
é=s N 1(x X) (7.11)

The second case is more usual, but not universal.
Instead of the variable (x — p)/o, which is distributed according to a unit

~ Gaussian (i.e. it has mean zero and standard deviation unity), we have to
~ deal with the variable

.12

t is not normally distributed with unit variance, as it would be if ¢ were
equal to o; the significance of a given deviation between an x and u is less

~ when ¢ is used in place of g, because of the additional uncertainty in ¢. In
practice, especially for small N, it is rather a poor estimate of .

¢ is described by a distribution called Student’s t distribution, after its

- discoverer William Gossett, who wrote under the pen name of ‘Student’.
~ Writing g )




