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Statistical errors, confidence

Intervals and limits

In Chapters 5-8, several methods for estimating propertie

s of p.d.f.s (moments
and other parameters)

have been discussed along with techniques for obtaining
the variance of the estimators. Up to now the topic of ‘error analysis’ has been
limited to reporting the variances (and covariances) of estimators, or equiva-
lently the standard deviations and correlation coefficients. This turns out to be
inadequate in certain cases, and other ways of communicating the statistical
uncertainty of a measurement must be found.

After reviewing in Section 9.1 what is meant by reporting the stand
viation as an estimate of statistical uncertainty,
duced in Section 9.2. This allows for a quantitative statement about the fraction
of times that such an interval would contain the true value of the parameter in
a large number of repeated experiments. Confidence intervals are treated for a
number of important cases in Sections 9.3 through 9.6, and are extended to the
multidimensional case in Section 9.7. In Sections 9.8 and 9.9, both Bayesian and

classical confidence intervals are used to estimate limits on parameters near a
physically excluded region.

ard de-
the confidence interval is intro-

9.1 The standard deviation as statistical error

Suppose the result of an experiment is an estimate of a ce

variance (or equivalently its square root, the standard deviation) of the estimator
is a measure of how widely the estimates would be distributed if the experiment
were to be repeated many times with the same number of observations per cx-
pertment. As such, the standard deviation ¢ is often reported

as the statistical
uncertainty of a measurement, and is referred to as the standard error.

For example, suppose one has n observations of a random variable r and a
hypothesis for the

p.d.f. f(2;60) which contains an unknown parameter ¢. From
the sample z,, . )

+-»%n a function f(z,,.
mum likelihood) as an estimator for §. Using one of the techniques discussed in
Chapters 5-8 (e.g. analytic method, RCF bound, Monte Carlo, graphic

standard deviation of § can be estimated. Let 8
actually observed, and o

the measurement of ¢ as 0

rtain parameter. The

.., Z,) Is constructed (e.g. using maxi-

al) the
obs be the value of the estimator
the estimate of its standard deviation. In reporting

obs £ 0; one means that repeated estimates all based
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9.2 Classical confidence intervals (exact method)

ing the statistical error of

An alternative (and often equivalent) method of Fepor't'n.\% t}:((;(l;‘;;;;)l;(l o .
a measurement is with a COI]ﬁd@I}lCC inter}val,”\\;)l;)li‘el)xr;\';t\:()lllisof ) mnd,om v;\riub]e
man [Ney37]. Suppose as above that one has hServe o
T whEChycarE be 1ljxls)ed to evaluate an estimator #(x1,. ... K ”) {(l)r td }I))vlrl:LaHS .
and that the value obtained is Oobs.- Furtglermore, suppo?\(’“né\1\1‘Lh;s et
say, an analytical calculation or a Monte Carlo studyt. on(:”nt h k-
g(é;@), which contains the true value # as a parameter. ({ f O.f e e

f 6 is not known, but for a given f, one knows what t.hc L, e &
’ Fli ure 9.1 sh(;ws a probability density for an estlrllatpr () for al [; e
value géf the true parameter §. From g(6; ) one can determlile;.t‘hf?];/:Iiltheavalue
that there is a fixed probability a to observe ¢ > uaq, a‘lrllfl bn\?:luesv e
vg such that there is a probability 5 to observe 0 S t(/iab he n
depend on the true value of #, and are thus determined by

a=Pl>u (9)):/00 9(6;0)d0 =1 — G(ua(); ), (9.1)
- = ua(8)
and

) 6 0yd : 9.2
s=Pl<u@)= [ alb:0)d0=GCln):0), (9.2)

— 00

ing g(6;6).
where G is the cumulative distribution corresponding to the p.d.f. g(6;0)
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9(5;9)

Fig. 9.1 A pdf g(6:0) for an esti-
‘mator § for a given value of the true
parameter §. The two shaded regions
indicate the values of § < v, which
has a probability 3, and § > Uq, which
has a probability «.
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1k 4 Fig. 9.2 Construction of the confi-
- b dence interval [a,b] given an observed
8 . ) i value f,p, of the estimator § for the
0 4 2 3 4 % parameter € (see text).
0

Figure 9.2 shows an example of how the functions uq(f) and vs(#) might appear
as a function of the true value of 8. The region between the two curves is called

the confidence belt. The probability for the estimator to be inside the belt,
regardless of the value of f, is given by

P(vp(0) <8 <ua(9)) =1—-a~g. (9:3)

As long as uq(6) and vg(6)
in general should be the case if
the inverse functions

are monotonically increasing functions of 8, which
0 is to be a good estimator for 0, one can determine

b(6) = v31(8). (9.4)

The inequalities
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0 < vs(0).

then imply respectively

alf) > #. ((3())
b(0) < 0.
Equations (9.1) and (9.2) thus become

P(a(f) = 0) = a, ©1)
P(b(8) < 0) =5,

or taken together,
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one actually obtained, éobﬁ, as 18 illustrated in ¥i
of ¢ for which a fraction B of the e

taking fope = un(a) = vs(b), equations (9.1) and (9.2) become

o= / g(é;a)dé:lm(}’(éobs;a),

Sabs

(9.9)
{}obs & % .
5 = / 9(6;6)db = G(Bpa: 1),

X

The previously described procedure to determine tl

he confidence interval is thus
equivalent to solving (9.9) for a and b, eg

. numerically.

9(6;a)

Fig. 9.3 (a) The p.d.f. 9(8; ), where
a is the lower limit of the confidence
interval. If the true parameter § were
equal to a, the estimates § would be
greater than the one actually observed
Gops with a probability o. (b) The
p.d.f. g(é: b), where b is the upper limit
of the confidence interval. If § were
equal to b, § would be observed less
than éobs with probability 3.

Figure 9.3 also illustrates the relati
test of goodness-of-fit, cf. Section 4.5. For example, we could test the hypothesis
0 = a using 6 as a test statistic. i

onship between a confidence interval and a
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Fig. 9.4 The standard Gaussian p.d.f. o(x)
®~! and the confidénce level for (a)
interval.

showing the relationship between the quantiles
a central confidence interval and (b) a one-sided confidence

somewhat complicated procedure explained in the previous section results in a
simpleprescription for determining the confidence interval.
Suppose that the standard deviation o4 is known, and that the experiment

has resulted in an estimate Bobs. According to equations (9.9), the confidence
interval [a, b] is determined by solving the equations

o

a = 1*G(éobs;a,‘7(§) =1—-¢ (M) ,
L]
) (9.11)
5 fops — b
B = Glfobs;bo5) =@ (-L_~) ,

for a and b, where G has been expressed using the cumulative distribution of the
standard Gaussian ® (2.26) (see also (2.27)). This gives

a =0, — o; 711 —a)

b

>

(9.12)
b= obs +0‘6‘,<I)_1(1 —ﬂ)

Here ®~! is the inverse function of @, i.e. the quantile of the standard Gaussian,
and in order to make the two equations symmetric we have used -4B) =
~6-1(1~ ),

The quantiles (1 —q) and 11—
limits @ and b are located with respect to the e
deviation ¢;. The relationship between the quantiles of the standard Gaussian

distribution and the confidence level is illustrated in Fig. 9.4(a) for central and
Fig. 9.4(b) for one-sided confidence intervals.

represent how far away the interval
stimate f,ps in units of the standard

. - . 5
Confidence interval for a Gaussian distributed estimator 12

‘ — 3 = ~/2. The confidence level
Consider a central confidence interval with o = 3 = 7/2. The co

. sis) _ 9) =
1—+ is often chosen such that the quantile is a tqm'alvl mtegerf,‘t:ég.(i(méels ‘;y/snia“
1,2,3,.... Similarly, for one-sided intervals (limits) on;} cim,trai aﬁd el
iI;teger for ®1(1 — ). Commonly used Yalues for f?ot, )h( e i
intervals are shown in Table 9.1. Alternatively one Cd;n & OObl D i
for the confidence level instead of for the quantile. (/()'Inrg(?(j);«,l [Qragg ]
shown in Table 9.2. Other possible values can b_e obtameN r [CER(}T]),_
Dud88] or from computer routines (e.g. the routine GAUSIN in ¢

; i the standard
Table 9.1 The values of the confidence level for differetzflvallles 02f the :lnf;i:tgl(;e(;fce li:vel i
Gaussian ®~!: for central intervals (left) the q;laml]e (I) (§1 o ’;i/df')n?'r; level 1 — a.
for one-sided intervals (right) the quantile ®~ {1 — o) and confidenc

THi—~2) 1=y % {1-a) l=-a
T 0.6827 I 08413
2 0.9544 2 0.9772
3 0.9973 3 0.9987

" -1 A nt values
Table 9.2 The values of the quantile of the standard G:ussna;\e‘il ) i;(.)r’yd;gzrethe o
of the confidence level: for central intervals (left) the confi encfevel 1 — o and the quantile
tile ¢=1(1 — ~/2); for one-sided intervals (right) the confidence

&1 - o).

1—y o 1(1-4/2) |1-«c o 1(1-a)
0.90 1.645 0.90 1.282
0.95 1.960 0.95 1.645
0.99 2.576 0.99 2.326

: =B=7/2
For the conventional 68.3% central confidence mteryal one‘hasla resﬂc ripz i/Orl
with ®~1(1—v/2) = 1,i.e.a‘l o error bar’. This results in the simple p

5 j 9.13
[a, b] = [90})5 e 0'9”, aobs + 0'9‘] ( )

0 i 1 confi-
Thus for the case of a Gaussian distributed estimator, th'e 68.33)3 csiz';rdaard e
dence interval is given by the estimated value plus or minus o e e
viation. The final result of the measurement of @ is then simply rep
e jori is estimated
GobSIf:‘t t(;;i standard deviation o, is not knowr‘l a priori but ratheer éz Iisp llicated_
from the data, then the situation is in prin.(np.le s?mewc}ilag rrrlloxl'1 e
If, for example, the estimated standard 1devmtl(l)nt Jih};acumiel e e

’ : 1 to relate
o;, then it would not have been so simple . oo
Ge(é 6,6;) to ®, the cumulative distribution of the standard Gaussian, since oy
sV Ug s

d n e]le]al on l; I a tice ]l()WeVel 1]Ie Trex ll)e 1ven a]b()\/e can 51 lll
g ) n Tactic y g
depen S p 3
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be applied using the estimate 6 instead of 04, as long as &; is a sufficiently
good approximation of the true standard deviation, e.g. for a large enough data
sample. For the small sample case where 6 represents the mean of n Gaussian
random variables of unknown standard deviation, the confidence interval can
be determined by relating the cumulative distribution G(0;0,6;) to Student’s ¢
distribution (see e.g. [Fro79], [Dud88] Section 10.2).

Exact determination of confidence intervals becomes more difficult if the pd.f.
of the estimator g(4; 9) is not Gaussian, or worse, if it is not known analytically.
For a non-Gaussian p.d.f. it is sometimes possible to transform the parameter
8 — n(6) such that the p.d.f. for the estimator 7} 1s approximately Gaussian. The
confidence interval for the transformed parameter n can then be converted back
into an interval for 6. An example of this technique is given in Section 9.5.

9.4 Confidence interval for the mean of the Poisson distribu-
tion
Along with the Gaussian distributed estimator, another commonly occurring case

is where the outcome of a measurement 1s a Poisson variable n (n =0,1,2,...).
Recall from (2.9) that the probability to observe n is

f(n;v) = %e“", (9.14)

and that the parameter v is equal to the expectation value E[n]. The maximum
likelihood estimator for v can easily be found to be # = n. Suppose that a single
measurement has resulted in the value Dy = Tiobs, and that from this we would
like to construct a confidence interval for the mean v.

For the case of a discrete variable, the procedure for determining the confi-
dence interval described in Section 9.2 cannot be directly applied. This is because
the functions u,(6) and vs(6), which determine the confidence belt, do not exist
for all values of the parameter 0. For the Poisson case, for example, we would
need to find u4(v) and vs(v) such that P(D > uqs(v)) = a and P(# < vp(v)) = 8
for all values of the parameter v. But if o and P are fixed, then because © only

takes on discrete values, these equations hold in general only for particular values
of v.

A confidence interval [a, b]
tions (9.9).
become

can still be determined, however, by using equa-
For the case of a discrete random variable and a parameter v these

o

i
R,
—
<
v
&
g
2
-

(9.15)
g = P(¥ < Dobs; b)

and in particular for a Poisson variable one has

; e 27
Confidence interval for the mean of the Poisson distribution 1

Nobs— 1 a”

o) Nons—1

— . - f(n;a):l——* Z —v—!-e"“»
v nggbsf(n’a) nz;o n= " (9.16)
Tobs Nobs AL 5
n=0 n=

jliti S tions
For an estimate i = nops and given probabilities o and 3, {,Iheag eqru:ltalt ons
can be solved numerically for a and b. Here one can use the following
between the Poisson and x? distributions,

Nobs . n o0 fxz,(z; P = Q(nobs + 1)) dz
n! 2v

= 1= an(Qu; ng = 2(nobs 4 1)), (9.17)

h‘ere J 218 t}le p d. l l() l i din
i X B 2% T 714 degrees Of freedom al’ld X2 1S the COI‘I'eSpOn g
X
CUIIllllative diStribution. O]le then ha,S

4 = %F;}(a;nd = 2nbs);

(9.18)
| _;_Fx'zl(l - Bing = Q(nobs + 1))

istributi i standard tables (e.g.
Quantiles F);;l of the x? dxstrlbutu?n can be obtg{l;;cllnfzirr{CERg?]. e <
in {Bra92]) or from computer rout’Il‘ng? sgc?tl as

=0,...,10 are shown in Table 9.5. ‘ ' |

or g?tse th(;)t thé lower limit a cannot be dgt'errr.nned if Nobs b: 0. f)c;u\;a;llg:sg Ezaizz
say that if » = a (v = b), then the probability is o (B) too st;r;l e O il
(less) than or equal to the one actually observed. Because e
¥ = Dops, is included in the inequalities (9.15), one obtains a ¢

confidence interval, i.e.

1—a,

=
=

A\
et
IV

i it = (9.19)
P(a_<_1/£b) > 1—a-4.

1 d one
An important special case is when the observed number1 g)ot;)s Lsoizzcs), an
ot . : .
is interested in establishing an upper limit b. Equation (9

0 —-b
et (9.20)
ﬁ:z n! e
n=0
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for p simply by using the inverse of the transformation {9.22), 1.e. A = tanha
and B = tanhb.

Consider for example a sample of size n = 20 for which one has obtained
the estimate r = 0.5. From equation (5.17) the standard deviation of r can
be estimated as 6, = (1 —r?)/\/n = 0.168. If one were to make the incorrect
approximation that r is Gaussian distributed for such a small sample, this would
lead to a 68.3% central confidence interval for p of [0.332,0.668], or [0.067,0.933]
at a confidence level of 99%. Thus since the sample correlation coefficient r is
almost. three times the standard error &,, one might be led to the incorrect
conclusion that there is significant evidence for a non-zero value of p,ie.a 3¢
effect’. By using the z-transformation, however, one obtains z = 0.549 and &. =
0.243. This corresponds to a 99% central confidence interval of [-0.075;1.174]
for ¢, and [-0.075, 0.826) for p. Thus the 99% central confidence interval includes
zero.

Recall that the lower limit of the confidence interval is equal to the hypothet-
ical value of the true parameter such that r would be observed higher than the
one actually observed with the probability «. One can ask, for example, what
the confidence level would be for a lower limit of zero. If we had assumed that
g(r; p,n) was Gaussian, the corresponding probability would be 0.14%. By using
the z-transformation, however, the confidence level for a limit of zero is 2.3%,
Le. if p were zero one would obtain r greater than or equal to the one observed,
r = 0.5, with a probability of 2.3%. The actual evidence for a non-zero corre-
lation is therefore not nearly as strong as one would have concluded by simply
using the standard error &, with the assumption that r is Gaussian.

9.6 Confidence intervals using the likelihood function or x?

Even in the case of a non-Gaussian estimator, the confidence interval can be
determined with a simple approximate technique which makes use of the likeli-
hood function or equivalently the y? function where one has L = exp(—x?/2).
Consider first a maximum likelihood estimator 8 for a parameter # in the large

sample limit. In this limit it can be shown ([Stu91] Chapter 18) that the p.d.f.
g{8; 8) becornes Gaussian,

5 ae p f e
g(6;0) = \/%_Ugexp( 20_2 >, (9.26)

centered about the true value of the parameter § and with a standard deviation
O’é.

One can also show that in the large sample limit the likelihood function 1tself
becomes Gaussian in form centered about the ML estimate g,

L(8) = Linax exp (j%é—)j> y (9.27)

: b
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From the RCF inequality (6.16), which for an 42‘»‘1 L zf@t;.ir';;;%g,{':s‘f‘ in t%uiam{ ;aizjf}?:
limit becomes an equality, one obtains that o in the Likelihood f‘éiti'{fj{&kz}il&(i':% {{5 .i,
the same as.in the p.d.f. (9.26). This has already been Q%’%C()!IB&{??%& }\%if;ﬁj tmﬁ ;{:;
equation {6.24), where the likelihood function was s,i:»;w’(:{ to mt,mmn the MiX m ?
of an estimator #. This led to a simple prescription for Q:’%iéf‘i’lf;iﬂ%gﬁ; %g ;tlf( {H}t
changing the parameter by N standard deviations, the log-likelihood functior
decreases by N?/2 from its maximum value,

log L{f & Noj) = log Luax — {0.28)

From the results of the previous section, however, we know tl’mtk{br als %11‘38%5§Z?ii
distributed estimator 8, the 68.3% central confidence interval can be constructed
from the estimator and its estimated standard deviation &5 as [a,b] = [0—0; Qg%
;) (or more generally according to (9.1 ,2) for a confidence “ie;‘:vc,ji fi}{ i; ’“f})‘“ ;{W s:
68.3% central confidence interval is thus given by the values of f?a,t w ?Hé 1 the ‘-rft—,'
likelihood function decreases by 1/2 from its maximum value. (This is sa,f:“i:ﬁmmngt
of course, that 8 is the ML estimator and thus corresponds to the maximum of

: . CLIOT. 0 :

" ;;k{‘fii}:?idi;i:i: :si;czwri that even if the %iké}i}*s(ﬁsgii function is not a (Mi{;wxa;x
function of the parameters, the central confidence interval [a,b} = [0 — ¢, 0 + d
can still be approximated by using

’ 9.29

Iog L(fo) = k)g Lax = _"'.EM* ( ) )

where N = &=1(1—+/2) is the quantile of the standard Gaussian C(};‘i“%‘:ﬂwm}“‘%
l 7 . \ 12 A contr

to the-desired confidence level 1 — ~. {For example, N =1 for‘a» ()8: /(é‘ C{"?f.l,a

confidence interval: see Table 9.1.) In the case of a least squares fit with Gaussian

errors, i.e. with log L = —x?/2, the prescription becomes
= b o ' :
X? (012) = xhin + V™ -

A heuristic proof that the intervals defined by equations (9.29) and (Q’;O)di;;—
proximate the classical confidence intervals of Section 9.2 can be Foufld n [ﬂa l i
Fro79]. Equations (9.29) and (9.30) represent one of the most thllm?lli} 1usef
methods for estimating statistical uncertainties. One §hould keep in mind, 10;&:
ever, that the correspondence with the method of Sectlon' 9.2 1s only e\act 11‘1}1 t 161
large sample limit. Several authors have recommended using ‘the t?rnl likeli 1(3/0;
interval’ for an interval obtained from the likelihood func‘tx(.m .[Pr0193 Hud64].
Regardless of the name, it should be kept in m.ind that'lt is mterpretﬁdt he}’(;
as an approximation to the classical confidence mtervalj Le. a random 1111) Trt\/a
constructed so as to include the true parameter va‘lrlzle with a given probabili y.f
As an example consider the estimator 7 = %Z'ﬂﬁ ti for the parametger Z O]
an exponential distribution, as in the exa,mpile of Sect%on 6.2 (see alsof\ ec—d?lo
6.7). There, the ML method was used to estimate 7 given a samplé (?, 7} £ 31
measurements of an exponentially distributed random variable ¢. This sample
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was sufficiently large that the standard deviation o

could be -approximated
by the values of 7 where the log-1

ikelihood function decreased by 1 /2 from its
maximum (see Fig. 6.4). This gave + = 1.06 and oz AT & Afpas0il5:
Figure 9.6 shows the log-likelihood function log L{r) as a function of = for

a sample of only n = 5 measurements of an exponentially distributed tandom
variable, generated using the Monte Carlo method with the true parameterT = 1.
Because of the smaller sample size the log-

likelihood function is less parabolic
than before.

oy t T T T
mJ 2 &
T-AT % T+AT
B epdtal ¥ ,
10g Ly
45 . Fig. 9.6 The log-likelihood function
log L(r) as a function of + for'a sam-
log Ly, ~ 172 ple of n = 5 measurements. The in-
terval [ — A, 7 + AFy] determined
by log L{7) = log Lmax — 1/2 can be
5 i i ; used to approximate the 68.3% central

0.5 1 1.5 2 confidence interval.

One could still use the half-width of the interval determined by log Lymax—1/2
to approximate the standard deviation oz, but this is not really what we want.
The statistical uncertainty is better communicated by giving the confidence in-
terval, since one then knows the probability that the interval covers the true pa-
rameter value. Furthermore, by giving a central confidence interval (and hence
asymmetric errors, A7_ # Afy), one has equal probabilities for the true pa-
rameter to be higher or lower than the interval limits. As illustrated in Fig. 9.6,
the central confidence interval can be approximated by the values of 7 where
log L(7) = log Lyax — 1/2, which gives [f — A7, 7 + A7] = [0.55,1.37] or
P=08570 "

In fact, the same could have been done in Section 6.7 by giving the result
there as 7 = 1.0621315%. Whether one chooses this method or simply reports an

averaged symmetric error (i.e. ¥ = 1.06 + 0.15) will depend on how accurately
the statistical error needs to be given. For the case of n = 5 shown in Fig. 9.6,

the error bars are sufficiently asymmetric that one would probably want to use

the 68.3% central confidence interval and give the result as + = O‘Sng:Z?,.

9.7 Multidimensional confidence regions

In Section 9.2, a confidence interval [a, b]

was constructed so as to have a cer-
tain probability 1 — 4 of containing a par

ameter 6. In order to generalize this
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G i.e. constant 06 in B-space. (b) A
Fig. 9.7 (a) A contour of constant {81 8erue) (e c,r.mﬁstanz Q_(@lg{imi‘zz. ke falu% s
contour of constant L{8)} corresponding to constant Q{Bobs )tx.n' \ space
and 6,1, represent particular constant values of 8 and 8, respectively.

G T - s an
to the case of n parameters, § = (f1,...,0,), one might c.ilttem;')t. gcvbeiri 0’; '
n-dimensional confidence interval [a, b] eongtrufttei} 50 ees to mtxf a,b% Cémpumu
ability that a; < 6; < b;, simultaneously for all 7. This turns out to de ¢
tionally difficult, and is rarely done. etk B i e,

It :; nevertheless quite simple to construct a mnhdfznm l%g;(.m il}lmt}i: im
rameter space such that the true parameter ] lsrco%xta,ln?d Wl?l{m(ﬁ hav:gthe
with a given probability (at least approximately). This region wi F] ; hm,\.an
forma; < 6; < b;, 1 =1 n. but will be more complicated, approaching

1 7 t BT sy EiEra 9‘ ) : .
n-dimensional hyperellipsoid in the large sample limit. ot B

As in the single-parameter case, one makes use of the fact hat bot y /éome

p.d.f. for the estimator 4= (91 - Hn) as well as the hkehhoodfunctmn ec
e ! ’ . 5 ! o 5, r S
Gaussian in the large sample limit. That is, the joint p.d.f. of 8 become

9(616) = exp [~ Q(6,6)] (9.31)

1
[CaRERE
where () 'is defined as

Q(8,0)= (6 -6V~ H-0). (9.32)

Here V~! is the inverse covariance matrix and th(% lsem)perscript S ;z?sxfznzz
i f constant ¢ correspon ;
transposed (i.e. row) vector. Contours o g - ’ o col
5(9 g) Thise are ellipses (or for more than two dimensions, hyperelhps;lgiz 2‘
é—sp7ace centered about the true parameters 9 Figure 9.7(?)eshows a co
constant Q(é), where Byue represents a particular value 0h .l.k N
Also as in the one-dimensional case, one can show that the hikelihc

L(0) takes on a Gaussian form centered about the ML estimators 6,
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L(6) = Lmax exp [~1(6 — 6)Tv~1(g — 8)| = Luaxexp [-51Qe, 8. (93)

I‘h(’: in\‘ Er8e Cove 1¢ il 3 3
B ariance At 5 . &y 1y g 5
1 md&ft‘iX V 15 thﬁ same hefﬁ‘, as in (9:; ‘ ), thls can ])e

seen from the RCOF inequality (6.19) and using the fact that the ML estimators

attain the RCF bound in the large sample limit. The quantity ¢ here is regarded

a8 : ":”. ; - X s 5 . )
a function of the parameters 8 which has its maximum at the estimates 6.

;1hhls is 'shown n Fig. 9.7(b) ‘faf 8 equal to a particular value Bobs. Because of
th: :symmet}ry bet}v}vee}n 0 and @ in the definition (9.32), the quantities Q have
> same value in both the p.d.f. (9.31 in the likeli i i
Q0.6 = 0(6. ) I { ) and in the likelihood function (9.33), i.e.

As discussed in Section 7.5, it ¢

: . an be shown that if 6 is descri
n-dimensional Gaussian p.df. g(d,6 it f gt il

: ‘ ), then the quantity Q(é 8) is distributed
a@c(ugrgmg to a x* distribution for n degrees of freedom. Thle statermnent that
. ,8) is lesc:» than some value Qv, L.e. that the estimate is within a certain

istance of the true value 6, implies Q(6,6) < @+, i.e. that the true value 0

¥ el & 3 € ﬁstltna . h t 4
' W iI‘Sit 7 (& ‘e l € two 6&611’(5 thel‘efore ha:Ve the

5 Qv
P(Q(8,0) ﬁQ»,):/O f(z;n)dz, (9.34)

where f(z;n) is the 2 distribut

‘ ion for n degrees of fre i
The value Q. is chosen to corres S

pond to a given probability content,

Q@

4 flzim)dz =1 - 4. (9.35)

That is,

5 :F“1(1“7;”) ‘ (9'36)

;)s tge gugnti]e of grder 1—v of the x? distribution. The region of @-space defined
y]'k (”,1 )< Qs is called a confidence region with the confidence level 1—+. For
a likelihood function of Gaussian form (9-33) it can be constructed by finding

the values of @ at whij -likeli i i
i which the log-likelihood function decreases by @4/2 from its

log L(6) = log Ly — Q—— (9:37)
. . 2

ise;n it;hshs;nlgll(e—lp;rameter case, one can still use the prescription given by (9.37)
et (9132)1 .ood 1functxon 1s not Gaussian, in which case the probability
e approach‘.t tl; og y ap‘prox‘lm.ate. For an increasing number of parameters,
o furthz e raussian limit becomes slower as a function of the sample
e ,(9 . rm'ore 1t is difficult to quantify when a sample is large enough

-34) to apply. If needed, one can determine the probability that a region
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constructed according to (9.37) includes the true parameter by means of a Monte
Carlo calculation.

Quantiles of the x? distribution @y = F~'(1 — v;n) for several confidence
levels 1 — v and n = 1,2, 3,4, 5 parameters are given in Table 9.4. Values of the
confidence level are shown for various values of the quantile ¢}, in Table 9.5.

Table 9.4 The values of the confidence level 1 — « for different values of @y and for
n =.1,2,8,4,5 fitted parameters.

| e
Qr n=1 n=2 n=3% n= n=>5

1.0 | 0.683 0.393 0.199 0.090 0.037
2.0 { 0.843 0.632 0428 0264 0.151
4.0 1 0954 0865 0739 0594 0.451
9.0 | 0.997 0989 0971 0939 0.891

Table 9.5 The values of the quantile Q~ for different values of the confidence level 1 —  for
n=1,2,3,4,5 fitted parameters.

s @y

b=y n=1 n=2 n=3 n=4 n=h
0.683 | 1.00 2.30 3.53 4.72 5.89
0.90 2.71 4.61 6.25 7.78 9.24
0.95 3.84 5.99 7.82 9.49 11.1
0.99 6.63 9.21 11.3 13.3 15.1

For n = 1 the expression (9.36) for Q. can be shown to imply

V@ = &1 - 4/2), (9.38)

where =1 is the inverse function of the standard normal distribution. The pro-
cedure here thus reduces to that for a single parameter given in Section 9.6,
where N = \/Q is the half-width of the interval in standard deviations (see
equations (9.28), (9.29)). The values for n = 1 in Tables 9.4 and 9.5 are thus
related to those in Tables 9.1 and 9.2 by equation (9.38).

For increasing n, the confidence level for a given @, decreases. For example,
in the single-parameter case, @ = 1 corresponds to 1 —y = 0.683. For n = 2,
@y = 1 gives a confidence level of only 0.393, and in order to obtain 1—v = 0.683
one needs ), = 2.30.

We should emphasize that, as in the single-parameter case, the confidence
region (J(6, é) < @y is a random region in @-space. The confidence region varies
upon repetition of the experiment, since f is a random variable. The true pa-
rameters, on the other hand, are unknown constants.
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9.8 Limits near a physical boundary

Often the purpose of an experiment is to search for a new effect, the existence of
which would imply that a certain parameter is not equal to zero. For example,
one couid attempt to measure the mass of the neutrino, which in the standard
theory is massless. If the data yield a value of the parameter significantly different
from zero, then the new effect has been discovered, and the parameter’s value
and a confidence interval to reflect its error are given as the result. If, on the
other hand, the data result in a fitted value of the parameter that is consistent
with zero, then the result of the experiment is reported by giving an upper limit
on the parameter. (A similar situation occurs when absence of the new effect
corresponds to a parameter being large or infinite; one then places a lower limit.
For simplicity we will consider here only upper limits.)

Difficulties arise when an estimator can take on values in the excluded region.
This can occur if the estimator 8 for a parameter # is of the form 6 = r —y, where
both z and y are random variables, i.e. they have random measurement errors.
The mass squared of a particle, for example, can be estimated by measuring
independently its energy F and momentum p, and using m? = E? —p?. Although
the mass squared should come out positive, measurement errors in E? and p?
could result in a negative value for m?. Then the question is how to place a limit
on m?, or more generally on a parameter § when the estimate is in or near an
excluded region.

Consider further the example of an estimator 6 = z — y where z and y are
Gaussian variables with means ., ty and variances o2, (rg. One can show that

the difference § = = — y is also a Gaussian variable with 8 = te — py and
2 2 . . 3 s . . 2
ol =0, + 05. (This can be shown using characteristic functions as described in

Chapter 10.)
Assume that 0 is known a priori to be non-negative (e.g. like the mass
squared), and suppose the experiment has resulted in a value fons for the es-

timator §. According to (9.12), the upper limit 6, at a confidence level 1 — 3
is

Bup = o 4 05 &1 (1~ ). (9.39)

For the commonly used 95% confidence level one obtains from Table 9.2 the
quantile ®~1(0.95) = 1.645.

The interval (~co, 6] is constructed to include the true value ¢ with a prob-
ability of 95%, regardless of what @ actually is. Suppose now that the standard
deviation is o5 = 1, and the result of the experiment is fops = —2.0. From equa-
tﬂion {9.39) one obtains Oup = —0.355 at a confidence level of 95%. Not only is
fobs in the forbidden region (as half of the estimates should be if 6 is really zero)
but the upper limit is below zero as well. This is not particularly unusual, and

in fact is expected to happen in 5% of the experiments if the true value of 8 is
zero.
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As far as the definition of the confidence interval is concerned, noth{mg fu;l(;
damental has gone wrong. The interval was designed to cover kt,heA true value o 1
in a certain fraction of repeated experiments, and we have obvxou?;iy. encounterec
one of those experiments where § is not in the interv.al. But this is noAt a verzf1
satisfying result, since it was already known thz‘xt g is great@ than zero (a:t
certainly greater than 6,, = —0.355) without having to perform thelexzierm;ethe,

Regardless of the upper limit, it is important to report the ac.tua value of th ‘
estimate obtained and its standard deviation, 1.e. fops £ 075, €ven if the estlr}*late is
in the physically excluded region. In this way, the average of mal?y expe?melzti
(e.g. as in Section 7.6) will converge to the correct value as long as ‘the estimato
is unbiased. In cases where the p.d.f. of 8 is significantly non«Gefusman., the entire
likelihood function L(8) should be given, which can be combined with that of
other experiments as discussed in Section 6.12. _ i

Nevertheless, most experimenters want to report some sort of u}?per. 1mit,
and in situations such as the one described above a number of techniques ‘have
been proposed (see e.g. [Hig83, Jam91]). There is unfortunately no estabhsl;ed
convention on how this should be done, and one should therefore state w at

was used. ‘

pmj:j naresolj‘?ion to the difficulties posed by an upper limit in an unphy;n::}al
region, one might be tempted to simply increase the copﬁdence level until ;ie
limit enters the allowed region. In the previous example, if we had take.n a confi-
dence level 1 — 8 = 0.99, then from Table 9.2 one ha§ @‘1(0.99) = 2.326, gwtl)ﬁg
fup = 0.326. This would lead one to quote an upper limit that.. is smaller thar; 6;
intrinsic resolution of the experiment (c; = 1) at a very high conﬁden.ce et\;e
of 99%, which is clearly misleading. Worse, of course, »w?uld l:e to ad:)uggo()le
confidence level to give an arbitrarily small limit, e.g. &~ (0.97725) = 2. i
or fup = 1077 at a confidence level of 97.725%! ' -

In order to avoid this type of difficulty, a commonly use'd techmqug is to
simply shift a negative estimate to zero before applying equation (9.39), i.e.

Bup = max(fops, 0) + 05 &7 (1 — B). (9.40)

In this way the upper limit is always at least the same m;der .of .magm'tudehas
the resolution of the experiment. If fops is positive, the hrplt (':o.1nc1des with t art
of the classical procedure. This technique has a certain intuitive appeal and 1s
often used, but the interpretation as an interval that will cover the tr}lfa pe'u'amet;er
value with probability 1 — 3 no longer applies. The coverage probability is cleir y
greater than 1 — 3, since the shifted upper limit (9.40) is in all cases greater than
o al to the classical one (9.39). ' .

' elzl:lolthce)r alternative is to(repogt an interval based on the Bayesian posterior
p.d.f. p(f]x). As in Section 6.13, this is obtained from Bayes’ theorem,

L(x|0) =(0)
PO = Ty (@) 0"

(9.41)
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?Vh%}:réz x represents the observed data, L(x|8) is the likelihood function and ()
is f.he prior p.d.f. for 6. In Section 6.13, the mode of p(f]x) was used as an
?%@tlr{lau}‘{‘ for 8, and it was shown that this coincides with the ML estimator
if the prior density m(f) is uniform. Here, we can use p(01x)

s : . to determine an
interval [a, b] such that for given probabilities o and £ one has '

oz /& p(6]x) do

a0

- (9.42)
g e / p(8]x) do.
Jb

Choosing o = 3 then gives a central interval, with eg 1 —a— B = 683%.
.Anot;hfa‘r possibility is to choose o and 3 such that all values of p(6]x) inside the
interval [a, b] are higher than any values outside, which implies p(alx) = p(bjx).
One can show that this gives the shortest possible interval.

*O‘ne a(}vantyage of a Bayesian interval is that prior knowledge, e.g. § > 0, can
easﬂy h§, incorporated by setting the prior p.d.f. 7() to zero in the extluded
region. Bayes’ theorem then gives a posterior probability p(d]x) with p(8]x) = 0
for 6 < 0. The upper limit is thus determined by

[ By 5 3
an [P L(x|6) 7(6) d6
1 - == G ydl = e
=) P = e @

The difficulties here have already been mentioned in Section 6.13, namely

Fhat there is no unique way to specify the prior density 7(f). A common choice
is

(9.43)

0 <0
m(f) = {1 0 ; i (9.44)
. The prescription says in effect: normalize the likelihood function to unit area
in the physicatl region, and then integrate it out to Gup such that the fraction of
area covered is 1 — §. Although the method is simple, it has some conceptual
drawbacks. For the case where one knows 6 > 0 (e.g. the neutrino mass) one
does n% really believe that 0 < # < 1 has the same prior probability as 104Y <
? < 1‘0 + 1. Furthermore, the upper limit derived from 7(f) = constant is not
mvariant with respect to a nonlinear transformation of the parameter.

R ha‘s. been argued [Jef48] that in cases where § > 0 but with no other prior
information, one should use N

0 0<0
9= = 5
m(6) {% 030 (9.45)

l:l(’)};ls htas the advantage that upper limits are invariant with respect to a trans-
to ma 1.(;1'1 of tl_le parameter. by raising to an arbitrary power. This is equivalent
0 a umiform (improper) prior of the form (9.44) for log . For this to be usable,
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however, the likelihood function must go to zero for § — 0 and 6 — oo, or else
the integrals in (9.43) diverge. It is thus not applicable in a number of cases of
practical interest, including the example discussed in this section. Therefore, de-
spite its conceptual difficulties, the uniform prior density is the most commonly
used choice for setting limits on parameters.

Figure 9.8 shows the upper limits at 95% confidence level derived according
to the classical, shifted and Bayesian techniques as a function of fops = & — ¥
for o¢; = 1. For the Bayesian limit, a prior density w(#) = constant was used.
The shifted and classical techniques are equal for fops > 0. The Bayesian limit is
always positive, and is always greater than the classical limit. As 0,55 becomes
larger than the experimental resolution oy, the Bayesian and classical limits
rapidly approach each other.

= 5 T T T T T
£ :
e — classical
g 4 --- shifted 1
Dog, | v Bayesian, x(8) = const.
o
= @ P
N
Iy
3 s L
I Fig. 9.8 Upper limits at 95% con-
""""""""""" fidence level for the example of Sec-
0+ tion 9.8 using the classical, shifted
and Bayesian techniques. The shifted
1 ) and classical techniques are equal for
s a4 =2 a4 o 1 2 fw20
9obs

9.9 Upper limit on the mean of Poisson variable with back-
ground

As a final example, recall Section 9.4 where an upper limit was placed on the
mean v of a Poisson variable n. Often one is faced with a somewhat more com-
plicated situation where the observed value of n is the sum of the desired signal
events ng as well as background events ny,

n = ng + N, (9.46)

where both ng and ny can be regarded as Poisson variables with means vs and
vy, respectively. Suppose for the moment that the mean for the background vy is
known without any uncertainty. For v one only knows a priori that s > 0. The
goal is to construct an upper limit for the signal parameter v; given a measured
value of n.

Since n is the sum of two Poisson variables, one can show that it is itself a
Poisson variable, with the probability function
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(l’s ~+ L’b)n E’"<

flm v, ] = o
n!

vstvn) (9.47)
The ML estimator for v, is

Uy = n— 1y, (9.48)

which has zero bias since E[n] = vs + . BEquations (9.15), which are used to
determine the confidence interval, become

o 7 ,--—(V‘“-%—z/b)
. % s ve S+t e\
o = P(Vs 2 ngb; U;o) - ; ( 5 ) : 7
’ n!
nznobs ’
) (9.49)
up
) N v = (VP ) e T
o= Pl Yy )" .
7!
N<Nobs

These can be solved numerically for the lower and upper limits v° and vUP.

Comparing with the case vy, = 0, one sees that the limits from {9.49) are related
to what would be obtained without background by

]
fl

s v°(no background) —

AN
c
S
|

s = VsP(no background) — .

The difficulties here

are similar to those encountered in the previous example.
The probl

em occurs when the total number of events observed Nobs 18 0t large
compared to the expected number of background events 1vy,. Values of v for
1 =3 = 0.95 are shown in Fig. 9.9(a) as a function of the expected number
of background events v,. For small enough n,hs and a high enough background
level vy, a non-negative solution for vP does not exist. This situation can occur,
of course, because of fluctuations in ng and np.

Because of these difficulties, the classical limit is not recommended in this
case. As previously mentioned, one should always report iy and an estimate
of its variance even if o, comes out negative. In this way the average of many

experiments will converge to the correct value. If, in addition, one wishes to
report an upper limit on v, the Bayesian method can be used with, for example, a
uniform prior density [Hel83]. The likelihood function is given by the probability
(9.47), now regarded as a function of Vs,

Nobs

L(nobs]l/s) = Me—(l’ﬁub)_ ’ (9.51)
Mobs!

The'posterior probability density for Vs 1s obtained as usual from Bayes’ theorem,

L{neops|vs) m(vs)

JZ Linoss|vg) w(v)) duy

p(”stnobs) =

(9.52)

Upper limit on the mean of Poisson variable with background 141

g 12 5 3 T T T % g
3 @. | %
< 10 r 6 events observed B cj.
oo 2 .
;:n a v 4 = o
© et
S ] 8
2 6 s
2 g
S g
&) 4 |
2 B o L B
; { 0 L . I ; :
. 8 10 12 0 2 4 6 8 10 12
Vb Vb

Fig. 9.9 Upper limits v'? at a confidence level of 1 — 8 = 0.95 for different numbers of events
observed nyp; and as a function of the expected number of background events vy,. (2) The
classical limit. (b) The Bayesian limit based on a uniform prior density for vs.

Taking 7(vs) to be constant for vs > 0 and zero for vy < 0, the upper limit v2P
at a confidence level of 1 — 3 is given by

f(;/:p L(nebslvs) dvs

= fooo L{nobs|vs) dvs

o (s o+ wp)rovs e (eb) gy,
foco(z/s + vp)ovs e~ (Vs ) dyg

(9.53)

The 1ntegrals can be related to incomplete gamma functionfs (see-e.g. [Arf%]),
or since neps 1S a positive integer, they can be solved by making the substitution
Z = Vs + vy and integrating by parts nons times. Equation (9.53) then becomes

e~ (VP +vs) Tk (V:p:zyb)n | 054
T

This can be solved numerically for the upper limit ¥*P. The upper limit as a

function of »y is shown in Fig. 9.9(b) for various values of ngps. For the case

without background, setting 1, = 0 gives

F =

Nobs (V:p)n,

ey L (9.55)
n=0

which is identical to the equation for the classical upper I~im.it.(9.16). This can
be seen by comparing Figs 9.9(a) and (b). The Bayesian limit is alv&@ys greater
than or equal to the corresponding classical one, with the two agreeing only for
v = 0.
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The agreement for the case without background must be considered acci-
dental, however, since the Bayesian limit depends on the particular choice of a
constant prior density m(vs). Nevertheless, the coincidence spares one the trou-
ble of having to defend either the classical or Bayesian viewpoint, which may
account for the general acceptance of the uniform prior density in this case.

Often the result of an experiment is not simply the number n of observed
events, but includes in addition measured values z,

..., &y of some property of
the events. Suppose the probability density for z is

vsfs(z) + v fo(z)
Vg + Wy

where the components f;(x) for signal and fi, (z) for background events are both
assumed to be known. If these p.d.f.s have different shapes, then the values of
« contain additional information on whether the observed events were signal or

background. This information can be incorporated into the limit v, by using the
extended likelihood function,

o v) =

, (9.56)

N ) bp n vefs(zi) + vufo(zs)
ol e B
e~ (vstry) 1
= ——— [T efiles) + mfi(2)], (9.57)
’ i=1

as defined in Section 6.9, or by using the corresponding formula for binned data
as discussed in Section 6.10.

In the classical case, one uses the likelihood function to find the estimator
Us. In order to find the classical upper limit, however, one requires the p-d.f.
of D5. This is no longer as simple to find as before, where only the number of
events was counted, and must in general be determined numerically. For example,
one can perform Monte Carlo experiments using a given value of g {(and the
known value vy) to generate numbers ng and ny, from a Poisson distribution,
and corresponding z values according to fs(x;vs) and fo(z; ). By adjusting vs,
one can find that value for which there is a probability 3 to obtain o5 < phs,
Here one must still deal with the problem that the limit can turn out negative.

In the Bayesian approach, L(vs) is used directly in Bayes’ theorem as before.
Solving equation (9.53) for v must in general be done numerically. This has the
advantage of not requiring the sampling p.d.f. for the estimator Vs, in addition
to the previously mentioned advantage of automatically incorporating the prior
knowledge vs > 0 into the limit.

Further discussion of the issue of Bayesian versus classical limits can be found

in [Hig83, Jam91, Cou95). A technique for incorporating systematic uncertainties
1n the limit is given in [Cou92].

10

Characteristic functions and
related examples

10.1 Definition and properties of the characteristic function

The characteristic function ¢, (k) for a random variable z with p.d.f. f(z) is
defined as the expectation value of e*7,

e ,

b (k) = E[e’*] = / e'** f(z)dz. (10.1)
x }

This is essentially the Fourier transform of the pl‘()b{;bilih}f Flensity fllllCt‘lOn.l Trf; nlb
useful in proving a number of important theorems, m‘partlcular those involvi %
sums of random variables. One can show that there is a one-to-one cor]rzsponf
dence between the p.d.f. and the characteristic function, so tha? knowe.z ge of
one is equivalent to knowledge of the other. Some characteristic functions o
important p.d.f.s are given in Table 10.1. . ' ﬂ
Suppose one has n independent random Varlgbles T, Ty with p.d.lgb
filz1),..., fa(z,), and corresponding characteristic funActlons é1(k), . s qﬁln(t d,

and consider the sum z = 5, ;. The characteristic function ¢, (k) for z is relate

to those of the z; by

é.(k)y = /‘../exp (zkix,) fi(z1) ... fa(zn)dzy ... den

= /eikx‘fl(:cl)dxl...feik”"fn(zn)dxn
= ¢1(k)...dalk). (10.2)

That is, the characteristic function for a sum of ir}de.apenden.t random variables
is given by the product of the individual charactenst.lc functions.
The p.d.f. f(z) is obtained from the inverse Fourier transform,

e %;/OO 6. (k) ¥ dk. (10.3)
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