INORGANIC NOMENCLATURE II

1. WARM UP

- If you could change something in chemistry, what would that be?
- If you were a teacher of chemistry at a primary/secondary school, how would you change the way chemistry is taught there?
- If you could change something in the way chemistry is taught at Masaryk University, what would you do?

2. INORGANIC NOMENCLATURE II

C. TERNARY COMPOUNDS (compounds that consist of a combination of three elements)

ACIDS

HYDROACIDS: hydrogen + non-metal

Hydro + root + *ic* acid

- HCl hydrochlor*ic* acid HCl
- HF hydrofluor*ic* acid
- HCN hydrocyanic acid

OXYACIDS (OXOACIDS) : polyatomic ion + acid

- only one oxyacid: root + -ic acid

 H_3BO_3 bor*ic* acid H_4SiO_4 silic*ic* acid

- two oxyacids with different oxygen content:

- root + <i>-ic</i> acid	indicates higher oxygen content
- root + <i>-ous</i>	indicates lower oxygen content

- H₂SO₄ sulphuric acid (higher oxygen content)
- H_2SO_3 sulphur**ous** acid <u>(lower</u> oxygen content)
- $H_2S_2O_7$ disulphuric acid
- H₃PO₄ phosphor**ic** acid
- H₃PO₃ phosphorous acid
- HNO₃ nitric acid
- HNO₂ nitrous acid

- more than two oxyacids:

prefix	suffix	Examples		
per (more than)	-ic	HClO ₄	<i>per</i> chlor <i>ic acid</i>	
	-ic	HClO ₃	chlor <i>ic acid</i>	
	-ous	HClO ₂	chlor <i>ous acid</i>	
<i>hypo</i> (less than)	-ous	HClO	hypochlorous acid	

Practise:

- Write the names for:

1. H ₃ PO ₄	
2. H ₂ SO ₄	
3. H ₄ SiO ₄	
4. HClO	
5. H ₃ BO ₃	

SALTS

SALTS OF HYDROACIDS

- HCl hydrochloric acid
- $HCl \rightarrow NaCl \text{ sodium chlor}ide (salt)$
- Note: H₂S hydrogen sulphide

SALTS OF OXOACIDS (ternary compound containing oxygen)

- if there is only one such compound: root + -ate

Na ₂ CO ₃	sodium carbonate, (no carbonite is known)
Na ₃ BO ₃	sodium borate, (no borite is known)
Na ₄ SiO ₄	sodium silicate, (no silicite is known)

- if there are **two compounds**, differing only in their oxygen content and oxidation number of the central atom: the one which contains **more oxygen** ends in *-ate* and the other, with less oxygen, ends in *-ite*

Example 1: sodium salts

lower oxygen content		higher oxy	higher oxygen content		
NaNO ₂	sodium nitr <i>ite</i>	NaNO3	sodium nitr <i>ate</i>		
Na ₃ PO ₃	sodium phosph <i>ite</i>	Na3PO4	sodium phosph <i>ate</i>		
Na ₃ AsO ₃	sodium arsen <i>ite</i>	Na3AsO4	sodium arsen <i>ate</i>		
Na ₂ SO ₃	sodium sulph <i>ite</i>	Na2SO4	sodium sulph <i>ate</i>		

Example: sodium salts of the oxyacids of chlorine:

- if there are **more than two compounds**, differing only in their oxygen content and oxidation number of the central atom:

prefix	suffix	Examples		
per (more than)	-ate	<i>NaClO</i> ₄ <i>sodium per</i> chlor <i>ate</i>		
	-ate	NaClO ₃	sodium chlorate	
	-ite	NaClO ₂	sodium chlorite	
<i>hypo</i> (less than)	-ite	NaClO	sodium hypochlorite	

KMnO₄ - potassium permangan*ate*

Corresponding nomenclature of acids and their salts:

acids		salts (ions)	
per chlor ic acid	$HClO_4$	per chlor ate ion	ClO_4^{-}
chlor ic acid	HClO ₃	chlor ate ion	ClO_3^{-}
chlor ous acid	$HClO_2$	chlor ite ion	ClO_2^{-}
hypochlorous acid	HClO	hypochlorite ion	ClO

Since the oxygen-acid nomenclature of ternary compounds does not give the absolute number of oxygens involved, the name must be derived from experience. That's why the chemists use **rational nomenclature (named according to IUPAC regulations):**

- prefixes mono-, di-, tri-, tetra-, penta-... express the absolute number of oxygens
- root+ suffix *ate*
- Roman numerals express the oxidation number

Examples:

Na_2SO_3	sodium <i>tri</i> oxosulf <i>ate</i> (IV)	- 3 oxygens, oxidation number IV
Na_2SO_4	sodium <i>tetra</i> oxosulf <i>ate</i> (VI)	

sodium salts:

sodium <i>tetraoxochlorate</i> (VII)
sodium <i>trioxochlorate</i> (V)
sodium <i>dioxochlorate</i> (III)
sodium oxochlorate (I)

Practise

Write the chemical formulae for:	
1. sodium tetraoxochlorate (VII)	
2. sodium trioxochlorate (V)	
3.sodium phosphite	
4. sodium phosphate	
5. sodium sulphate	
6. sodium sulfite	

- Write the name for (use the IUPAC system):

 1. Ca(NO₃)₂

 2. Ca(NO₂)₂

 3. BaSO₄

 4. NaClO₃

 5. NaClO₂

 6. NaHSO₄

HYDROXIDES - (bases containing the OH group) – the same rules applied

3. LISTENING

Listen and answer the following questions:

- 1. What compounds are necessary for the chemical experiment?
- 2. What is the position of the iron nail?
- 3. What is the mercury drop compared to?
- 4. What is the role of the dichromate?
- 5. What compound is formed on the surface of the drop?
- 6. What do you know about its solubility?
- 7. Why does the mercury drop flatten?
- 8. What enables electrons to flow from the nail to the mercury?
- 9. How does the shape of the drop change due to the electrons?
- 10. What happens at the end of the process?

4. HOW TO READ CHEMICAL EQUATIONS IN ENGLISH:

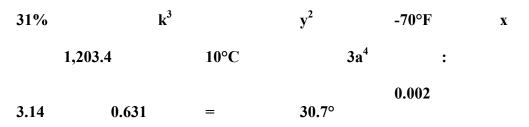
Example:	HCl	+	NaOH	\rightarrow NaCl	+	H ₂ O
We spell as:	H Cl	plus	Na OH	gives Na Cl	plus	$\mathrm{H}_{2}\mathrm{O}$
<i>We read as:</i> hydrochloric acid reacts with sodium hydroxide to form sodium chloride and water						

Reading chemical formulae:

+	reacts with, combines with, plus, and or together with	
=	give, form, pass over to, yield or go to	
>	give, pass over to or lead to	
<>	forms and is formed from	
the sign -	designates the bond and is not to be read in the formulae	
the sign =	designates two bonds and is not to be read in formulae	
C_3H_2	c three h two	
2 CO ₂	two molecules of c o two	
$CO_2 + CaO \rightarrow CaCO_3$	c o two plus c a o give c a c o three	
	c o two reacts with c a o to give c a c o three	
Ca(OH) ₂	c a o h twice	

You can also use time clauses / conditional clauses to describe the reactions:

When we mix_	with	, we will get
If	_mixes together with	, it will lead to
If we mixed	and	, it would lead to


Practise: Read these equations in pairs.

First spell them, then express in words. You can use a time / conditional clause.

- a) CO₂ + H₂O ---> H₂CO₃
- b) CaCO₃--->CaO + CO₂
- c) 2 CO + O₂-->2 CO₂
- d) 2 Ca₃(PO₄) + 6 SiO₂ + 10 C-->6 CaSiO₃ + P₄ + 10 CO
- e) 2 Na + $Cl_2 \rightarrow 2$ NaCl
- f) $ZnO + H_2SO_4 \rightarrow 2 ZnSO_4 + H_2O$
- g) 2 Na + 2 H₂O \rightarrow 2 NaOH + H₂

Work in small groups. Write down two or three equations on a piece of paper. Then present the equations to the others.

Reading numbers and measurements:

Text: read out the expressions in bold

Diatoms, microscopic organisms, produce carbohydrates from carbon dioxide and water by normal photosynthesis:

6 CO₂ + 6 H20 + solar energy --> C₆H₁₂O₆ + 6 O₂

During the first five years of life whales gain **75 kg** of mass per day by feeding on krill. The whale must consume ten times this mass of krill each day. The whale must consume **10.0 kg** of diatoms to produce 1.0 kg of krill.

a) Assuming that the mass gain in the first years of a whale's life is due to the consumption of carbohydrates, calculate the volume of CO_2 at 0 °C and 101 kPa that must be used by the diatoms to produce the carbohydrates consumed by a blue whale in its first five years of life.

b) There is 0.23 ml of dissolved CO_2 per 1 sea water (at $24 \text{ }^{\circ}C$ and 101 kPa). If diatoms can completely remove carbon dioxide from the water they process, what volume of water would they process to produce the carbohydrates required by a blue whale during the first five years of life?

c) 3% of the mass of a $9.1.10^4$ kg adult whale is nitrogen. What is the maximum mass of NH_4^+ that can become available for other marine organisms if one adult whale dies?

d) 18% of a adult whale's mass is carbon which can be returned to the atmosphere as CO_2 being removed from there by weathering of rocks containing calcium silicate.

$CaSiO_3(s) + 2 CO_2 + 3H_20(1) -> Ca^{2+}(aq) + 2HCO_3(aq) + H_4SiO_4(aq)$

What is the maximum number of grams of $CaSiO_3$ that can be weathered by the carbon dioxide produced from the decomposition of 1000 blue whales, the number estimated to die annually?

Assignment 9:

- A. Write equations for the following chemical reactions:
 - 1) When dissolved beryllium chloride reacts with dissolved silver nitrate in water, aqueous beryllium nitrate and silver chloride powder are made.
 - When isopropanol (C₃H₈O) burns in oxygen, carbon dioxide, water, and heat are produced.
 - When dissolved sodium hydroxide reacts with sulfuric acid (H₂SO₄), aqueous sodium sulfate, water, and heat are formed.
 - 4) When fluorine gas is put into contact with calcium metal at high temperatures, calcium fluoride powder is created in an exothermic reaction.
 - When sodium metal reacts with iron (II) chloride, iron metal and sodium chloride are formed.

$2 \text{ H}_2 + \text{O}_2 \rightarrow 2 \text{ H}_2\text{O}$
$CH_4 + 2 O_2 \rightarrow CO_2 + 2 H_2O$
$2 \text{ Na} + 2 \text{ H}_2\text{O} \rightarrow 2 \text{ NaOH} + \text{H}_2$
$Ca + 2 H_2O \rightarrow Ca(OH)_2 + H_2$
$2 \text{ NaBr} + \text{Cl}_2 \rightarrow 2 \text{ NaCl} + \text{Br}_2$
$AgNO_3 + KCl \rightarrow AgCl\downarrow + KNO_3$
2AgNO ₃ +CaBr ₂ →2 AgBr↓+ Ca(NO ₃) ₂
Na ₂ CO ₃ + 2HCl→2NaCl + CO ₂ ↑ +H ₂ O