INORGANIC NOMENCLATURE II

1. WARM UP

- If you could change something in chemistry, what would that be?
- If you were a teacher of chemistry at a primary/secondary school, how would you change the way chemistry is taught there?
- If you could change something in the way chemistry is taught at Masaryk University, what would you do?

2. INORGANIC NOMENCLATURE II

C. TERNARY COMPOUNDS (compounds that consist of a combination of three elements)

ACIDS

HYDROACIDS: hydrogen + non-metal

Hydro + root + ic acid

HCl **hydro**chlor*ic* acid HCl HF **hydro**fluor*ic* acid HCN **hydro**cyan*ic* acid

OXYACIDS (**OXOACIDS**): polyatomic ion + acid

- only one oxyacid: root + -ic acid

H₃BO₃ bor*ic* acid H₄SiO₄ silic*ic* acid

- two oxyacids with different oxygen content:

root + -ic acid indicates higher oxygen content
 root + -ous indicates lower oxygen content

H₂SO₄ sulphuric acid (higher oxygen content)

H₂SO₃ sulphur**ous** acid (lower oxygen content)

H₂S₂O₇ disulphuric acid

H₃PO₄ phosphoric acid

H₃PO₃ phosphorous acid

HNO₃ nitric acid HNO₂ nitrous acid

- more than two oxyacids:

prefix	suffix	Examples	
per (more than)	-ic	HClO ₄	<i>per</i> chlor <i>ic acid</i>
	-ic	HClO ₃	chlor <i>ic acid</i>
	-ous	HClO ₂	chlor <i>ous acid</i>
hypo (less than)	-ous	<i>HClO</i>	hypochlorous acid

Practise:

Write chemical formulae for:

1. phosphorous acid H₃PO₃ 2. carbonic acid ____H₂CO₃_____ 3. disulfuric acid $H_2S_2O_7$ 4. nitric acid _____ HNO₃_____

5. hydrobromic acid ____ HBr____ 6. iodic acid _____ HIO₃_____

7. chromic acid _____ H₂CrO₄______

8. bromic acid ______HBrO₃_____

9. hypoiodous acid HIO
10. phosphoric acid H₃PO₄

Write the names for:

1. H₃PO₄ **phosphoric**

2. H₂SO₄ __sulphuric_____

3. H₄SiO₄____silicic____

4. HClO _hypochlorous

5. H₃BO₃ ___boric____

SALTS

SALTS OF HYDROACIDS

HC1 hydrochloric acid

 $HCl \rightarrow NaCl$ sodium chlor*ide* (salt)

Note: H₂S hydrogen sulph*ide*

SALTS OF OXOACIDS (ternary compound containing oxygen)

- if there is only one such compound: root + -ate

 Na_2CO_3 sodium carbonate, (no carbonite is known)

Na₃BO₃ sodium borate, (no borite is known) Na₄SiO₄ sodium silicate, (no silicite is known)

- if there are **two compounds**, differing only in their oxygen content and oxidation number of the central atom: the one which contains more oxygen ends in -ate and the other, with less oxygen, ends in -ite

Example 1: sodium salts

lower oxygen content higher oxygen content

$NaNO_2$	sodium nitr <i>ite</i>	$NaNO_3$	sodium nitrate
Na_3PO_3	sodium phosph <i>ite</i>	Na_3PO_4	sodium phosphate
Na_3AsO_3	sodium arsen <i>ite</i>	Na_3AsO_4	sodium arsen <i>ate</i>
Na_2SO_3	sodium sulph <i>ite</i>	Na_2SO_4	sodium sulph <i>ate</i>

Example: sodium salts of the oxyacids of chlorine:

- if there are **more than two compounds**, differing only in their oxygen content and oxidation number of the central atom:

prefix	suffix	Examples	
<i>per</i> (more than)	-ate	NaClO ₄	sodium perchlorate
	-ate	NaClO ₃	sodium chlorate
	-ite	NaClO ₂	sodium chlorite
hypo (less than)	-ite	NaClO	sodium hypochlorite

KMnO₄ - potassium permangan*ate*

Corresponding nomenclature of acids and their salts:

acids		salts (ions)	
per chlor ic acid	$HClO_4$	per chlor ate ion	ClO_4
chlor ic acid	HClO ₃	chlor ate ion	ClO ₃
chlor ous acid	$HClO_2$	chlor ite ion	ClO_2^-
hypo chlor ous acid	HClO	hypochlorite ion	ClO ⁻

Since the oxygen-acid nomenclature of ternary compounds does not give the absolute number of oxygens involved, the name must be derived from experience. That's why the chemists use rational nomenclature (named according to IUPAC regulations):

- prefixes mono-, di-, tri-, tetra-, penta-... express the absolute number of oxygens
- root+ suffix ate
- Roman numerals express the oxidation number

Examples:

Na₂SO₃ sodium *tri*oxosulf*ate* (IV) – 3 oxygens, oxidation number IV Na₂SO₄ sodium *tetra*oxosulf*ate* (VI)

sodium salts:

$NaClO_4$	sodium <i>tetraoxochlorate</i> (VII)
NaClO ₃	sodium <i>trioxochlorate</i> (V)
NaClO ₂	sodium <i>dioxochlorate</i> (III)
NaClO	sodium oxochlorate (I)

Practise

	TT7 • 4	.1	1	. 1	C	1	C
_	Write	the	chen	11 <i>CA</i> I	formu	IAP	tor:

1. sodium tetraoxochlorate (VII) NaClO ₄	
2. sodium trioxochlorate (V)NaClO ₃	
3.sodium phosphite Na ₃ PO ₃	
4. sodium phosphate Na ₃ PO ₄	
5. sodium sulphate Na ₂ SO ₄	
6 sodium sulfite Na ₂ SO ₂	

1	Ca(NO ₃) ₂ calcium trioxonitrate (II)
2	2. Ca(NO ₂) ₂ calcium dioxonitrate (III) B. BaSO ₄ barium tetraovosulfate (VI)
2	l. NaClO ₃ sodium trioxochlorate (V)
5	5. NaClO ₂ sodium dioxochlorate (III) 6. NaHSO ₄ sodium hydrogen tetraoxosulfate (VI)
(5. NaHSO ₄ sodium hydrogen tetraoxosulfate (VI)
[HYDROXIDES - (bases containing the OH group) – the same rules applied
NaOH	sodium hydrox <i>ide</i>
Ca(OH)	•
Mg(OH) Fe(OH)	
	potassium hydrox <i>ide</i>
Fe(OH)	
Ba(OH)	2 barium hydrox <i>ide</i>
3. 1	LISTENING – <mark>v interaktivní osnově ve složce Poslechy</mark> link:
l	nttps://www.youtube.com/watch?v=0hxt6hd-wV0
i	Listen and answer the following questions:
	1. What compounds are necessary for the chemical experiment?
	_potassium dichromate (diluted), sulphuric acid, mercury drop
2	2. What is the position of the iron nail?
	It almost touches the mercury
3	3. What is the mercury drop compared to?
	beating heart
2	4. What is the role of the dichromate?
	It oxidizes mercury to mercury (I) ions, they combine with sulphate ions at
	the surface of the drop to form mercury (I) sulphate
	5. What compound is formed on the surface of the drop?
	mercury (I) sulphate
(6. What do you know about its solubility?
	insoluble
	7. Why does the mercury drop flatten?
	the film decreases the surface tension
8	8. What enables electrons to flow from the nail to the mercury?
	_Mercury drop expands to touch the iron nail, at which time electrons flow
٥	9. How does the shape of the drop change due to the electrons?
	_Electrons reduce mercury (I) ions to mercury, destroy the surface film,
	surface tension increases and the drop becomes more spherical

Write the name for (use the IUPAC system):

10. What happens at the end of the process?

__Mercury and nail stop touching, mercury I sulphate forms on the surface...__

4. HOW TO READ CHEMICAL EQUATIONS IN ENGLISH:

Example:	HCl	+	NaOH	→ NaCl	+	H ₂ O
We spell as:	H Cl	plus	Na OH	gives Na Cl	plus	H ₂ O
We read as: hy	ydrochloric ac	cid reacts with se	odium hydro	oxide to form sodium chlorid	e and	water

Reading chemical formulae:

+	reacts with, combines with, plus, and or together with
=	give, form, pass over to, yield or go to
>	give, pass over to or lead to
<>	forms and is formed from
the sign -	designates the bond and is not to be read in the formulae
the sign =	designates two bonds and is not to be read in formulae
C_3H_2	c three h two
$2 CO_2$	two molecules of c o two
$CO_2 + CaO \rightarrow CaCO_3$	c o two plus c a o give c a c o three
	c o two reacts with c a o to give c a c o three
Ca(OH) ₂	c a o h twice

You can also use time clauses / conditional clauses to describe the reactions:

When we mix_	with	, we will get
If	_mixes together with	, it will lead to
If we mixed	and	, it would lead to .

Practise: Read these equations in pairs.

First spell them, then express in words. You can use a time / conditional clause.

a)
$$CO_2 + H_2O ---> H_2CO_3$$

b)
$$CaCO_3$$
---> $CaO + CO_2$

c)
$$2 \text{ CO} + O_2 --> 2 \text{ CO}_2$$

d) 2
$$Ca_3(PO_4)$$
 + 6 SiO_2 + 10 C -->6 $CaSiO_3$ + P_4 + 10 CO

e) 2 Na + Cl₂
$$\rightarrow$$
 2 NaCl

f)
$$ZnO + H_2SO_4 \rightarrow 2 ZnSO_4 + H_2O$$

g)
$$2 \text{ Na} + 2 \text{ H}_2\text{O} \rightarrow 2 \text{ NaOH} + \text{H}_2$$

Work in small groups. Write down two or three equations on a piece of paper. Then present the equations to the others.

Reading numbers and measurements:

$$31\%$$
 k^3 y^2 $-70^{\circ}F$ x
 $1,203.4$ $10^{\circ}C$ $3a^4$:

 0.002
 3.14 0.631 = 30.7°

Text: read out the expressions in bold

Diatoms, microscopic organisms, produce carbohydrates from carbon dioxide and water by normal photosynthesis:

$$6 \text{ CO}_2 + 6 \text{ H20} + \text{solar energy} \longrightarrow C_6 H_{12} O_6 + 6 O_2$$

During the first five years of life whales gain 75 kg of mass per day by feeding on krill. The whale must consume ten times this mass of krill each day. The whale must consume 10.0 kg of diatoms to produce 1.0 kg of krill.

- a) Assuming that the mass gain in the first years of a whale's life is due to the consumption of carbohydrates, calculate the volume of CO_2 at $0\,^{\circ}C$ and $101\,^{\circ}kPa$ that must be used by the diatoms to produce the carbohydrates consumed by a blue whale in its first five years of life.
- b) There is **0.23 ml** of dissolved CO_2 per 1 sea water (at **24** °C and **101 kPa**). If diatoms can completely remove carbon dioxide from the water they process, what volume of water would they process to produce the carbohydrates required by a blue whale during the first five years of life?
- c) 3% of the mass of a $9.1.10^4$ kg adult whale is nitrogen. What is the maximum mass of NH_4^+ that can become available for other marine organisms if one adult whale dies?
- d) 18% of a adult whale's mass is carbon which can be returned to the atmosphere as CO₂ being removed from there by weathering of rocks containing calcium silicate.

$$CaSiO_3(s) + 2 CO_2 + 3H_20(1) --> Ca^{2+}(aq) + 2HCO_3(aq) + H_4SiO_4(aq)$$

What is the maximum number of grams of CaSiO₃ that can be weathered by the carbon dioxide produced from the decomposition of 1000 blue whales, the number estimated to die annually?

Assignment 9:

A. Write equations for the following chemical reactions:

Word Equations Worksheet - Solutions

Write the word equations for each of the following chemical reactions:

 When dissolved beryllium chloride reacts with dissolved silver nitrate in water, aqueous beryllium nitrate and silver chloride powder are made.

$$BeCl_{2(aq)} + 2 AgNO_{3(aq)} \rightarrow Be(NO_3)_{2(aq)} + 2 AgCl_{(s)}$$

 When isopropanol (C₃H₈O) burns in oxygen, carbon dioxide, water, and heat are produced.

2 C₃H₈O_(I) + 9 O_{2(g)} → 6 CO_{2(g)} + 8 H₂O_(g)
$$\Delta$$
H = negative

 When dissolved sodium hydroxide reacts with sulfuric acid, aqueous sodium sulfate, water, and heat are formed.

2 NaOH_(aq) + H₂SO_{4(l)}
$$\rightarrow$$
 Na₂SO₄ + 2 H₂O_(l) Δ H = negative

4) When fluorine gas is put into contact with calcium metal at high temperatures, calcium fluoride powder is created in an exothermic reaction.

$$F_{2(g)} + Ca_{(s)} \rightarrow CaF_{2(s)} \Delta H = negative$$

 When sodium metal reacts with iron (II) chloride, iron metal and sodium chloride are formed.

$$2 \text{ Na}_{(s)} + \text{FeCl}_{2(s)} \rightarrow 2 \text{ NaCl}_{(s)} + \text{Fe}_{(s)}$$

B. Read out the following equations:

How to Read Chemical Equations

Reaction	Reading by Elementary Entities (Formula Units)	Reading by Mole (N_A of elementary entities or formula units)
$2 H_2 + O_2 \rightarrow 2 H_2O$	2 molecules of hydrogen react with 1 molecule of oxygen to form 2 molecules of water	2 moles of hydrogen react with 1 mole of oxygen to form 2 moles of water
$CH_4 + 2 O_2 \rightarrow CO_2 + 2 H_2O$	1 molecule of methane reacts with 2 molecules of oxygen to form 1 molecule of carbon dioxide and 2 molecules of water	1 mole of methane reacts with 2 moles of oxygen to form 1 mole of carbon dioxide and 2 moles of water
2 Na + 2 $\text{H}_2\text{O} \rightarrow$ 2 NaOH + H_2	2 atoms of sodium react with 2 molecules of water to form 2 formula units of sodium hydroxide and 1 molecule of hydrogen	2 moles of sodium reacts with 2 moles of water to form 2 moles of sodium hydroxide and 1 mole of hydrogen
$Ca + 2 H_2O \rightarrow Ca(OH)_2 + H_2$	1 atom of calcium reacts with 2 molecules of water to form 1 formula unit of calcium hydroxide and 1 molecule of hydrogen	1 mole of calcium reacts with 2 moles of water to form 1 mole of calcium hydroxide and 1 mole of hydrogen
$2 \text{ NaBr} + \text{Cl}_2 \rightarrow 2 \text{ NaCl} + \text{Br}_2$	2 formula units of sodium bromide react with 1 molecule of chlorine to form 2 formula units of sodium chloride and 1 molecule of bromine	2 moles of sodium bromide react with 1 mole of chlorine to form 2 moles of sodium chloride and 1 mole of bromine
$AgNO_3 + KCl \rightarrow AgCl \downarrow + KNO_3$	1 formula unit of silver nitrate reacts with 1 formula unit of potassium chloride to form 1 formula unit of silver chloride (precipitate) and 1 formula unit of potassium nitrate	1 mole of silver nitrate reacts with 1 mole of potassium chloride to form 1 mole of silver chloride (precipitate) and 1 mole of potassium nitrate
$2AgNO_3 + CaBr_2 \rightarrow 2 AgBr \downarrow + Ca(NO_3)_2$	2 formula units of silver nitrate react with 1 formula unit of calcium bromide to form 2 formula units of silver bromide (precipitate) and 1 formula unit of calcium nitrate	2 moles of silver nitrate react with 1 mole of calcium bromide to form 2 moles of silver bromide (precipitate) and 1 mole of calcium nitrate
$Na_2CO_3 + 2HCl \rightarrow 2NaCl + CO_2 \uparrow + H_2O$	1 formula unit of sodium carbonate reacts with 2 formula units of hydrochloric acid to form 2 formula units of sodium chloride, 1 molecule of carbon dioxide (gas), and 1 molecule of water	1 mole of sodium carbonate reacts with 2 moles of hydrochloric acid to form 2 moles of sodium chloride, 1 mole of carbon dioxide (gas), and 1 mole of water

Reaction	Reading by Mole ($N_{\rm A}$ of elementary entities or formula units)	Reading by Mass (Molar mass of each substance is needed)
$2 H_2 + O_2 \rightarrow 2 H_2O$	2 moles of hydrogen react with 1 mole of oxygen to form 2 moles of water	4 g of hydrogen react with 32 g of oxygen to form 36 g of water
$CH_4 + 2 O_2 \rightarrow CO_2 + 2 H_2O$	1 mole of methane reacts with 2 moles of oxygen to form 1 mole of carbon dioxide and 2 moles of water	16 g of methane react with 32 g of oxygen to form 44 g of carbon dioxide and 36 g of water
$2 \text{ Na} + 2 \text{ H}_2\text{O} \rightarrow 2 \text{ NaOH} + \text{H}_2$	2 moles of sodium reacts with 2 moles of water to form 2 moles of sodium hydroxide and 1 mole of hydrogen	46 g of sodium react with 36 g of water to form 80 g of sodium hydroxide and 2 g of hydrogen
$Ca + 2 H_2O \rightarrow Ca(OH)_2 + H_2$	1 mole of calcium reacts with 2 moles of water to form 1 mole of calcium hydroxide and 1 mole of hydrogen	40 g of calcium react with 36 g of water to form 74 g of calcium hydroxide and 2 g of hydrogen
$2 \text{ NaBr} + \text{Cl}_2 \rightarrow 2 \text{ NaCl} + \text{Br}_2$	2 moles of sodium bromide react with 1 mole of chlorine to form 2 moles of sodium chloride and 1 mole of bromine	
$AgNO_3 + KCl \rightarrow AgCl \downarrow + KNO_3$	1 mole of silver nitrate reacts with 1 mole of potassium chloride to form 1 mole of silver chloride (precipitate) and 1 mole of potassium nitrate	170 g of silver nitrate react with 74 g of potassium chloride to form 143 g of silver chloride (precipitate) and 101 g of potassium nitrate
2AgNO ₃ +CaBr ₂ →2 AgBr↓+ Ca(NO ₃) ₂	2 moles of silver nitrate react with 1 mole of calcium bromide to form 2 moles of silver bromide (precipitate) and 1 mole of calcium nitrate	240 g of silver nitrate react with 200 g of calcium bromide to form 356 g of silver bromide (precipitate) and 184 of calcium nitrate
$Na_2CO_3 + 2HCl \rightarrow 2NaCl + CO_2\uparrow + H_2O$	1 mole of sodium carbonate reacts with 2 moles of hydrochloric acid to form 2 moles of sodium chloride, 1 mole of carbon dioxide (gas), and 1 mole of water	106 g of sodium carbonate reacts with 73 g of hydrochloric acid to form 117 g of sodium chloride, 44 g of carbon dioxide (gas), and 18 g of water