INORGANIC NOMENCLATURE I¹

1. Periodic table

a. What elements do these symbols stand for?

Mn	В	Mg	W	Pb	Sb	I	Sn	K	Au	Fe	Ag	
----	---	----	---	----	----	---	----	---	----	----	----	--

b. Listening exercises

Explain the symbols below:

- What do they stand for?
- What do they mean?
- What is an alternative way of using them?

Uub	Uut	Uuq	Uup	Uuh	Uus	Uuo
-----	-----	-----	-----	-----	-----	-----

Watch the first video and answer the following questions:

- 1. What element is the professor speaking about?
- 2. He has mentioned a controversy that was linked to the symbol of the element. What was the controversy based on?
- 3. Who/What institution made the final decision regarding the symbol?
- 4. According to the professor, what role did lead play in the element synthesis?
- 5. Could you describe the process of the element decay as explained in the video?

Watch the second video and try to explain the meaning of the following facts / dates / expressions within the context of the talk:

114	December 201	11 Plu	tonium	Fljorov
30	th May 2012	Dubna	memorial	
Rus	ssian disc	ussion period	bomb	ardment

Follow up question: Why does such an element need a symbol?

2. Types of chemical nomenclature

A. Trivial names

HG2Cl2 - mercurous chloride (systematic - mercury (II) chloride)

- H₂O (water, not dihydrogen oxide)/
- H₂O₂ (hydrogen peroxide, not dihydrogen dioxide)
- H₂S (hydrogen sulfide, not dihydrogen sulfide)
- NH3 (ammonia, not nitrogen trihydride)
- NO (nitric oxide, not nitrogen monoxide)
- N₂O (nitrous oxide, not dinitrogen oxide)
- CH4 (methane, not carbon tetrahydride)

B. Popular names

Chemical substances that are employed in the home, the arts, or in industry have acquired traditional or "popular" names that are still in wide use.

popular name	chemical name	formula
borax	sodium tetraborate decahydrate	Na ₂ B ₄ O ₇ ·10H2O
calomel	mercury(I) chloride	Hg ₂ Cl ₂
milk of magnesia	magnesium hydroxide	Mg(OH) ₂
muriatic acid	hydrochloric acid	HCl(aq)
oil of vitriol	sulfuric acid	H ₂ SO ₄
saltpeter	sodium nitrate	NaNO ₃
slaked lime	calcium hydroxide	Ca(OH) ₂

C. Systematic nomenclature:

- a. compositional
- b. substitutive
- c. additive

Example: PCl₃

- compositional: phosphorus trichloride

- substitutive: trichlorophosphane

- additive: trichloridophosphorus

3. Chemical nomenclature of

- a. ions
- b. binary compounds
- c. ternary compounds

4. IONS

a. CATIONS

- i. monoatomic: name of the element and charge
 - Na⁺ sodium (1+), /n a plus/, sodium ion, univalent positive sodium ion,
 - H⁺ hydrogen (1+), /h plus/, hydrogen ion, univalent positive hydrogen ion,
 - Cu²⁺ copper (2+), /c u two plus/, copper ion, divalent positive copper ion, copper (II) ion
 - Cr³⁺ chromium (3+), /c r three plus/, chromium ion, trivalent positive chromium ion,

Some of the metallic ions are multivalent, meaning that they can exhibit more than one electric charge. For these there are systematic names that use Roman numerals and endings *—ous* and *—ic* to denote the lower and higher charges, respectively. In cases where more than 2 charge values are possible, the systematic names are used. Examples:

Cu ⁺	Cu ²⁺	Fe ²⁺	Fe ³⁺	* Hg ₂ ²⁺	Hg ²⁺	Sn ²⁺	Sn ⁴⁺
copper(I)	copper(II)	iron(II)	iron(III)	mercury(I)	mercury(II)	tin(II)	tin(IV)
cuprous	cupric	ferrous	ferric	mercurous	mercuric	stannous	stannic

Fe²⁺ /Fe two plus/, iron (2+), iron (II), ferrous ion, divalent positive iron ion Fe³⁺ /Fe three plus/, iron (3+), iron (III), ferric ion, trivalent positive iron ion

ii. homopolyatomic:

 Hg_2^{2+} /h g two two plus/, mercury (I) ion, mercurous ion,

 O_2^+ dioxygen (1+)

 S_4^{2+} tetrasulphur (2+)

Bi₅⁴⁺ pentabismuth (4+)

H₃⁺ trihydrogen (1+)

Li₂²⁺ dilithium (1+)

N₅⁺ pentanitrogen (1+)

Na₂⁺ disodium (1+)

P₂⁺ diphosphorus (1+)

 Si_2^+ disilicon (1+)

iii. heteropolyatomic: can follow rules for substitutive nomenclature, or non-systematic names; frequent suffix *-ium*

NH₄⁺ ammonium (non-systematic)

H₃O⁺ - oxidanium (substitutive) or oxonium (non-systematic)

PH₄⁺ phosphanium (substitutive)

b. ANIONS

i. compositional nomenclature (-ide)

l₃ triiodide (1-)

 O_2^{2-} dioxide (2-)

ii. substitutive (anions based on the removal of hydrogen (1+), end in -ide

MeNH methanamin**ide**

iii. additive (end in -ate)

PS₄³- tetrasulfidophosphate (3-)

Rules for adding sufix -ide:

- 1. added directly to the name of the element (xenon*ide*, nickel*ide*, argon*ide*...)
- 2. original ending in the name of the element is substituted with -ide:

chlorine – chlor*ide* carbon - carbide sodium – sod*ide* boron – bor*ide* nitrogen – nitr*ide* astatine – astat*ide* silicon – silic*ide* sulphur phosphorus iodine calcium hydrogen bromine arsenic helium – tungsten mercury -

3. ending -ide is added to a Latin-based word

silver – argent*ide* gold – aur*ide* copper – cupr*ide* iron – ferr*ide* lead – plumb*ide* tin – stann*ide*

Complete	these	sentences
----------	-------	-----------

- a) The chemical symbol for the calcium ion is _____
- b) The chemical symbol for the fluoride ion is _____
- c) The chemical symbol for the ammonium ion is
- d) The chemical symbol for the magnesium ion is_____
- e) The chemical symbol for the sodium ion is_____
- f) The chemical symbol for the aluminium ion is_____

5. BINARY COMPOUNDS

a) METALS WITH A FIXED CHARGE (just one oxidation state)

Salts of oxo-acids, metal oxides and other binary compounds.

- metal + nonmetal with -ide [aid]

Examples: NaCl - sodium chloride (Czech equivalent chlorid sodný – notice the

difference in order of elements)

NaC1 sodium chloride ZnCl₂ zinc chlor*ide* CaC_2 calcium carbide magnesium sulphide MgS Ca_3N_2 calcium nitride K_2O potassium ox*ide* zinc ox*ide* ZnO CaO calcium oxide

Write the chemical formulae of the following compounds:

- a) sodium fluoride
- b) silicon carbide
- c) aluminium chloride
- d) calcium nitride
- e) zinc oxide

Write the	e names	of these	compounds:

a) Na ₂ C	 	
b) BaS		
c) CaCl ₂	 	
d) Mg ₃ N ₂		
e) CaF ₂	 	
f) CaO		

b) METALS WITH A NON-FIXED CHARGE (occur in more than one oxidation state)

Metal oxides and other binary compounds with a non-fixed charge.

2 methods of nomenclature:

o IUPAC nomenclature, Roman numeral expresses oxidation state

FeO	iron (II) ox <i>ide</i>
Fe_2O_3	iron (III) ox <i>ide</i>
Cu_2S	copper (I) sulfide
CuS	copper (II) sulfide
$FeCl_2$	iron (II) chlor <i>ide</i>
FeCl ₃	iron (III) chlor <i>ide</i>

o trivial names

suffix -ous
 suffix -ic
 indicates lower oxidation state
 indicates higher oxidation state

Example:

FeO ferrous oxide (lower oxidation state)
Fe₂O₃ ferric oxide (higher oxidation state)

Cu₂S cupr*ous* sulfide CuS cupr*ic* sulfide

mercuric chloride and mercurous chloride are chlorides of mercury arsenic oxide and arsenous oxide are oxides of arsenic plumbic iodide and plumbous iodide are iodides of lead stannic bromide and stannous bromide are bromides of tin, etc

Important note: These suffixes have no absolute meaning. They just indicate the lower and the higher valence. Thus e.g. -ic means a valence of 2 in the case of copper and 3 in the case of iron. It is for this reason that Roman numerals are used.

C	NON-METALS (trivial names)
	Greek prefixes indicate the number of atoms of the element in the compound:
	mono-, di-[dai], tri-[trai], tetra-, penta-, hexa-, hepta-, octa-, nona-, deca-
	+ <i>-ide</i>

Examples:

•				
NO_2	nitrogen di oxide = nitrogen (IV) oxide	(1 atom of nitrogen, 2 atoms of oxygen)		
N_2O_4	di nitrogen tetr oxide = dimer of Nit. (IV) ox	ride		
N_2O_5	dinitrogen pentoxide = nitrogen (V) oxide			
СО	carbon mono xide			
CO ₂	carbon di oxide			
P_2O_3	(di)phosphorus trioxide			
OsO_4	osmium tetro xide			
P_2O_5	diphosphorus pentoxide			
PCl ₃	phosphorus tri chloride			
CCI ₄	carbon tetra chloride			
CS ₂	carbon di sulfide			

c) PEROXIDES (An oxide containing more oxygen than some other oxide of the same element).

H₂O₂ hydrogen peroxide Na₂O₂ sodium peroxide

Write the formulae of the following binary molecular compounds:

nitrogen monoxide	dichlorine monoxide
dinitrogen monoxide	tetraphosphorus decoxide
sulfur trioxide	oxygen difluoride
iron (II) sulphide	sodium peroxide
iron (III) sulphide	

Write the names for the following formulae:

PI_3	CaO
SbF ₅	$ZnCl_2$
P_2O_5	$FeCl_2$
SO_3	H_2O_2
FeCl ₃	SCl_2

Sources: 1. Adapted from Andrea Rozkošná's lesson plan.