Probabilistic and Statistical Models

Likelihood function

Statistical Inference I and II

Likelihood function

Stanislav Katina ${ }^{1}$
${ }^{1}$ Institute of Mathematics and Statistics, Masaryk University Honorary Research Fellow, The University of Glasgow

November 13, 2018

The natural logarithm of the likelihood function, called the log-likelihood, is defined as

$$
\ln (L(\theta \mid \mathbf{x}))=I(\theta \mid \mathbf{x})=\ln c+\ln (f(\theta \mid \mathbf{x})) .
$$

- The log-likelihood is more convenient to work with.
- We are searching for the maximum of likelihood function.
- Because the logarithm is a monotonically increasing function, the logarithm of a function achieves its maximum value at the same points as the function itself. Hence the log-likelihood can be used in place of the likelihood in finding the maximum.
- Finding the maximum of a function involves taking the (partial) derivative of a function, equaling it to zero, and solving for the parameter being maximised.

Definition (likelihood function)
For a statistical model \mathcal{F} where we expect the data $x \in \mathbb{R}$ to be observed, the function $L: \boldsymbol{\Theta} \rightarrow \mathbb{R}^{+} \cup\{0\}$, called likelihood function (likelihood), is defined as

$$
L(\theta \mid \mathbf{x})=L(\theta, \mathbf{x})=c(\mathbf{x}) f(\theta, \mathbf{x})
$$

where $c \in \mathbb{R}$ is independent of θ,

$$
f(\theta \mid \mathbf{x})=f(\theta, \mathbf{x})=\prod_{i=1}^{n} f\left(x_{i}, \theta\right)
$$

Likelihood $L(\theta \mid \mathbf{x})$ is used when describing a function of a parameter given an outcome.
Density (probability mass function) $f\left(x_{i}, \theta\right)=f\left(x_{i} \mid \theta\right)$ is used when describing a function of the outcome given a fixed parameter value.
Stanislav Katina Statistical Inference I and II
Probabilistic and Statistical Models
Likelihood function

Definition (maximum-likelihood estimate)

The estimate of a parameter $\theta, \widehat{\theta}_{M L}=\widehat{\theta}$, called maximum-likelihood estimate (MLE), is a value which maximises the likelihood function, i.e.

$$
\widehat{\theta}_{M L}=\arg \max _{\forall \theta} L(\theta \mid \mathbf{x})=\arg \max _{\forall \theta} I(\theta \mid \mathbf{x})
$$

The process of maximisation is called maximum-likelihood estimation:

- the first derivative of log-likelihood function (score function) $S(\theta)=\frac{\partial}{\partial \theta} /(\theta \mid \mathbf{x})$,
- likelihood equations (score equations) $S(\theta)=0$,
- the second derivative of log-likelihood function $\frac{\partial^{2}}{\partial \theta^{2}} /(\theta \mid \mathbf{x})$,
- the second derivative is negative at the point of maximum and the curvature in $\widehat{\theta}$ is equal to Fisher information $\mathcal{I}(\widehat{\theta})=-\left.\frac{\partial^{2}}{\partial \theta^{2}} I(\theta \mid \mathbf{x})\right|_{\theta=\widehat{\theta}}$.

Probabilistic and Statistical Models Likelihood function

- The curvature is inversely related to the variance of $\widehat{\theta}$, i.e. $\widehat{\operatorname{Var}[\hat{\theta}]}=1 / \mathcal{I}(\widehat{\theta})$.
- Since $X_{i}, i=1,2, \ldots, n$ are independent, $\mathcal{I}(\widehat{\theta})=n i(\widehat{\theta})$, where $i(\widehat{\theta})$ is a likelihood of one observation.

Ronald Aylmer Fisher (1890-1962) - English statistician, wrote in 1925:

What has now appeared is that the mathematical concept of probability is inadequate to express our mental confidence or diffidence in making such inferences, and that the mathematical quantity which appears to be appropriate measuring our order of preference among different possible populations, does not in fact obey the laws of probability. To distinguish it from probability, I have used the term "likelihood" to designate this quantity.

Probabilistic and Statistical Models

Profile relative likelihood and log-likelihood function

Probabilistic and Statistical Models
Profile likelihood and log-likelihood function
Let $\boldsymbol{\theta}=\left(\theta_{1}, \theta_{2}\right)^{T}$, where θ_{1} is the parameter of interest and θ_{2} a nuisance parameter. In some cases, the separation into two such components can be achieved after suitable reparametrisation.

If $\widehat{\theta}_{2 \mid \theta_{1}}$ denotes the value of θ_{2} which maximises the likelihood (or log-likelihood) function for the given value of θ_{1}, the profile likelihood function is defined as

$$
L_{P}\left(\theta_{1} \mid \mathbf{x}\right)=\max _{\forall \theta_{2}} L(\boldsymbol{\theta} \mid \mathbf{x})=L\left(\left(\theta_{1}, \widehat{\theta}_{2 \mid \theta_{1}}\right)^{T} \mid \mathbf{x}\right)
$$

and profile log-likelihood function as

$$
I_{P}\left(\theta_{1} \mid \mathbf{x}\right)=I_{\left(\left(\theta_{1}, \widehat{\theta}_{2 \mid \theta_{1}}\right)^{T} \mid \mathbf{x}\right)}
$$

The term "profile" comes about through thinking of the usual (log-)likelihood function as a hill being observed from a viewpoint with abscissa $\theta_{2}=\infty$, so that, for any fixed θ_{1}, only the highest value $L\left(\left(\theta_{1}, \widehat{\theta}_{2 \mid \theta_{1}}\right)^{T} \mid \mathbf{x}\right)$ or $I\left(\left(\theta_{1}, \widehat{\theta}_{2 \mid \theta_{1}}\right)^{T} \mid \mathbf{x}\right)$ is seen.

Probabilistic and Statistical Models

Profile relative likelihood and log-likelihood function
The estimated likelihood function is defined as

$$
L_{e}\left(\theta_{1} \mid \mathbf{x}\right)=L\left(\left(\theta_{1}, \widehat{\theta}_{2}\right)^{T} \mid \mathbf{x}\right)
$$

and estimated log-likelihood function as

$$
I_{e}\left(\theta_{1} \mid \mathbf{x}\right)=I\left(\left(\theta_{1}, \widehat{\theta}_{2}\right)^{T} \mid \mathbf{x}\right)
$$

Estimated relative likelihood function is defined as:

$$
\mathcal{L}_{e}\left(\theta_{1} \mid \mathbf{x}\right)=\frac{L\left(\left(\theta_{1}, \widehat{\theta}_{2}\right)^{T} \mid \mathbf{x}\right)}{L\left(\left(\widehat{\theta}_{1}, \widehat{\theta}_{2}\right)^{T} \mid \mathbf{x}\right)}
$$

and estimated relative log-likelihood function as

$$
\ln \mathcal{L}_{e}\left(\theta_{1} \mid \mathbf{x}\right)=\ln \frac{L\left(\left(\theta_{1}, \widehat{\theta}_{2}\right)^{T} \mid \mathbf{x}\right)}{L\left(\left(\widehat{\theta}_{1}, \widehat{\theta}_{2}\right)^{T} \mid \mathbf{x}\right)}
$$

Probabilistic and Statistical Models

Likelihood function of binomial distribution

Definition (likelihood and log-likelihood function of binomia

distribution)
Let X be binomially distributed with sample size N and parameter $\theta=p$, i.e. $X \sim \operatorname{Bin}(N, p)$. Realisations of X be $x=n$. Then the likelihood function is equal to

$$
L(p \mid x)=\prod_{i=1}^{N}\binom{N}{x_{i}} p^{x_{i}}(1-p)^{N-x_{i}}=p^{x}(1-p)^{N-x} \prod_{i=1}^{N}\binom{N}{x_{i}} .
$$

Since the product of binomial coefficients is not important in likelihood maximisation, only the kernel (often called likelihood as well) is used. Then

$$
L(p \mid x) \approx p^{x}(1-p)^{N-x}
$$

The log-likelihood function is equal to

$$
I(p \mid x)=x \ln p+(N-x) \ln (1-p) .
$$

Example (maximum-likelihood estimation of parameter p)

Let X be binomially distributed with sample size N and parameter $\theta=p$, i.e. $X \sim \operatorname{Bin}(N, p)$. Derive \widehat{p} and $\widehat{\operatorname{Var}[\hat{p}]}$.

Solution

$$
\begin{gathered}
S(p)=\frac{\partial}{\partial p} I(p \mid x)=\frac{x}{p}-\frac{N-x}{1-p} \text {, where if } S(p)=0, \text { then } \hat{p}=\frac{x}{N} . \\
\frac{\partial^{2}}{\partial p^{2}} I(p \mid x)=-\frac{x}{p^{2}}-\frac{N-x}{(1-p)^{2}}, \text { where if } \\
\left.\frac{\partial^{2}}{\partial p^{2}} I(p \mid x)\right|_{x=N \hat{p}}=-\frac{N \widehat{p}}{p^{2}}-\frac{N(1-\hat{p})}{(1-p)^{2}} .
\end{gathered}
$$

If $p=\hat{p}$, then

$$
\widehat{\operatorname{Var}[\widehat{p}]}=\frac{\widehat{p}(1-\widehat{p})}{N} .
$$

9/51

Probabilistic and Statistical Models

Likelihood function of binomial distribution

Example (maximal likelihood estimation of parameter p)

Generate in \mathbb{R} pseudo-random variables $X \sim \operatorname{Bin}(N, p)$, where $N=20$. Write \mathbb{R}-function to calculate likelihood function $L(p \mid x)$ of binomial distribution and visualise it for (1) $x=2, N=20$, (2) $x=10, N=20$ and (3) $x=18, N=20$. Repeat the same for log-likelihood function. Calculate also \hat{p} using function optimize () Draw all three functions in three side-by-side windows with highlighted maxima.

Solution (partial)

$L(p \mid x)=p^{x}(1-p)^{N-x}$, where $p \in(0,1), x=2, N=20$
$L(p \mid x)=p^{x}(1-p)^{N-x}$, where $p \in(0,1), x=10, N=20$
$L(p \mid x)=p^{x}(1-p)^{N-x}$, where $p \in(0,1), x=18, N=20$

Figure: Likelihood functions of binomial distribution $X \sim \operatorname{Bin}(N, p)$, where $N=20$

Figure: Log-likelihood functions of binomial distribution $X \sim \operatorname{Bin}(N, p)$, where $N=20$

Probabilistic and Statistical Models
Likelihood function of multinomial distribution

Example (maximum-likelihood estimation of parameter \mathbf{p})

Let \mathbf{X} be multinomially distributed with sample size N and parameter $\boldsymbol{\theta}=\mathbf{p}$, i.e. $\mathbf{X} \sim \operatorname{Mult}_{J}(N, \mathbf{p})$. Derive $\widehat{\mathbf{p}}$ and $\widehat{\operatorname{Var}[\widehat{\mathbf{p}}]}$

Solution

Let $p_{J}=1-\sum_{j=1}^{J-1} p_{j}$ and $\mathbf{p}=\left(p_{1}, p_{2}, \ldots, p_{J-1}\right)^{T}$
Then

$$
\begin{gathered}
I(\mathbf{p} \mid \mathbf{x})=\sum_{j=1}^{J-1} n_{j} \ln p_{j}+n_{J} \ln \left(1-\sum_{j=1}^{J-1} p_{j}\right), \\
(S(\mathbf{p}))_{j}=\frac{\partial}{\partial p_{j}} I(\mathbf{p} \mid \mathbf{x})=\frac{n_{j}}{p_{j}}-\frac{n_{J}}{p_{j}}, \text { where if }(S(\mathbf{p}))_{j}=0, \text { then } \widehat{p}_{j}=\frac{n_{j}}{N},
\end{gathered}
$$

where $(S(\mathbf{p}))_{j}$ are the elements of $S(\mathbf{p})$. Then

$$
\mathcal{I}(\mathbf{p})=-\frac{\partial}{\partial \mathbf{p}} S(\mathbf{p})=\operatorname{diag}\left(\frac{n_{1}}{p_{1}^{2}}, \frac{n_{2}}{p_{2}^{2}}, \ldots, \frac{n_{J-1}}{p_{J-1}^{2}}\right)+\frac{n_{J}}{p_{J}^{2}} \mathbf{1 1}^{\top} .
$$

Definition (likelihood and log-likelihood function of multinomial

 distribution)Let \mathbf{X} be multinomially distributed with sample size N and parameter $\boldsymbol{\theta}=\mathbf{p}$, i.e. $\mathbf{X} \sim \operatorname{Mult}_{J}(N, \mathbf{p})$. Realisations of X_{j} be $x_{j}=n_{j}$. Then the (kernel of) likelihood function is equal to

$$
L(\mathbf{p} \mid \mathbf{x})=\prod_{i=1}^{N} \frac{N!}{\prod_{j=1}^{J} x_{j}!} \prod_{j=1}^{J} p_{j}^{x_{j i}} \approx \prod_{j=1}^{J} p_{j}^{x_{j}}
$$

and the log-likelihood function is equal to

$$
I(\mathbf{p} \mid \mathbf{x})=\sum_{j=1}^{J} x_{j} \ln p_{j} .
$$

4/51
 Stanislav Katina
 Statistical Inference I and II

Probabilistic and Statistical Models

Likelihood function of multinomial distribution

$$
\mathcal{I}(\widehat{\mathbf{p}})=N\left(\operatorname{diag}\left(\frac{1}{\hat{p}_{1}}, \frac{1}{\hat{p}_{2}}, \ldots, \frac{1}{\hat{p}_{J-1}}\right)+\frac{11^{T}}{\hat{p}_{J}}\right) .
$$

Then

$$
\begin{gathered}
\mathcal{I}(\widehat{\mathbf{p}})=N\left(\begin{array}{ccccc}
\frac{1}{\hat{p}_{1}}+\frac{1}{\hat{p}_{J}} & \frac{1}{\hat{p}_{J}} & \frac{1}{\hat{p}_{J}} & \cdots & \frac{1}{\hat{p}_{J}} \\
\frac{1}{\hat{p}_{J}} & \frac{1}{\hat{p}_{2}}+\frac{1}{\hat{p}_{J}} & \frac{1}{\hat{p}_{J}} & \cdots & \frac{1}{\hat{p}_{J}} \\
\vdots & \vdots & \vdots & \vdots & \vdots \\
\frac{1}{\hat{p}_{J}} & \frac{1}{\hat{p}_{J}} & \cdots & \frac{1}{\hat{p}_{J}} & \frac{1}{\hat{p}_{J-1}}+\frac{1}{\hat{p}_{J}}
\end{array}\right), \\
\widehat{\operatorname{Var}[\widehat{\mathbf{p}}}=\mathcal{I}^{-1}(\widehat{\mathbf{p}})=\frac{1}{N}\left(\operatorname{diag}(\widehat{\mathbf{p}})-\hat{\mathbf{p}} \widehat{\mathbf{p}}^{T}\right) .
\end{gathered}
$$

Then

$$
\widehat{\operatorname{Var}[\hat{\mathbf{p}}]}=\frac{1}{N}\left(\begin{array}{cccc}
\widehat{p}_{1}\left(1-\widehat{p}_{1}\right) & -\widehat{p}_{1} \widehat{p}_{2} & \cdots & -\widehat{p}_{\widehat{p}^{2}} \widehat{p}_{J-1} \\
-\widehat{p}_{2} \widehat{p}_{1} & \widehat{p}_{2}\left(1-\widehat{p}_{2}\right) & \cdots & -\widehat{p}_{2} \hat{p}_{J-1} \\
\vdots & \vdots & \vdots & \vdots \\
-\widehat{p}_{J-1} \widehat{p}_{1} & -\widehat{p}_{J-1} \widehat{p}_{2} & \cdots & \widehat{p}_{J-1}\left(1-\widehat{p}_{J-1}\right)
\end{array}\right)
$$

Figure: Log-likelihood function of multinomial (trinomial) distribution

Probabilistic and Statistical Models

Likelihood function of Poisson distribution

Definition (likelihood and log-likelihood function of Poisson distribution)

Let X be distributed as Poisson with parameter $\theta=\lambda$, i.e.
$X \sim \operatorname{Poiss}(\lambda)$. Realisations of X_{j} be $x_{j}=n_{j}$. Then the (kernel of) likelihood function is equal to

$$
L(\lambda \mid \mathbf{x})=\prod_{i=1}^{N} \frac{\lambda^{x_{i}} e^{-\lambda}}{x_{i}!} \approx \lambda^{\sum_{i=1}^{N} x_{i}} e^{-N \lambda}
$$

and the log-likelihood function is equal to

$$
I(\lambda \mid \mathbf{x})=\sum_{i=1}^{N} x_{i} \ln \lambda-N \lambda
$$

In general notation (from examples), $L(\lambda \mid \mathbf{x})=\prod_{n} p_{n}^{m_{n}}$, where $p_{n}=\operatorname{Pr}(X=n)=e^{-\lambda} \lambda^{n} / n!$ and $I(\lambda \mid \mathbf{x})=\sum_{n} n m_{n} \ln \lambda-\lambda \sum_{n} m_{n}$.

8/51 Stanislav Katina Statistical Inference I and II

Probabilistic and Statistical Models

Likelihood function of Poisson distribution

Example (maximum-likelihood estimation)

Let X be distributed as Poisson with parameter $\theta=\lambda$, i.e.
$X \sim \operatorname{Poiss}(\lambda)$. Derive $\widehat{\lambda}$ and $\widehat{\operatorname{Var}[\widehat{\lambda}]}$.
Solution (partial)

$$
\begin{gathered}
S(\lambda)=\frac{\partial}{\partial \lambda} I(\lambda \mid \mathbf{x})=\frac{\sum_{i=1}^{N} x_{i}}{\lambda}-N \\
\frac{\partial^{2}}{\partial \lambda^{2}} I(\lambda \mid \mathbf{x})=-\frac{\sum_{i=1}^{N} x_{i}}{\lambda^{2}}
\end{gathered}
$$

Then

$$
\widehat{\lambda}=\frac{\sum_{i=1}^{N} x_{i}}{N}=\bar{x} \text { and } \widehat{\operatorname{Var}[\widehat{\lambda}]}=\frac{\bar{x}}{N} .
$$

In general notation, $\widehat{\lambda}=\frac{\sum_{n} n m_{n}}{\sum_{n} m_{n}}$.

Example (maximal likelihood estimation of parameter λ)

Write \mathbb{R}-function to calculate likelihood function $L(\lambda \mid x)$ and log-likelihood function $I(\lambda \mid x)$ of Poisson distribution $X \sim \operatorname{Poiss}(\lambda)$ for horse kick data. Calculate also $\widehat{\lambda}$ using function optimize (). Draw both functions in two side-by-side windows with highlighted maximum.

Solution (partial)

$I(\lambda \mid \mathbf{x})=\sum_{n} n m_{n} \ln \lambda-\lambda \sum_{n} m_{n}$, where $\lambda \in(0,2)$

Probabilistic and Statistical Models

Assignments in \mathbb{R}

Figure: Likelihood function $L(\lambda \mid \mathbf{x})$ (left) and log-likelohood function $I(\lambda \mid \mathbf{x})$ of Poisson distribution $X \sim \operatorname{Poiss}(\lambda)$ for horse kick data

Assignment number of boys:

Calculate \widehat{p} (the probability of having a boy in a family) and $\widehat{\operatorname{Var}[\hat{p}]}$ (the variance of probability of having a boy in a family)

Assignment killing by horse kick:

Calculate $\hat{\lambda}$ (the mean number of annual deaths) and $\widehat{\operatorname{Var}[\widehat{\lambda}]}$ (the variance of mean number of annual deaths).

Assignment accidents in a factory:
Calculate $\hat{\lambda}$ (the mean number of accidents in a factory) and $\widehat{\operatorname{Var}[\hat{\lambda}]}$ (the variance of mean number of accidents in a factory).

2/51 Stanislav Katina Statistical Inference I and II

Probabilistic and Statistical Models

Likelihood function of normal distribution

Definition (likelihood and log-likelihood function of normal distribution)

Let X be distributed normally with parameter $\boldsymbol{\theta}=\left(\mu, \sigma^{2}\right)^{T}$, i.e. $X \sim N\left(\mu, \sigma^{2}\right)$. Realisations of X_{i} be x_{i}. Then the likelihood function is equal to

$$
\begin{aligned}
L(\boldsymbol{\theta} \mid \mathbf{x}) & =\prod_{i=1}^{n} \frac{1}{\sqrt{2 \pi} \sigma} \exp \left(-\frac{1}{2}\left(\frac{x_{i}-\mu}{\sigma}\right)^{2}\right) \\
& =\frac{1}{\left(2 \pi \sigma^{2}\right)^{n / 2}} \exp \left(-\frac{1}{2 \sigma^{2}}\left(\sum_{i=1}^{n} x_{i}^{2}-2 \mu \sum_{i=1}^{n} x_{i}+n \mu^{2}\right)\right)
\end{aligned}
$$

and the log-likelihood function is equal to

$$
I(\theta \mid \mathbf{x})=-\frac{n}{2} \ln (2 \pi)-\frac{n}{2} \ln \sigma^{2}-\frac{1}{2 \sigma^{2}} \sum_{i=1}^{n}\left(x_{i}-\mu\right)^{2} .
$$

Probabilistic and Statistical Models
 Likelihood function of normal distribution

Example (maximum-likelihood estimation of parameters μ and σ^{2})

Let X be distributed normally with parameter $\boldsymbol{\theta}=\left(\mu, \sigma^{2}\right)^{T}$, i.e.

$$
X \sim N\left(\mu, \sigma^{2}\right) \text {. Derive } \widehat{\boldsymbol{\theta}}=\left(\widehat{\mu}, \widehat{\sigma}^{2}\right)^{T} \text { and } \operatorname{Var}[\widehat{\boldsymbol{\theta}}]=\widehat{\boldsymbol{\Sigma}} .
$$

Solution (partial)

$$
\begin{gathered}
S_{1}(\boldsymbol{\theta})=\frac{\partial}{\partial \mu} I(\boldsymbol{\theta} \mid \mathbf{x})=\frac{1}{\sigma^{2}} \sum_{i=1}^{n}\left(x_{i}-\mu\right), \\
S_{2}(\boldsymbol{\theta})=\frac{\partial}{\partial \sigma^{2}} I(\boldsymbol{\theta} \mid \mathbf{x})=-\frac{n}{2 \sigma^{2}}+\frac{1}{2 \sigma^{4}} \sum_{i=1}^{n}\left(x_{i}-\mu\right)^{2} .
\end{gathered}
$$

Then

$$
\widehat{\mu}=\bar{x}=\frac{1}{n} \sum_{i=1}^{n} x_{i}, \widehat{\sigma}^{2}=\frac{1}{n} \sum_{i=1}^{n}\left(x_{i}-\widehat{\mu}\right)^{2}, \text { and } \mathcal{I}(\widehat{\boldsymbol{\theta}})=\left(\begin{array}{cc}
\frac{n}{\widehat{\sigma}^{2}} & 0 \\
0 & \frac{n}{2 \widehat{\sigma}^{4}}
\end{array}\right) .
$$

Probabilistic and Statistical Models
Likelihood function of normal distribution

Figure: Profile likelihood functions (left, middle) and likelihood function (right) of normal distribution $X \sim N\left(\mu, \sigma^{2}\right)$, where $\mu=4, \sigma^{2}=1$ and $n=1000$; all functions multiplied by suitable constant

Example (maximal likelihood estimation of parameters μ and σ^{2})
Generate in \mathbb{R} pseudo-random variables $X \sim N\left(\mu, \sigma^{2}\right)$, where $\mu=4$, $\sigma^{2}=1$ and $n=1000$. Write \mathbb{R}-function to calculate (1) (profile) likelihood function $L_{P}(\mu \mid \mathbf{x})$ of normal distribution for generated data X, (2) (profile) likelihood function $L_{P}\left(\sigma^{2} \mid \mathbf{x}\right)$ of normal distribution for generated data X, and (3) likelihood function $L(\theta \mid \mathbf{x})$ of normal distribution for generated data X, where $\boldsymbol{\theta}=\left(\mu, \sigma^{2}\right)^{T}$. Repeat the same for log-likelihood function. Calculate also MLEs using functions optimize () and optim(). Draw all three functions in three side-by-side windows with highlighted maxima.

Solution (partial)
$I_{P}(\mu \mid \mathbf{x})=-\frac{n}{2} \ln (2 \pi)-\frac{n}{2} \ln \sigma_{\mu}^{2}-\frac{1}{2 \sigma_{\mu}^{2}}\left(\sum_{i=1}^{n} x_{i}^{2}-2 \mu \sum_{i=1}^{n} x_{i}+n \mu^{2}\right)$, where $\mu \in(2,6), \sigma_{\mu}=1$;
$I_{P}\left(\sigma^{2} \mid \mathbf{x}\right)=-\frac{n}{2} \ln (2 \pi)-\frac{n}{2} \ln \sigma^{2}-\frac{\sum_{i=1}^{n}\left(x_{i}-\mu_{\sigma}\right)^{2}}{2 \sigma^{2}}$, where $\mu_{\sigma}=4, \sigma \in(0.5,1.5)$;
$I(\boldsymbol{\theta} \mid \mathbf{x})=-\frac{n}{2} \ln (2 \pi)-\frac{n}{2} \ln \sigma^{2}-\frac{\sum_{i=1}^{n}\left(x_{i}-\mu\right)^{2}}{2 \sigma^{2}}$, where $\mu \in(2,6)$ and $\sigma \in(0.5,1.5)$.

26/51 Stanislav Katina Statistical Inference I and II

Probabilistic and Statistical Models
 Likelihood function of normal distribution

Figure: Profile log-likelihood functions (left, middle) and log-likelihood function (right) of normal distribution $X \sim N\left(\mu, \sigma^{2}\right)$, where $\mu=4, \sigma^{2}=1$ and $n=1000$; all functions are multiplied by suitable constant

Probabilistic and Statistical Models
Approximation of likelihood function

Figure: Likelihood (left) and log-likelihood (right) function of normal distribution $X \sim N\left(\mu, \sigma^{2}\right)$, where $\mu=4, \sigma^{2}=1$ and $n=1000$; all functions are multiplied by suitable constant

Definition (relative likelihood and log-likelihood function)
Relative likelihood function is defined as

$$
\mathcal{L}(\theta \mid \mathbf{x})=\frac{L(\theta \mid \mathbf{x})}{L(\widehat{\theta} \mid \mathbf{x})}
$$

and relative log-likelihood function as

$$
\ln \mathcal{L}(\theta \mid \mathbf{x})=\ln \frac{L(\theta \mid \mathbf{x})}{L(\widehat{\theta} \mid \mathbf{x})}
$$

- It is often useful that likelihood function could be approximated by a quadratic function.
- But additionally to the location of maxima of likelihood function, we need the curvature around maximum.
- Since the log-likelihood, is more convenient to work with, we need a quadratic approximation of log-likelihood function.

29/51 Stanislav Katina Statistical Inference I and II

Probabilistic and Statistical Models Approximation of likelihood function

Definition (Taylor polynomial of order r)

If a function $g(x)$ has derivatives of order r, that is, $g^{(r)}(x)=\frac{\partial^{r}}{\partial x^{r}} g(x)$ exists, then for any constant a, the Taylor polynomial of order r about a is

$$
T_{r}(x)=\sum_{j=0}^{r} \frac{g^{(j)}(a)}{j!}(x-a)^{j}
$$

In practical statistical situations we assume that the remainder $g(x)-T_{r}(x)$ converges to zero as r increases, therefore we are going to ignore it. There are many explicit forms, one of the most useful is

$$
g(x)-T_{r}(x)=\int_{a}^{x} \frac{g^{(r+1)}(t)}{r!}(x-t)^{r} d t
$$

If $g^{(r)}(a)=\left.\frac{\partial^{r}}{\partial x^{r}} g(x)\right|_{x=a}$ exists, then

$$
\lim _{x \rightarrow a} \frac{g(x)-T_{r}(x)}{(x-a)^{r}}=0
$$

30/51

Probabilistic and Statistical Models

Approximation of likelihood function

The quadratic approximation of log-likelihood function about $\hat{\theta}$ is defined as

$$
I(\theta \mid \mathbf{x}) \approx I(\widehat{\theta} \mid \mathbf{x})+S(\widehat{\theta})(\theta-\widehat{\theta})-\frac{1}{2} \mathcal{I}(\widehat{\theta})(\theta-\widehat{\theta})^{2}
$$

The quadratic approximation of relative log-likelihood function

 about $\hat{\theta}$ is defined as$$
\ln \mathcal{L}(\theta \mid \mathbf{x})=\ln \frac{L(\theta \mid \mathbf{x})}{L(\widehat{\theta} \mid \mathbf{x})}=I(\theta \mid \mathbf{x})-I(\widehat{\theta} \mid \mathbf{x}) \approx-\frac{1}{2} \mathcal{I}(\widehat{\theta})(\theta-\widehat{\theta})^{2} .
$$

It is often useful to visualise a derivative of the quadratic approximation $S(\theta) \approx-\mathcal{I}(\widehat{\theta})(\theta-\widehat{\theta})$ or $-\mathcal{I}^{-1 / 2}(\widehat{\theta}) S(\theta) \approx \mathcal{I}^{1 / 2}(\widehat{\theta})(\theta-\widehat{\theta})$, where $-\mathcal{I}^{-1 / 2}(\widehat{\theta}) S(\theta)$ is visualised against $\mathcal{I}^{1 / 2}(\widehat{\theta})(\theta-\widehat{\theta})$. If the quadratic approximation is correct, this should be a line with slope equal to one.

Figure: Relative binomial log-likelihood, its quadratic approximation (top) and linearity of score function (bottom)

Probabilistic and Statistical Models

Numerical maximisation of likelihood function
The iterative process is defined as follows:
O initialisation step - starting point $\theta^{(0)}$, where $\mathcal{I}\left(\theta^{(0)}\right) \neq 0$,
(2) updating equations - iteration of

$$
\theta^{(i)}=\theta^{(i-1)}+\frac{S\left(\theta^{(i-1)}\right)}{\mathcal{I}\left(\theta^{(i-1)}\right)}
$$

where $\mathcal{I}\left(\theta^{(i-1)}\right) \neq 0$, for $i=1,2, \ldots$
(3) stopping rule based on absolute convergence criteria - until $\left|I\left(\theta^{(i)} \mid \mathbf{x}\right)-I\left(\theta^{(i-1)} \mid \mathbf{x}\right)\right|<\epsilon$, where the threshold ϵ is sufficiently small

Geometrical interpretation: $\theta^{(i)}$ is a crossing point of tangent of score function $S(\cdot)$ in the point $\left[\theta^{(i-1)}, S\left(\theta^{(i-1)}\right)\right]$ with x-axis. $\ln \mathbb{R}^{R}$:

- optimize (f,interval, maximum = FALSE, tol,...)
- Newton-Raphson method is combined here with golden section method and successive parabolic interpolation to speed up the convergence.

Isaac Newton (1643-1727) and Joseph Raphson (1648-1715).

Definition (Newton-Raphson method)

Having quadratic approximation of log-likelihood function about θ_{0}

$$
I(\theta \mid \mathbf{x}) \approx I\left(\theta_{0} \mid \mathbf{x}\right)+S\left(\theta_{0}\right)\left(\theta-\theta_{0}\right)-\frac{1}{2} \mathcal{I}\left(\theta_{0}\right)\left(\theta-\theta_{0}\right)^{2}
$$

or linear approximation of score function about θ_{0}

$$
S(\theta) \approx S\left(\theta_{0}\right)-\mathcal{I}\left(\theta_{0}\right)\left(\theta-\theta_{0}\right)
$$

the numerical maximisation can be done via iterative function

$$
\theta_{0}+\frac{S\left(\theta_{0}\right)}{\mathcal{I}\left(\theta_{0}\right)}
$$

I Inference I and II

Probabilistic and Statistical Models

Numerical maximisation of likelihood function

Definition (multivariate Newton-Raphson method)

Having quadratic approximation of log-likelihood function about θ_{0}

$$
I(\theta \mid \mathbf{x}) \approx I\left(\boldsymbol{\theta}_{0} \mid \mathbf{x}\right)+S\left(\boldsymbol{\theta}_{0}\right)\left(\boldsymbol{\theta}-\boldsymbol{\theta}_{0}\right)-\frac{1}{2}\left(\boldsymbol{\theta}-\boldsymbol{\theta}_{0}\right)^{T} \mathcal{I}\left(\boldsymbol{\theta}_{0}\right)\left(\boldsymbol{\theta}-\boldsymbol{\theta}_{0}\right)
$$

or linear approximation of score function about θ_{0}

$$
S(\theta) \approx S\left(\theta_{0}\right)-\mathcal{I}\left(\theta_{0}\right)\left(\theta-\theta_{0}\right)
$$

the numerical maximisation can be done via iterative function

$$
\boldsymbol{\theta}_{0}+\left(\mathcal{I}\left(\boldsymbol{\theta}_{0}\right)\right)^{-1} S\left(\boldsymbol{\theta}_{0}\right)
$$

Probabilistic and Statistical Models

Numerical maximisation of likelihood function

The iterative process is defined as follows:

- initialisation step - starting point $\boldsymbol{\theta}^{(0)}$, where $\mathcal{I}\left(\boldsymbol{\theta}^{(0)}\right) \neq \mathbf{0}$,(2) updating equations - iteration of

$$
\boldsymbol{\theta}^{(i)}=\boldsymbol{\theta}^{(i-1)}+\left(\mathcal{I}\left(\boldsymbol{\theta}^{(i-1)}\right)\right)^{-1} S\left(\boldsymbol{\theta}^{(i-1)}\right),
$$

where $\mathcal{I}(\boldsymbol{\theta})$ is regular, i.e. $\operatorname{det}\left(\mathcal{I}\left(\boldsymbol{\theta}^{(i-1)}\right)\right) \neq \mathbf{0}$, for $i=1,2, \ldots$
(3) stopping rule based on absolute convergence criteria - until $\left|I\left(\boldsymbol{\theta}^{(i)} \mid \mathbf{x}\right)-I\left(\boldsymbol{\theta}^{(i-1} \mid \mathbf{x}\right)\right|<\epsilon$, where the threshold ϵ is sufficiently small

In \mathbb{R} :

O optim(par,fn,gr,method, control,hessian =FALSE, . . .)

- Newton-Raphson method is often modified - Fisher scoring method, quasi Newton method, Broyden-Fletcher-Goldfarb-Shannon (BFGS) method

Probabilistic and Statistical Models
Numerical maximisation of likelihood \approx minimising negative log-likelihood

Nelder-Mead method (method of simplexes) - the idea of "jumps" across triangles defined by the points $\boldsymbol{\theta}_{1}^{(i-1)}, \boldsymbol{\theta}_{2}^{(i-1)}, \boldsymbol{\theta}_{3}^{(i-1)}$, where
$-l\left(\boldsymbol{\theta}_{1}^{(i-1)} \mid \mathbf{x}\right)<-l\left(\boldsymbol{\theta}_{2}^{(i-1)} \mid \mathbf{x}\right)<-l\left(\boldsymbol{\theta}_{3}^{(i-1)} \mid \mathbf{x}\right)$. We are substituting point $\boldsymbol{\theta}_{1}^{(i-1)}$ with a "better" point $\boldsymbol{\theta}_{1}^{(i)}$, where $-l\left(\boldsymbol{\theta}_{1}^{(i)} \mid \mathbf{x}\right)<-l\left(\boldsymbol{\theta}_{1}^{(i-1)} \mid \mathbf{x}\right)$. Then new point is defined based on reflection (point symmetry), contraction or extrapolation (expansion) asreflection: $\mathbf{z}_{1}=\boldsymbol{\theta}_{1}^{(i)}=\boldsymbol{\theta}_{23}^{(i-1)}+1\left(\boldsymbol{\theta}_{23}^{(i-1)}-\boldsymbol{\theta}_{1}^{(i-1)}\right)$,reflection and expansion: $\mathbf{z}_{2}=\boldsymbol{\theta}_{1}^{(i)}=\boldsymbol{\theta}_{23}^{(i-1)}+2\left(\boldsymbol{\theta}_{23}^{(i-1)}-\boldsymbol{\theta}_{1}^{(i-1)}\right)$,reflection and contraction: $\mathbf{z}_{3}=\boldsymbol{\theta}_{1}^{(i)}=\boldsymbol{\theta}_{23}^{(i-1)}+\frac{1}{2}\left(\boldsymbol{\theta}_{23}^{(i-1)}-\boldsymbol{\theta}_{1}^{(i-1)}\right)$,contraction $\mathrm{A}: \mathbf{Z}_{4}=\boldsymbol{\theta}_{2}^{(i)}=\boldsymbol{\theta}_{1}^{(i-1)}+\frac{1}{2}\left(\boldsymbol{\theta}_{2}^{(i-1)}-\boldsymbol{\theta}_{1}^{(i-1)}\right)$ and B :

$$
\mathbf{z}_{5}=\boldsymbol{\theta}_{3}^{(i)}=\boldsymbol{\theta}_{1}^{(i-1)}+\frac{1}{2}\left(\boldsymbol{\theta}_{3}^{(i-1)}-\boldsymbol{\theta}_{1}^{(i-1)}\right),
$$

where $\boldsymbol{\theta}_{23}^{(i-1)}=\frac{\boldsymbol{\theta}_{2}^{(i-1)}+\boldsymbol{\theta}_{3}^{(i-1)}}{2}$, i.e. the mid-point of the line defined by the points $\boldsymbol{\theta}_{2}^{(i-1)}$ and $\boldsymbol{\theta}^{(i-1)}$. If $-l\left(\boldsymbol{\theta}_{1}^{(i)} \mid \mathbf{x}\right)<-I\left(\boldsymbol{\theta}_{1}^{(i-1)} \mid \mathbf{x}\right)$ then new triangle is defined with $\boldsymbol{\theta}_{1}^{(i)}, \boldsymbol{\theta}_{2}^{(i-1)}, \boldsymbol{\theta}_{3}^{(i-1)}$ for (1) to (3). Otherwise new triangle is $\boldsymbol{\theta}_{1}^{(i-1)}, \boldsymbol{\theta}_{2}^{(i)}, \boldsymbol{\theta}_{3}^{(i)}$.

Probabilistic and Statistical Models

Numerical maximisation of likelihood \approx minimising negative log-likelihood

Stanislav Katina Statistical Inference I and II

Probabilistic and Statistical Models

Numerical maximisation of likelihood \approx minimising negative log-likelihood

Figure: Demonstration of Nelder-Mead method of minimising the function $\left((x-y)^{2}+(x-2)^{2}+(y-3)^{4}\right) / 10$, number of iterations is 49

Given data $\mathbf{x}=\left(x_{1}, x_{2}, \ldots, x_{n}\right)^{\top}$, the log-likelihood function $L(\boldsymbol{\theta} \mid \mathbf{x})=\prod_{i=1}^{n} f\left(x_{i}, \boldsymbol{\theta}\right)$, where $\boldsymbol{\theta}=\left(p, \mu_{1}, \mu_{2}, \sigma_{1}^{2}, \sigma_{2}^{2}\right)^{T}$, must be maximised numerically. One complication is that $I(\boldsymbol{\theta} \mid \mathbf{x})$ is unbounded. To see how this can happen, fix p, μ_{2} and σ_{2}^{2} at any set values, with the exception that p is not equal to 0 or 1 . Denote these fixed values by $p_{*}, \mu_{2, *}$ and $\sigma_{2, *}^{2}$, respectively. Now, set $\mu_{1}=x_{i}$ for any choice of $i \in\{1,2, \ldots, n\}$. This leaves only σ_{1}^{2} unspecified, and $\boldsymbol{\theta}_{\sigma_{1}^{2}}=\left(p_{*}, x_{i}, \mu_{2, *}, \sigma_{1}^{2}, \sigma_{2, *}^{2}\right)^{T}$ can be used to denote the parameter vector with the values of the other parameters fixed as described. When $\boldsymbol{\theta}=\boldsymbol{\theta}_{\sigma_{1}^{2}}$, the binormal density function evaluated

$$
f\left(x_{i}, \theta_{\sigma_{1}^{2}}\right)=\frac{p_{*}}{\sqrt{2 \pi} \sigma_{1}}+\frac{1-p_{*}}{\sqrt{2 \pi} \sigma_{2, *}} \exp \left(-\frac{\left(\mu_{1}-\mu_{2, *}\right)^{2}}{2 \sigma_{2, *}^{2}}\right)
$$

Note that $f\left(x_{i}, \boldsymbol{\theta}_{\sigma_{1}^{2}}\right)$ can be made arbitrarily large by making σ_{1} arbitrarily small.

Since $L\left(\boldsymbol{\theta}_{\sigma_{1}^{2}} \mid \mathbf{x}\right)=\prod_{i=1}^{n} f\left(x_{i}, \boldsymbol{\theta}_{\sigma_{1}^{2}}\right)$, and each $f\left(x_{i}, \boldsymbol{\theta}_{\sigma_{1}^{2}}\right)$ is bounded away from zero (by virtue of $p_{*}, \mu_{2, *}$ and $\sigma_{2, *}^{2}$ being fixed), it follows that $I\left(\boldsymbol{\theta}_{\sigma_{1}^{2}} \mid \mathbf{x}\right)$ can also be made arbitrarily large.

A further problem is that the parametrisation of the binormal model is not identifiable because the role of the two distributions in the mixture can be swapped. That is, the binormal distribution corresponding to parameters $\left(p, \mu_{1}, \mu_{2}, \sigma_{1}^{2}, \sigma_{2}^{2}\right)$ is the same as that specified by parameters $\left(1-p, \mu_{1}, \mu_{2}, \sigma_{1}^{2}, \sigma_{2}^{2}\right)$.
41/51 Stanislav Katina Statistical Inference I and II

Probabilistic and Statistical Models

Mixture of two univariate normal distribution - likelihood estimation

The unbounded likelihood and non-identifiability issues can be eliminated by suitable restriction on the parameter space. One possibility is to constrain the ratio of the two standard deviations by requiring that $0<c<\frac{\sigma_{1}^{2}}{\sigma_{2}^{2}}<1$, where c is some suitably small constant.

In practice, despite the unbounded likelihood and non-identifiability, a sensible local maximum of the likelihood function can often be found using unconstrained numerical optimisation. This is especially the case if there is good separation between the two component normal distributions, and the optimizer is given a starting value of θ that is somewhere in the general vicinity of the local maximum. Ultimately, it is the shape of the likelihood function in the neighbourhood of this local maximum that is relevant to inference.

2/51 Stanislav Katina
 Statistical Inference I and II

Probabilistic and Statistical Models

Mixture of two univariate normal distribution - likelihood estimation
The binormal density function is a linear combination of the density functions given by $N\left(\mu_{1}, \sigma_{1}^{2}\right)$ and $N\left(\mu_{2}, \sigma_{2}^{2}\right)$ distributions.

Figure: Mixture of two normal densities - data faithful

The histogram of waiting times shows that they look like a combination of (very roughly) 40% from $N(52,25)$ distribution and 60% from $N(80,25)$ distribution. The corresponding parameter values $\theta^{(0)}=(0.4,52,80,25,25)^{T}$ would make good starting values for finding a local MLE using numerical optimisation. To estimate $\boldsymbol{\theta}$, use optim() function.

The call of optim() produced some warning messages (not shown), because it attempted to evaluate negative log-likelihood at parameter values outside of the parameter space (e.g. $\sigma_{1}, \sigma_{2}<0$). This can be avoided by using lower and upper bound arguments in the optim() call.

Probabilistic and Statistical Models Negative binomial distribution

Likelihood function is defined as follows

$$
L\left((\alpha, \pi)^{T} \mid \mathbf{x}\right)=\prod_{n=0}^{4}(\operatorname{Pr}(X=n))^{m_{n}}\left(1-\sum_{n=0}^{4} \operatorname{Pr}(X=n)\right)^{m_{\geq 5}}
$$

and logarithm of likelihood function

$$
I\left((\alpha, \pi)^{T} \mid \mathbf{x}\right)=\sum_{n=0}^{4} m_{n} \ln \operatorname{Pr}(X=n)+m_{\geq 5} \ln \left(1-\sum_{n=0}^{4} \operatorname{Pr}(X=n)\right)
$$

Using numerical optimisation we get the following estimates $\widehat{\alpha}=0.84$ and $\widehat{\pi}=0.64$. Risk ratio $\widehat{\mu}=\frac{1-\widehat{\pi}}{\widehat{\pi}} \widehat{\alpha}=0.47$.

Example (Negative binomial distribution; accidents in the factories)
Let X be the number of workers having an accident in the munition factories in England during First World War (Greenwood and Yule 1920), n be the number of accidents, m_{n} be the number of workers with particular number of accidents, $M=\sum m_{n}=647$. Question: Calculate theoretical frequencies $m_{n, E}$.

Table: Observed and theoretical frequencies ($m_{n, O}$ and $m_{n, E}$) of workers with n accidents

n	0	1	2	3	4	≥ 5
$m_{n, O}$	447	132	42	21	3	2
$m_{n, E}$	446	134	44	15	5	3

Probabilistic and Statistical Models
 Negative binomial distribution

Figure: Comparison of observed and expected frequencies (negative binomial distribution)

Example (ZIP distribution; number of movements of a foetal lamb)

Let X be the number of movements of a foetal lamb in 240
five-second periods (Leroux and Puterman 1992), n be the number of movements, m_{n} be the number of periods with particular number of movements. Question: Calculate theoretical frequencies $m_{n, E}$ using Poisson and ZIP distribution.

Table: Observed and theoretical frequencies ($m_{n, O}$ and $m_{n, E}$) of five-second periods with n movements

n	0	1	2	3	4	5	6	7
$m_{n, 0}$	182	41	12	2	2	0	0	1
$m_{n, E}$ (Poisson)	168	60	11	1	0	0	0	0
$m_{n, E}$ (ZIP)	182	37	16	4	1	0	0	0

Likelihood function is defined as follows

$$
L\left((\lambda, p)^{T} \mid \mathbf{x}\right)=(p+(1-p) f(0, \lambda))^{m_{0}} \prod_{I(n>0)}((1-p) f(n, \lambda))^{m_{n}}
$$

and logarithm of likelihood function

$$
I\left((\lambda, p)^{T} \mid \mathbf{x}\right)=m_{0} \ln (p+(1-p) f(0, \lambda))+\sum_{I(n>0)} m_{n} \ln ((1-p) f(x, \lambda)) .
$$

For Poisson model, $\widehat{\lambda}=\frac{\sum_{n} n m_{n}}{\sum_{n} m_{n}}=\frac{86}{240}=0.358$. For ZIP model, using numerical optimisation we get the following estimates $\widehat{\lambda}=0.847$ a $\widehat{p}=0.577$.

Figure: Comparison of observed and expected frequencies, Poisson distribution (left), ZIP distribution (right)

Probabilistic and Statistical Models

Zero-inflated Poisson (ZIP) distribution

