Statistical Inference I and II
 Probabilistic and Statistical Models

Stanislav Katina ${ }^{1}$

${ }^{1}$ Institute of Mathematics and Statistics, Masaryk University Honorary Research Fellow, The University of Glasgow

November 13, 2018
${ }^{\text {1/1/52 }}$ Probabilistic and Stanstistical Models

- based on probabilistic sampling principles, the individuals are sampled from a population
- attribute - a specific value of a variable
- with certain precision, data are measured on individuals
- descriptive statistics - describing and summarising data
- inferential statistics (statistical inference) - inferring (drawing conclusions) about random variable based on a model fitted to data
- \mathcal{F} is a set of models (probabilistic or statistical)
- X is characterised by a model $F(\cdot), F \in \mathcal{F}$
- $\left(X_{1}, X_{2}\right)^{\top}$ is characterised by a model $F^{(2)}(\cdot), F \in \mathcal{F}$
- $\left(X_{1}, X_{2}, \ldots, X_{k}\right)^{T}$ is characterised by a model $F^{(k)}(\cdot), F \in \mathcal{F}$
- parameter - a numerical quantity that characterises a model - one-dimensional parameter θ, k-dimensional vector of parameters $\boldsymbol{\theta}=\left(\theta_{1}, \theta_{2}, \ldots, \theta_{k}\right)^{T}$
- random variable and random vector
- random variable X is a function from a sample space to a set of real numbers $X: \mathcal{Y} \rightarrow \mathbb{R}$ (a set of all possible outcomes)
- 2-dimensional random vector $\left(X_{1}, X_{2}\right)^{T}: \mathcal{Y} \rightarrow \mathbb{R}^{2}$
- k-dimensional random vector $\left(X_{1}, X_{2}, \ldots, X_{k}\right)^{\top}: \mathcal{Y} \rightarrow \mathbb{R}^{k}$
- data - data vector and data matrix - the elements of a vector and the rows of a matrix are measured on individuals (statistical units)
- data as realisations of $X-n$-dimensional vector $\mathbf{x}=\left(x_{1}, x_{2}, \ldots, x_{n}\right)^{T}$, where n is a sample size
- data as realisations of $\left(X_{1}, X_{2}\right)^{T}-(n \times 2)$-dimensional matrix with rows $\left(x_{i 1}, x_{i 2}\right)^{\top}, i=1,2, \ldots, n$ and columns \mathbf{x}_{1} and \mathbf{x}_{2}
- data as realisations of $\left(X_{1}, X_{2}, \ldots, X_{k}\right)^{T}$ $(n \times k)$-dimensional matrix with rows $\left(x_{i 1}, x_{i 2}, \ldots, x_{i k}\right)^{\top}$, $i=1,2, \ldots, n$ and columns $\mathbf{x}_{1}, \mathbf{x}_{2}$ and \mathbf{x}_{k}

Probabilistic and Statistical Models

Distribution function, probability and density function

- useful assumption - $X_{i}, i=1,2, \ldots, n$, are independently identically distributed random variables
- distribution function
- discrete random variable

$$
F_{X}(x)=\operatorname{Pr}(X \leq x)=\sum_{i: x i \leq x} \operatorname{Pr}\left(X=x_{i}\right),
$$

where $\sum_{i=1}^{k(\infty)} p_{i}=1, \operatorname{Pr}\left(X=x_{i}\right)=p_{i}=f_{X}\left(x_{i}\right)=f\left(x_{i}\right), \forall x_{i}$, where p_{i} is probability mass function; $\left\{x_{i}, p_{i}\right\}_{i=1}^{k(\infty)}, k \in \mathbb{N}^{+}$

- continuous random variable

$$
F_{X}(x)=\int_{-\infty}^{x} f(t) d t, f(x) \geq 0,
$$

where $\int_{-\infty}^{\infty} f(x) d x=1, f_{X}(x)=f(x)=\frac{\partial}{\partial x} F_{X}(x)$ is density function

Probabilistic and Statistical Models
 Parametric and non-parametric model

- Θ is a parametric space, the support of $F(\cdot ; \theta)$ is
$\mathcal{Y}_{\boldsymbol{\theta}} \subseteq \mathbb{R}^{n}$ (the smallest set, where the distribution function is defined); sample space $\mathcal{Y}=\cup_{\boldsymbol{\theta} \in \boldsymbol{\Theta}} \mathcal{Y}_{\boldsymbol{\theta}}$
- \mathcal{F} as a parametric set of distribution functions

$$
\mathcal{F}=\left\{F(\cdot ; \boldsymbol{\theta}): \boldsymbol{\theta} \in \boldsymbol{\Theta} \subseteq \mathbb{R}^{k}\right\},
$$

- \mathcal{F} as a parametric set of probability or density functions

$$
\mathcal{F}=\left\{f(\cdot ; \boldsymbol{\theta}): \boldsymbol{\theta} \in \boldsymbol{\Theta} \subseteq \mathbb{R}^{k}\right\}
$$

- \mathcal{F} as non-parametric set

$$
\mathcal{F}=\{\text { a set of all density functions }\},
$$

alternatively, probability or distribution function can be used

- the term "probability model" is often reduced to "distribution"
- "Random variable X is distributed as $F(x)$ " or "random variable X is characterised by distribution $F(x)$ ", notation $X \sim F_{X}(x)$; symbol " \sim " means "asymptotically", "for sufficiently large n " (notation $X \sim f_{X}(X)$ is used very rarely)
- "Random variable X is distributed as random variable Y " or "Random variable X and Y are identically distributed" (notation $X \sim Y$ or $F_{X}(x) \sim F_{Y}(y)$
- the term "statistical model" is often reduced to "model" (usually referred as causal statistical model or model of causal dependence)
- " Y depends on X ", where X is independent variable and Y is dependent variable (notation $Y \mid X$)

5/152 Stanislav Katina	Statistical Inference I and II	6/152	Stanislav Katina	Statistical Inference I and II
Probabilistic and Statistical Reading of mathematical notation	Models	Probabilistic and Statistical Models Measures of normal distribution		

- " X is normally distributed with parameters μ and σ^{2} ", notation $X \sim N\left(\mu, \sigma^{2}\right)$, where $\boldsymbol{\theta}=\left(\mu, \sigma^{2}\right)^{T}$
- " $\mathbf{X}=\left(X_{1}, X_{2}\right)^{T}$ is characterised by bivariate normal distribution with parameters $\mu_{1}, \mu_{2}, \sigma_{1}^{2}, \sigma_{2}^{2}$ and ρ ", notation $X \sim N_{2}(\boldsymbol{\mu}, \boldsymbol{\Sigma})$, where $\boldsymbol{\theta}=\left(\mu_{1}, \mu_{2}, \sigma_{1}^{2}, \sigma_{2}^{2}, \rho\right)^{T}$
- " $\mathrm{X}=\left(X_{1}, X_{2}, \ldots, X_{k}\right)^{T}$ is characterised by multivariate normal distribution with parameters $\mu_{1}, \mu_{2}, \ldots, \mu_{k}, \sigma_{1}^{2}, \sigma_{2}^{2}$, \ldots, σ_{k}^{2}, and $\rho_{1,2}, \ldots, \rho_{k-1, k}$, ", notation $X \sim N_{k}(\boldsymbol{\mu}, \boldsymbol{\Sigma})$, where $\boldsymbol{\theta}=\left(\mu_{1}, \mu_{2}, \ldots, \mu_{k}, \sigma_{1}^{2}, \sigma_{2}^{2}, \ldots, \sigma_{k}^{2}, \rho_{1,2}, \ldots, \rho_{k-1, k}\right)^{T}$
- " X is binomially distributed with parameter p ", notation $X \sim \operatorname{Bin}(N, p)$, where $\theta=p$
- " X is characterised by distribution with parameter λ ", notation $X \sim \operatorname{Poiss}(\lambda)$, where $\theta=\lambda$
- " $\mathbf{X}=\left(X_{1}, X_{2}, \ldots, X_{k}\right)^{T}$ is multinomially distributed with parameter \mathbf{p} ", notation $\mathbf{X} \sim \operatorname{Mult}_{k}(N, \mathbf{p})$, where $\boldsymbol{\theta}=\mathbf{p}$
- " X is normally distributed with parameters μ and $\sigma^{2 "}$, notation $X \sim \mathcal{N}\left(\mu, \sigma^{2}\right)$, where $\boldsymbol{\theta}=\left(\mu, \sigma^{2}\right)^{T}$
- Random variable Z (Z-transformation) $\operatorname{Pr}\left(Z=\frac{X-\mu}{\sigma}<x_{1-\alpha}\right)=1-\alpha, Z \sim N(0,1)$
- Rule "90-95-99"
$\operatorname{Pr}(a \leq X \leq b)=1-\alpha$, where $1-\alpha=0.90,0.95$ and $0.99, a=\mu-x_{1-\frac{\alpha}{2}} \sigma$ and $b=\mu+x_{1-\frac{\alpha}{2}} \sigma$
- Rule " 68.27 - 95.45 - 99.73 "
$\operatorname{Pr}(a \leq X<b)=\operatorname{Pr}(X<b)-\operatorname{Pr}(X<a)=F_{X}(b)-F_{X}(a)$,
where $a=\mu-k \sigma, b=\mu+k \sigma, k=1,2$ and 3

Definition (approximation of binomial distribution by normal

 distribution)If random variable X is binomially distributed with parameter p, $X \sim \operatorname{Bin}(N, p)$, where $\theta=p$, if $N p>5$ and $N q>5$, where $q=1-p$, then the distribution of random variable X can be approximated by normal distribution, $X \sim N(N p, N p q)$, where $\boldsymbol{\theta}=(N p, N p q)^{\top}$.

Definition (approximation of binomial distribution by normal distribution, Hald condition)
If random variable X is binomially distributed with parameter p, $X \sim \operatorname{Bin}(N, p)$, where $\theta=p$, if $N p q>9$ (Hald condition), where $q=1-p$, then the distribution of random variable X can be approximated by normal distribution, $X \sim N(N p, N p q)$, where $\theta=(N p, N p q)^{\top}$.

Table: Examples of minimal N for fixed p

p	0.1	0.2	0.3	0.4	0.5
q	0.9	0.8	0.7	0.6	0.5
N	51	26	17	13	11

9/152 Stanislav Katina Statistical Inference I and II

Probabilistic and Statistical Models
Approximation of binomial distribution by normal distribution

Example

Let $\operatorname{Pr}($ male $)=0.515$ and $\operatorname{Pr}($ female $)=0.485$. Let X be the frequency of males and Y frequency of females. Assuming that $X \sim \operatorname{Bin}(N, p)$, calculate (a) $\operatorname{Pr}(X \leq 3)$, if $N=5$, (b) $\operatorname{Pr}(X \leq 5)$, if $N=10$ and (c) $\operatorname{Pr}(X \leq 25)$, if $N=50$. Compare the results with normal approximation $X \sim N(N p, N p q)$.

Solution

(a) $E[X]=N p=5 \times 0.515=2.575, E[Y]=5 \times 0.485=2.425$, $\operatorname{Pr}(X \leq 3)=\sum_{k \leq 3}\binom{5}{k} 0.515^{k} 0.485^{5-k}=0.793$,
$\operatorname{Pr}(X \leq 3)=0.648, N(5 \times 0.515,5 \times 0.515 \times 0.485)$.
(b) $E[X]=10 \times 0.515=5.15, E[Y]=10 \times 0.485=4.85$,
$\operatorname{Pr}(X \leq 5)=\sum_{k \leq 5}\binom{10}{k} 0.515^{k} 0.485^{10-k}=0.586$,
$\operatorname{Pr}(X \leq 5)=0.462, N(10 \times 0.515,10 \times 0.515 \times 0.485)$.
(c) $E[X]=50 \times 0.515=25.75, E[Y]=50 \times 0.485=24.25$,
$\operatorname{Pr}(X \leq 25)=\sum_{k \leq 25}\binom{50}{k} 0.515^{k} 0.485^{50-k}=0.471$,
$\operatorname{Pr}(X \leq 25)=0.416, N(50 \times 0.515,50 \times 0.515 \times 0.485)$.

Table: Examples of minimal N for fixed p

p	0.01	0.02	0.05	0.10	0.15	0.20	0.30	0.40	0.50
$1-p$	0.99	0.98	0.95	0.90	0.85	0.80	0.70	0.60	0.50
N	910	460	190	100	71	57	43	38	36

Probabilistic and Statistical Models

Approximation of binomial distribution by normal distribution

Figure: Probability function (first row) and distribution function (second row) of binomial distribution superimposed by normal distribution ($p=0.515 ; N=5,10$ and 50)

Figure: Probability function (first row) and distribution function (second row) of binomial distribution superimposed by normal distribution ($p=0.1 ; N=5,10$ and 50)
Stanislav Katina Statistical Inference I and

Probabilistic and Statistical Models
Binomial distribution

Example (number of boys)

Number of boys X in families with N children is binomially distributed, i.e. $X \sim \operatorname{Bin}(N, p)$, where $N=12$, number of families $M=6115$ (Geissler 1889). Question: Calculate theoretical frequencies $m_{n, E}$.
You know that $p=\frac{\sum_{n=0}^{N} n m_{n, O}}{N M}=0.5192$ (weighted average; average of number of families weighted by number of boys).

Table: Observed and theoretical frequencies ($m_{n, O}$ and $m_{n, E}$) of families with n boys ($\mathrm{O}=$ observed, $\mathrm{E}=$ expected, theoretical)

$$
\begin{array}{r|r|r|r|r|r|r|r|r|r|r|r|r|r}
n & 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 \\
\hline m_{n, O} & 3 & 24 & 104 & 286 & 670 & 1033 & 1343 & 1112 & 829 & 478 & 181 & 45 & 7 \\
m_{n, E} & 1 & 12 & 72 & 259 & 628 & 1085 & 1367 & 1266 & 854 & 410 & 133 & 26 & 2
\end{array}
$$

Figure: Histograms of observed and expected frequencies

Figure: Comparison of observed and expected frequencies

Example (number of individuals with certain blood type)

Number of individuals $\mathbf{X}=\left(X_{1}, X_{2}, X_{3}, X_{4}\right)^{\top}$ with certain blood group is multinomially distributed following Hardy-Wienberg equilibrium, i.e. $\mathbf{X}=\left(X_{1}, X_{2}, X_{3}, X_{4}\right)^{\top} \sim \operatorname{Mult}_{4}(N, \mathbf{p})$, where $N=500$ (Katina et al. 2015). Question: Calculate theoretical frequencies $n_{j, E}$.

attributes (groups)	0	A	B	AB
$n_{j, O}$	209	184	81	26
$n_{j, E}$	210	183	80	27

Figure: Comparison of observed and expected frequencies

17/152 Stanislav Katina Statistical Inference I and II	18/152 Stanislav Katina	Statistical Inference I and II
Probabilistic and Statistical Models Product-multinomial distribution	Probabilistic and Statistica Product-multinomial distribution	Models

Example (number of individuals with certain blood type)

Let $\mathbf{X}=\left(\mathbf{X}_{1}, \mathbf{X}_{2}\right)^{T}$, where $\mathbf{X}_{1}=\left(X_{11}, X_{12}, X_{13}, X_{14}\right)^{T}$ is number of individuals in Košice (Slovakia) with certain blood group, $\mathbf{X}_{2}=\left(X_{21}, X_{22}, X_{23}, X_{24}\right)^{T}$ is number of individuals in Prague (Czech Republic) with certain blood group. \mathbf{X} is product-multinomially distributed, i.e. $\mathbf{X} \sim \operatorname{ProdMult}_{2}(\mathbf{N}, \mathbf{p})$, where $\mathbf{N}=\left(N_{1}, N_{2}\right)^{T}$, where $N_{1}=500$ and $N_{2}=400$ (Katina et al. 2015). Calculate theoretical frequencies $n_{E, i j}$. Question: What are the probabilities of having particular blood group in Prague and Košice?

Table: Observed frequencies of particular blood group

attributes (groups)	0	A	B	AB
$n_{1 j, O}=n_{\text {Kos̆ice }, j, O}$	138	147	84	31
$n_{2 j, O}=n_{\text {Prague }, j, O}$	209	184	81	26

Figure: Barplots of four blood types in Košice and Prague (default palette)

Probabilistic and Statistical Models
Multinomial distribution

Example (number of individuals with certain eye and hair

 colour)Let $\mathbf{X}=\left(X_{1}, X_{2}, \ldots, X_{12}\right)^{T}$ be random vector of number of individuals, eye colour (with levels blue BI , green Gr , brown Br) and hair colour (with levels blond Blo, light-brown LB, black Bla, red R), where X_{1} means BI-Blo, X_{2} means BI-LB, X_{3} means $\mathrm{Bl}-\mathrm{Bla}, X_{4}$ means $\mathrm{BI}-\mathrm{R}, X_{5}$ means Gr -Blo, X_{6} means $\mathrm{Gr}-\mathrm{LB}, X_{7}$ means $\mathrm{Gr}-\mathrm{Bla}, X_{8}$ means $\mathrm{Gr}-\mathrm{R}, X_{9}$ means $\mathrm{Br}-\mathrm{Blo}, X_{10}$ means $\mathrm{Br}-\mathrm{LB}, X_{11}$ means Br - Bla and X_{12} means Br -R. Let X $\sim \operatorname{Mult}_{12}(N, \mathbf{p})$, where $N=6800$ (Yule and Kendall 1950). Question: Calculate probabilities of having (1) particular eye and hair colour, (2) particular hair colour conditional on eye colour, (3) particular eye colour conditional on hair colour.

Table: 3×4 contingency table of frequencies n_{j}

	Blo	LB	Bla	R	row sums
BI	1768	807	189	47	2811
Gr	946	1387	746	53	3132
Br	115	438	288	16	857
column sums	2829	2632	1223	116	6800

Probabilistic and Statistical Models

 Product-multinomial distribution

Figure: Barplots of eye and hair colour (default palette)

Figure: Barplots of eye and hair colour (blue palette)

Figure: Barplots of eye and hair colour (spectral palette)

Example (number of individuals with certain socioeconomic status, political philosophy and political affiliation)
Number of individuals X_{1}, \ldots, X_{8} with socioeconomic status, political philosophy and political affiliation is multinomially distributed, i.e. $\mathbf{X}=\left(X_{1}, \ldots, X_{8}\right)^{T} \sim \operatorname{Mult}_{8}(N, \mathbf{p})$, where realisations $\mathbf{x}=\left(x_{1}, x_{2}, \ldots, x_{8}\right)^{T}$ and $N=500$ (Christensen 1990, modified). Question: Calculate probabilities of having particular socioeconomic status, political philosophy and political affiliation
Probabilistic and Statistical Models

Praticinal
Multinomial distribution

26/152 Stanislav Katina Statistical Inference I and ॥
Probabilistic and Statistical Models
Product-multinomial distribution

Notation: (1) socioeconomic status (high - H, low - Lo), (2) political philosophy (democrat - D, republican - R) a (3) political affiliation (conservative - C, liberal - Li). Then X_{1} (H-D-C), X_{2} (H-D-Li), X_{3} (H-R-C), X_{4} (H-R-Li), X_{5} (Lo-D-C), X_{6} (Lo-D-Li), X_{7} (Lo-R-C) and X_{8} (Lo-R-Li)

Table: 2×4 contingency table of frequencies X_{j}

	$\mathrm{D}-\mathrm{C}$	$\mathrm{D}-\mathrm{Li}$	$\mathrm{R}-\mathrm{C}$	$\mathrm{R}-\mathrm{Li}$
H	60	60	60	20
Lo	90	90	90	30

Figure: Barplots of socioeconomic status, political philosophy and affiliation (blue palette)

Probabilistic and Statistical Models

Poisson distribution

Example (Poisson distribution; killing by horse kicks)

Data were published by Russian economist Ladislaus Bortkiewicz in his book entitled Das Gesetz der keinem Zahlen (The Law of Small Numbers) in 1898. Let X be the number of corps of soldiers with n annual deaths (killed by horse kicks) in the Prussian army within one year (von Bortkiewicz 1898; in 10 different army corps; in 20 years, between 1875 and 1894), n be the number of annual deaths, $m_{n, O}$ be the number of army corps with particular number of annual deaths, $M=\sum_{n} m_{n, O}=10 \times 20=200$. Then $X \sim \operatorname{Poiss}(\lambda)$,
where $\lambda=\frac{\sum_{n} n m_{n, O}}{\sum_{n} m_{n, O}}=0.61$ (weighted average; average of number of army corps weighted by number of annual deaths). Question: Calculate theoretical frequencies $m_{n, E}$.

Table: Observed and theoretical frequencies ($m_{n, O}$ and $m_{n, E}$) of corps of solders with n annual deaths (killed by horse kicks) over 20 years

$$
\begin{array}{r|r|r|r|r|r|r}
n & 0 & 1 & 2 & 3 & 4 & \geq 5 \\
\hline m_{n, O} & 109 & 65 & 22 & 3 & 1 & 0 \\
m_{n, E} & 109 & 66 & 20 & 4 & 1 & 0
\end{array}
$$

Figure: Comparison of observed and expected frequencies

Probabilistic and Statistical Models Poisson distribution

Probabilistic and Statistical Models Poisson distribution

Figure: Comparison of observed and expected frequencies

Probabilistic and Statistical Models

Negative binomial distribution

Example (Negative binomial distribution; accidents in the factories)

Let X be the number of workers having an accident in munition factories in England during First World War (Greenwood and Yule 1920), n be the number of accidents, $m_{n, O}$ be the number of workers with particular number of accidents, $M=\sum_{n} m_{n, O}=647$. Question: Calculate theoretical frequencies $m_{n, E}$.

Table: Observed and theoretical frequencies ($m_{n, O}$ and $m_{n, E}$) of workers with n accidents

n	0	1	2	3	4	≥ 5
$m_{n, O}$	447	132	42	21	3	2
$m_{n, E}$	446	134	44	15	5	3

Figure: Comparison of observed and expected frequencies
Probabilistic and Statistical Models
Zero-inflated Poisson (ZIP) distribution

Example (ZIP distribution; number of movements of a foetal lamb)

Let X be the number of movements of a foetal lamb in 240 five-second periods (Leroux and Puterman 1992), n be the number of movements, $m_{n, O}$ be the number of foetal lambs with particular number of movements. Question: Calculate theoretical frequencies $m_{n, E}$ using Poisson and ZIP distribution.

Table: Observed and theoretical frequencies ($m_{n, O}$ and $m_{n, E}$) of workers with n accidents

n	0	1	2	3	4	5	6	7
$m_{n, O}$	182	41	12	2	2	0	0	1
$m_{n, E}$ (Poisson)	168	60	11	1	0	0	0	0
$m_{n, E}($ ZIP $)$	182	37	16	4	1	0	0	0

Figure: Comparison of observed and expected frequencies, Poisson (left), ZIP (right)

Probabilistic and Statistical Models

Formulations of hypotheses about probability distributions
3. product-multinomial distribution: Are the vectors of frequencies the same in each row? Are the vectors of frequencies independent of the row index?

- example - number of individuals with certain socioeconomic status, political philosophy and affiliation - Are the vectors of frequencies of individuals (D-Li, D-C, R-Li, R-C) the same for each level of socioeconomic status (high and low)?
- example - blood groups - Is the distribution of the blood groups ($0, A, B, A B$) the same in Prague and Košice?

4. Poisson distribution:

- example - killing by horse kick - Is the distribution of number of corps of soldiers with n annual deaths (killed by horse kicks) Poisson?
- example - accidents in the factories - Is the distribution of number of workers having an accident Poisson?

Assignments in \mathbb{R}

Probabilistic and Statistical Models Assignments in ©

Assignment number of boys:

(1) Draw probability mass function of number of boys in the families with 12 children.
(2) What are the probabilities of having n boys in the family ($n=1,2, \ldots, 12$)? What is the probability of having eight or more boys in the family? What is the probability of having five to seven boys in the family?

Assignment killing by horse kick

- Draw probability mass function of number of corps with n annual deaths (killed by horse kicks).What are the probabilities of having n annual deaths ($n=0,1,2,3,4,5+$)? What is the probability of having one or less annual deaths?

Assignment accidents in the factories:

- Draw probability mass function of number of workers having an accident.
(2) What are the probabilities of having n accidents ($n=0,1,2,3,4,5+$)? What is the probability of having two or more accidents?

Assignment number of boys:

Calculate \widehat{p} (the probability of having a boy in a family) and $\widehat{\operatorname{Var}[\hat{p}]}$ (the variance of probability of having a boy in a family)

Assignment killing by horse kick:

Calculate $\widehat{\lambda}$ (the mean number of annual deaths) and $\widehat{\operatorname{Var}[\hat{\lambda}]}$ (the variance of mean number of annual deaths).

Assignment accidents in the factories:

Calculate $\widehat{\lambda}$ (the mean number of accidents in the factories) and $\widehat{\operatorname{Var}[\hat{\lambda}]}$ (the variance of mean number of accidents in the factories).

Probabilistic and Statistical Models
 Assignments in \mathbb{R}

Probabilistic and Statistical Models
Types of contingency tables - multinomial distribution
$1 \times J$ contingency table of frequencies

	outcome 1	outcome 2	\ldots	outcome J	sum
	x_{1}	x_{2}	\ldots	x_{J}	N

$1 \times J$ contingency table of probabilities

$2 \times J$ contingency table of frequencies

	outcome 1	outcome 2	\ldots	outcome J	sum
row 1	x_{11}	x_{12}	\ldots	$x_{1 J}$	N_{1}
row 2	x_{21}	x_{22}	\ldots	$x_{2 J}$	N_{2}

$2 \times J$ contingency table of probabilities

	outcome 1	outcome 2	\ldots	outcome J	sum
row 1	p_{11}	p_{12}	\ldots	$p_{1 J}$	$p_{1 \bullet} \neq 1$
row 2	p_{21}	p_{22}	\ldots	$p_{2 J}$	$p_{2 \bullet} \neq 1$

/152
 Statistical Inference I and II

Probabilistic and Statistical Models

Types of contingency tables - product-multinomial distribution
$1 \times J$ contingency table of frequencies $(\approx$ multinomial distribution)

	outcome 1	outcome 2	\ldots	outcome J	sum
	x_{1}	x_{2}	\ldots	x_{J}	N

$1 \times J$ contingency table of probabilities $(\approx$ multinomial distribution)

	outcome 1	outcome 2	\ldots	outcome J	sum
	p_{1}	p_{2}	\ldots	p_{J}	1

$2 \times J$ contingency table of frequencies $(\approx$ multinomial distribution)

	outcome 1	outcome 2	\ldots	outcome J	sum
group 1	x_{11}	x_{12}	\ldots	$x_{1 J}$	N_{1}
group 2	x_{21}	x_{22}	\ldots	$x_{2 J}$	N_{2}

$2 \times J$ contingency table of probabilities

	outcome 1	outcome 2	\ldots	outcome J	sum
group 1	$p_{1 \mid 1}$	$p_{2 \mid 1}$	\ldots	$p_{J \mid 1}$	1
group 2	$p_{1 \mid 2}$	$p_{2 \mid 2}$	\ldots	$p_{J \mid 2}$	1

$K \times J$ contingency table of frequencies (\approx multinomial distribution)

	outcome 1	outcome 2	\ldots	outcome J	sum
group 1	x_{11}	x_{12}	\ldots	$x_{1 J}$	N_{1}
group 2	x_{21}	x_{22}	\ldots	$x_{2 J}$	N_{2}
\vdots	\vdots	\vdots	\ldots	\vdots	\vdots
group K	$x_{K 1}$	$x_{K 2}$	\cdots	$x_{K J}$	N_{K}

$K \times J$ contingency table of probabilities

	outcome 1	outcome 2	\ldots	outcome J	sum
group 1	$p_{\| \| 1}$	$p_{2 \mid 1}$	\ldots	$p_{J \mid 1}$	1
group 2	$p_{1 \mid 2}$	$p_{2 \mid 2}$	\cdots	$p_{J \mid 2}$	1
\vdots	\vdots	\vdots	\ldots	\vdots	\vdots
group K	$p_{1 \mid K}$	$p_{2 \mid K}$	\cdots	$p_{J \mid K}$	1

Stanislav Katina Statistical Inference land II
Probabilistic and Statistical Models
Data structure for $K \times J$ contingency table - (product-)multinomial distribution

	outcome 1	outcome 2	\ldots	outcome J	sum
$\mathbf{x}_{k 1}$	1	0	\ldots	0	1
$\mathbf{x}_{k 2}$	0	1		0	1
$\mathbf{x}_{k 3}$	0	1		0	1
$\mathbf{x}_{k 4}$	1	0	\ldots	0	1
\vdots	\vdots	\vdots	\ldots	\vdots	\vdots
$\mathbf{x}_{k, N_{k}-1}$	0	0	\ldots	1	1
$\mathbf{x}_{k, N_{k}}$	1	0	\ldots	0	1
$\operatorname{sum}=\mathbf{x}_{k}$	$x_{k 1}$	$X_{k 2}$	\ldots	$x_{k J}$	N_{k}

- sum of each row is one
- sum of all row sums is N_{k}
- sum of each column is $x_{k j}$, where $j=1,2, \ldots, J$
- sum of all $x_{k j}, j=1,2, \ldots, J$, is N_{k}
- $\mathbf{x}_{k}=\mathbf{n}_{k}$, where $k=1,2, \ldots, K$

	outcome 1	outcome 2	\ldots	outcome J	sum
\mathbf{x}_{1}	1	0	\ldots	0	1
\mathbf{x}_{2}	0	1		0	1
\mathbf{x}_{3}	0	1		0	1
\mathbf{x}_{4}	1	0	\ldots	0	1
\vdots	\vdots	\vdots	\ldots	\vdots	\vdots
\mathbf{x}_{N-1}	0	0	\ldots	1	1
\mathbf{x}_{N}	1	0	\ldots	0	1
sum $=\mathbf{x}$	X_{1}	x_{2}	\cdots	x_{J}	N

- sum of each row is one
- sum of all row sums is N
- sum of each column is x_{j}, where $j=1,2, \ldots, J$
- sum of all $x_{j}, j=1,2, \ldots, J$, is N
- $\mathbf{x}=\mathbf{n}$
6/152 Stanislav Katina Statistical Inference I and II

Probabilistic and Statistical Models

(Univariate) normal distribution

Definition (normal distribution)

Random variable X is normally distributed with parameters μ and σ^{2}, i.e. $X \sim N\left(\mu, \sigma^{2}\right)$, where $\theta=\left(\mu, \sigma^{2}\right)^{T}$ and density is defined as $f(x)=\frac{1}{\sqrt{2 \pi \sigma^{2}}} e^{-\frac{(x-\mu)^{2}}{2 \sigma^{2}}}, x \in \mathbb{R}, \sigma>0$.

Definition (standardised normal distribution)

Random variable X is normally distributed with parameters $\mu=0$ and $\sigma^{2}=1$, i.e. $X \sim N(0,1)$, where $\theta=(0,1)^{T}$ and density is defined as $\phi(x)=f(x)=\frac{1}{\sqrt{2 \pi}} e^{-\frac{x^{2}}{2}}, x \in \mathbb{R}$.

Parameter μ is called mean of X and σ^{2} the variance of X.

Definition (bivariate normal distribution)

Random vector $(X, Y)^{T}$ is normally distributed with parameters μ and $\boldsymbol{\Sigma}$, i.e. $(X, Y)^{\top} \sim N_{2}(\mu, \boldsymbol{\Sigma})$, where

$$
\boldsymbol{\mu}=\left(\mu_{1}, \mu_{2}\right)^{T} \text { and } \boldsymbol{\Sigma}=\left(\begin{array}{cc}
\sigma_{1}^{2} & \rho \sigma_{1} \sigma_{2} \\
\rho \sigma_{1} \sigma_{2} & \sigma_{2}^{2}
\end{array}\right)
$$

$\boldsymbol{\theta}=\left(\mu_{1}, \mu_{2}, \sigma_{1}^{2}, \sigma_{2}^{2}, \rho\right)^{T},(x, y)^{T} \in \mathbb{R}^{2}, \mu_{j} \in \mathbb{R}^{1}, \sigma_{j}^{2}>0, j=1,2$, $\rho \in\langle-1,1\rangle$; density is defined as
$f(x, y)=\frac{1}{A} \exp \left\{-\frac{1}{B}\left\{\frac{\left(x-\mu_{1}\right)^{2}}{\sigma_{1}^{2}}-2 \rho \frac{\left(x-\mu_{1}\right)\left(y-\mu_{2}\right)}{\sigma_{1} \sigma_{2}}+\frac{\left(y-\mu_{2}\right)^{2}}{\sigma_{2}^{2}}\right\}\right\}$,
where $A=2 \pi \sqrt{\sigma_{1}^{2} \sigma_{2}^{2}\left(1-\rho^{2}\right)}, B=2\left(1-\rho^{2}\right)$.

Definition (bivariate standardised normal distribution)

Random vector $(X, Y)^{T}$ is normally distributed with parameters $\boldsymbol{\mu}$ and $\boldsymbol{\Sigma}$, i.e. $(X, Y)^{T} \sim N_{2}(\boldsymbol{\mu}, \boldsymbol{\Sigma})$, where

$$
\boldsymbol{\mu}=(0,0)^{T} \text { and } \boldsymbol{\Sigma}=\left(\begin{array}{ll}
1 & \rho \\
\rho & 1
\end{array}\right)
$$

$\boldsymbol{\theta}=(0,0,1,1, \rho)^{T},(x, y)^{T} \in \mathbb{R}^{2}, \rho \in\langle-1,1\rangle$; density is defined as

$$
f(x, y)=\frac{1}{2 \pi \sqrt{1-\rho^{2}}} \exp \left\{-\frac{x^{2}-2 \rho x y+y^{2}}{2\left(1-\rho^{2}\right)}\right\}
$$

50/152
 Stanislav Katina
 Statistical Inference I and II

Probabilistic and Statistical Models

Bivariate normal distribution - simulation

Simulation of pseudo-random numbers from bivariate normal distribution:

(e) $X_{1} \sim N(0,1)$ and $X_{2} \sim N(0,1)$(2) then $\left(Y_{1}, Y_{2}\right)^{T} \sim N_{2}(\mu, \boldsymbol{\Sigma})$, where $Y_{1}=\sigma_{1} X_{1}+\mu_{1}$ and $Y_{2}=\sigma_{2}\left(\rho X_{1}+\sqrt{1-\rho^{2}} X_{2}\right)+\mu_{2}$

Example

Simulate pseudo-random numbers from bivariate normal distribution, where $\boldsymbol{\theta}=\left(\mu_{1}, \mu_{2}, \sigma_{1}^{2}, \sigma_{2}^{2}, \rho\right)^{T}$.
(a) $\mu_{1}=0, \mu_{2}=0, \sigma_{1}=1, \sigma_{2}=1, \rho=0$; (1) $n=50$ and (2) $n=1000$;
(b) $\mu_{1}=0, \mu_{2}=0, \sigma_{1}=1, \sigma_{2}=1, \rho=0.5$; (1) $n=50$ and (2) $n=1000$;
(c) $\mu_{1}=0, \mu_{2}=0, \sigma_{1}=1, \sigma_{2}=1.2, \rho=0.5$; (1) $n=50$ and (2) $n=1000$.

Probabilistic and Statistical Models
Bivariate normal models

Probabilistic and Statistical Models

Bivariate normal models

Figure: Joint density of three different bivariate normal distributions (column by column); contour plots superimposed by image plots (first row), 3D surface plot (second row); simulation study

Figure: Joint density of three different bivariate normal distributions (column by column); $n=50$ (first row), $n=1000$ (second row); contour plots superimposed by image plots; simulation study
Stanislav Katina Statistical Inference I and II
Probabilistic and Statistical Models
Mixture of two univariate and bivariate normal distribution

The mixture of two univariate normal distribution is defined as follows: $p N\left(\mu_{1}, \sigma_{1}^{2}\right)+(1-p) N\left(\mu_{2}, \sigma_{2}^{2}\right)$, where
$\boldsymbol{\theta}=\left(p, \mu_{1}, \mu_{2}, \sigma_{1}^{2}, \sigma_{2}^{2}\right)^{T}$.
The mixture of two bivariate normal distribution is defined as follows: $p N_{2}\left(\mu_{1}, \boldsymbol{\Sigma}_{1}\right)+(1-p) N_{2}\left(\boldsymbol{\mu}_{2}, \boldsymbol{\Sigma}_{2}\right)$, where $\boldsymbol{\theta}=\left(p, \mu_{11}, \mu_{12}, \sigma_{11}^{2}, \sigma_{12}^{2}, \rho_{1}, \mu_{21}, \mu_{22}, \sigma_{21}^{2}, \sigma_{22}^{2}, \rho_{2}\right)^{T}$.

Mixture of two univariate and bivariate normal distribution

Stanislav Katina
Statistical Inference I and II
Probabilistic and Statistical Models
Different normal models - skewed, mesokurtic, platykurtic and leptokurtic

Figure: Densities of different normal and skewed normal distributions (first row, skewed normal indicated as "sN"), densities of different bivariate skewed normal distributions (second row)

Probabilistic and Statistical Models

Mixture of two univariate normal distribution
To express the binormal distribution formally, let B_{i} be (unobserved) iid $\operatorname{Bernoulli}(p)$ random variable, $p \in(0,1)$. If $B_{i}=1$ then X_{i} is observed from $N\left(\mu_{1}, \sigma_{1}^{2}\right)$ distribution, otherwise it is observed from $N\left(\mu_{2}, \sigma_{2}^{2}\right)$. Thus, the distribution of X_{i} given by B_{i} is

$$
X_{i} \left\lvert\,\left(B_{i}=b_{i}\right) \sim \begin{cases}N\left(\mu_{1}, \sigma_{1}^{2}\right), & \text { if } b_{i}=1 \\ N\left(\mu_{2}, \sigma_{2}^{2}\right), & \text { if } b_{i}=0\end{cases}\right.
$$

The joint density of $\left(X_{i}, B_{i}\right)$ is therefore given by
$f\left(x_{i}, b_{i}, \boldsymbol{\theta}\right)=f\left(x_{i} \mid b_{i}, \boldsymbol{\theta}\right) \operatorname{Pr}\left(B_{i}=b_{i}, p\right) \sim \begin{cases}\frac{p}{\sqrt{2 \pi} \sigma_{1}} \exp \left(-\frac{\left(x_{i}-\mu_{1}\right)^{2}}{2 \sigma_{1}^{2}}\right), & \text { if } b_{i}=1, \\ \frac{1-p}{\sqrt{2 \pi} \sigma_{2}} \exp \left(-\frac{\left(x_{i}-\mu_{2}\right)^{2}}{2 \sigma_{2}^{2}}\right), & \text { if } b_{i}=0,\end{cases}$
where $\boldsymbol{\theta}=\left(p, \mu_{1}, \sigma_{1}^{2}, \mu_{2}, \sigma_{2}^{2}\right)^{T}$, from which the marginal density of X_{i} is obtained as

$$
f\left(x_{i}, \boldsymbol{\theta}\right)=\sum_{b_{i} \in\{0,1\}} f\left(x_{i}, b_{i}, \boldsymbol{\theta}\right)=f\left(x_{i}, 0, \boldsymbol{\theta}\right)+f\left(x_{i}, 1, \boldsymbol{\theta}\right)
$$

58/152 Stanislav Katina Statistical Inference I and II
 Probabilistic and Statistical Models

 Binomial distributionJacob Bernoulli (1655-1705) - one of the founding fathers of probability theory.

Definition (binomial distribution)

[^0]
Probabilistic and Statistical Models
 Binomial distribution

Probabilistic and Statistical Models

Random sampling from a population of size $N_{\text {pop }}$

Reading: Random variable X is binomially distributed with parameters N and p, where $\theta=p$.
Notation: $X \sim \operatorname{Bin}(N, p), \theta=p$
Do we need to change it? YES.
Why? Due to generalisation.
Equivalently, $\mathbf{X} \sim \operatorname{Bin}(N, p, 1-p)$, where $\mathbf{X}=\left(X_{1}, X_{2}\right)^{T}$, $\boldsymbol{\theta}=(p, 1-p)^{T}, X_{1}$ is number of successes, $X_{2}=N-X_{1}$ is number of failures, $X_{1} \sim \operatorname{Bin}(N, p)$ and $X_{2} \sim \operatorname{Bin}(N, 1-p)$. Then

- $E\left[X_{1}\right]=N p, E\left[X_{2}\right]=N(1-p)$,
- $\operatorname{Var}\left[X_{2}\right]=\operatorname{Np}(1-p)=\operatorname{Var}\left[X_{1}\right]$ is independent of p,
- $\operatorname{Cov}\left[X_{1}, X_{2}\right]=-N p(1-p)$,
- $\operatorname{Cor}\left[X_{1}, X_{2}\right]=-1$.

Finally, $\mathbf{n}=\left(n_{1}, n_{2}\right)^{T}$ and $\mathbf{p}=\left(p_{1}, p_{2}\right)^{T}, p_{1}=p$ and $p_{2}=1-p$. Then $\boldsymbol{\theta}=\mathbf{p}$.
Stanislav Katina Statistical Inference I and ॥I

Probabilistic and Statistical Models
Binomial distribution

If each selection from a population of size $N_{\text {pop }}$ is returned to the population, i.e. the sampling is with replacement, then, for each selection, the probability of selecting an individual with given characteristic is $p=M / N_{\text {pop }}$, where number of individuals with given characteristic is M (M means "marked") and the proportion can now be treated as a probability. Since the selections or "trials" are mutually independent and number of trials N is fixed, number of outcomes X having given characteristic in the sample now has a Binomial distribution, denoted by $\operatorname{Bin}(N, p)$.

Definition (binomial distribution)

If a random sample of size N is taken from the population of size $N_{\text {pop }}$ with replacement and X is the number of individuals with a given characteristic in the sample, then X has a binomial distribution with probability mass function defined as $\operatorname{Pr}(X=x)=\binom{N}{x} p^{x}(1-p)^{N-x}$, where $x=0,1,2, \ldots, N$.
Expected value of X is defined as $E[X]=N p$.
Variance of X is defined as $\operatorname{Var}[X]=N p(1-p)$.

If we remove and individual chosen at random from the population of size $N_{\text {pop }}$ and chose a second individual at random from the remainder, then the probability of getting an individual with given characteristic (M means "marked") is $(M-1) /\left(N_{\text {pop }}-1\right)$ if the first individual was with this characteristic and $M /\left(N_{\text {pop }}-1\right)$ if it was not. This is called sampling without replacement and the probability of choosing an individual with given characteristic changes with each selection. Then number of outcomes X having given characteristic now has a Hypergeometric distribution, denoted by HypGeom (N, p).

Definition (hypergeometric distribution)

If a random sample of size N is taken from the population of size $N_{\text {pop }}$ without replacement and X is the number of individuals with a given characteristic in the sample, then X has a hypergeometric distribution with probability mass function defined as $\operatorname{Pr}(X=x)=\binom{M}{x}\binom{N_{\text {oop }}-M}{N-x} /\binom{N_{\text {oop }}}{N}$, where $\max \left\{N+M-N_{\text {pop }}, 0\right\} \leq x \leq \min \{M, N\}$, but we usually have $x=0,1,2, \ldots, N$.
Expected value of X is defined as $E[X]=N p$.
Variance of X is defined as $\operatorname{Var}[X]=N p(1-p) r$, where
$r=\frac{N_{\text {oop }}-N}{N_{\text {pop }}-1}=1-\frac{N-1}{N_{\text {pop }}-1}>1-f_{s}, f_{s}=N / N_{\text {pop }}$ is sampling fraction. (f_{s} can generally be neglected if $f_{s}<0.1$ (or preferably $\left.f_{s}<0.05\right)$ and we can then set $r=1$)

We see then that if f_{s} can be ignored, we can approximate sampling without replacement by sampling with replacement, and approximate the hypergeometric distribution by the binomial distribution.

Probabilistic and Statistical Models

Multinomial distribution

Reading: Random vector \mathbf{X} is multinomially distributed with parameters N and \mathbf{p}, where $\boldsymbol{\theta}=\mathbf{p}$.
Notation: $\mathbf{X} \sim \operatorname{Mult}_{J}(N, \mathbf{p})$.
If $J=2$, then $\operatorname{Bin}(N, p) \approx \operatorname{Mult}_{2}(N, \mathbf{p})$
Realisation of one trial $\mathbf{x}_{j i}$ could be $(1,0, \ldots, 0)^{T}$ or
$(0,1, \ldots, 0)^{T}$.

Example (number of individuals with certain blood type)

Number of individuals $\mathbf{X}=\left(X_{1}, X_{2}, X_{3}, X_{4}\right)^{T}$ with certain blood group is multinomially distributed following Hardy-Wienberg equilibrium, i.e. $\mathbf{X}=\left(X_{1}, X_{2}, X_{3}, X_{4}\right)^{T} \sim \operatorname{Mult}_{4}(N, \mathbf{p})$, where $N=500$ (Katina et al. 2015). Calculate theoretical frequencies $n_{j, E}$.

$$
\begin{array}{r|rrrr}
\text { attributes (groups) } & 0 & \mathrm{~A} & \mathrm{~B} & \mathrm{AB} \\
\hline n_{j, O} & 209 & 184 & 81 & 26 \\
n_{j, E} & 210 & 183 & 80 & 27
\end{array}
$$

69/152 Stanislav Katina Statistical Inference I and II

Probabilistic and Statistical Models

Multinomial distribution
Notation: (1) socioeconomic status (high - H, low - Lo), (2) political philosophy (democrat - D, republican - R) a (3) political affiliation (conservative - C, liberal - Li). Then X_{1} (H-D-C), X_{2} (H-D-Li), X_{3} (H-R-C), X_{4} (H-R-Li), X_{5} (Lo-D-C), X_{6} (Lo-D-Li), X_{7} (Lo-R-C) and X_{8} (Lo-R-Li).

Solution:

$$
\begin{aligned}
& \operatorname{Var}\left[X_{1}\right]=500 \times 0.12 \times(1-0.12)=52.8 \\
& \operatorname{Var}\left[X_{4}\right]=500 \times 0.04 \times(1-0.04)=19.2 \\
& \operatorname{Cov}\left[X_{1}, X_{4}\right]=-500 \times 0.12 \times 0.04=-2.4 \\
& \operatorname{Cor}\left[X_{1}, X_{4}\right]=-2.4 / \sqrt{52.8 \times 19.2}=-0.075
\end{aligned}
$$

What are the expected frequencies?
Table: 2×4 contingency table of frequencies X_{j}

	D-C	D-Li	R-C	R-Li
H	60	60	60	20
Lo	90	90	90	30

Probabilistic and Statistical Models
 Multi-hypergeometric distribution

Probabilistic and Statistical Models

Multi-hypergeometric distribution and two dependent proportions

Since we can add the subpopulations together we see that the marginal distribution of an X_{j} is also hypergeometric, with two subpopulations M_{j} and $N-M_{j}$, namely $f_{j}\left(x_{j}\right)=\binom{M_{j}}{x_{j}}\binom{N_{\text {oop }}-M_{j}}{N-x_{j}} /\binom{N_{\text {oop }}}{N}$.

In a similar fashion we see that the probability function of $X_{1}+X_{2}$ is the multi-hypergeometric distribution, namely $f_{12}\left(x_{1}, x_{2}\right)=\binom{M_{1}+M_{2}}{x_{1}+x_{2}}\binom{N_{\text {oop }}-M_{1}-M_{2}}{N-x_{1}-x_{2}} /\binom{N_{\text {oop }}}{N}$.

Additionally, $\operatorname{Var}\left[X_{j}\right]=N p_{j}\left(1-p_{j}\right) r$, where $r=\left(N_{\text {pop }}-N\right) /\left(N_{\text {pop }}-1\right)$, and $\operatorname{Var}\left[X_{1}+X_{2}\right]=\operatorname{Nr}\left(p_{1}+p_{2}\right)\left(1-p_{1}-p_{2}\right)$. Finally, the covariance of X_{1} and X_{2} is equal to
$\operatorname{Cov}\left[X_{1}, X_{2}\right]=\frac{1}{2}\left(\operatorname{Var}\left[X_{1}+X_{2}\right]-\operatorname{Var}\left[X_{1}\right]-\operatorname{Var}\left[X_{2}\right]\right)=-r N p_{1} p_{2}$.
We then find that if $q_{j}=1-p_{j}$, then $\operatorname{Var}\left[X_{1}-X_{2}\right]=$
$\operatorname{Var}\left[X_{1}\right]+\operatorname{Var}\left[X_{2}\right]-2 \operatorname{Cov}\left[X_{1}, X_{2}\right]=r N\left[p_{1} q_{1}+p_{2} q_{2}-2 p_{1} p_{2}\right]$
$=r N\left[p_{1}+p_{2}-\left(p_{1}-p_{2}\right)^{2}\right]$.

Suppose we have a population of $N_{\text {pop }}$ people and a sample of size N is chosen at random without replacement. Each selected person is asked two questions to each of which they answer yes (1) or no (2), so that p_{12} is the proportion answering yes to the first question and no to the second, p_{11} is the proportion answering yes to both questions, and so forth. Then the proportion answering yes to the first question is $p_{1}=p_{11}+p_{12}$ and the proportion answering yes to the second question is $p_{2}=p_{11}+p_{21}$. Let $X_{i j}(i, j=1,2)$ be the number observed in the sample in the category with probability $p_{i j}$, let $X_{1}=X_{11}+X_{12}$ the number answering yes to the first question, and let $X_{2}=X_{11}+X_{21}$ be the number answering yes to the second question. The interest is to compare p_{1} and p_{2} but p_{12} is often ignored (and p_{21} as well).

Probabilistic and Statistical Models
 Multi-hypergeometric distribution and two dependent proportions

Probabilistic and Statistical Models
 Multi-hypergeometric distribution vs multinomial distribution

The four variables $X_{i j}$ have a multi-hypergeometric distribution, and

$$
\frac{X_{1}}{N}-\frac{X_{2}}{N}=\frac{X_{1}-X_{2}}{N}=\frac{X_{12}^{\prime}-X_{21}}{N}=\frac{X_{12}}{N}-\frac{X_{21}}{N}
$$

$$
E\left[\frac{X_{1}}{N}-\frac{x_{2}}{N}\right]=p_{1}-p_{2}=p_{12}-p_{21}
$$

Finally, $\operatorname{Var}\left[\frac{X_{1}}{N}-\frac{X_{2}}{N}\right]=\frac{1}{N^{2}} \operatorname{Var}\left[X_{1}-X_{2}\right]=$
$\frac{1}{N^{2}}\left(\operatorname{Var}\left[X_{1}\right]+\operatorname{Var}\left[X_{2}\right]-2 \operatorname{Cov}\left[X_{1}, X_{2}\right]\right)=r \frac{1}{N}\left[p_{1} q_{1}+p_{2} q_{2}-2 p_{1} p_{2}\right]$
$\stackrel{=}{=} \frac{1}{N}\left[p_{1}+p_{2}-\left(p_{1}-p_{2}\right)^{2}\right]$.

If we can approximate sampling without replacement by sampling with replacement, we can set $r=1$ above, and the multi-hypergeometric distribution can be replaced by the multinomial distribution.

The Multinomial distribution also arises when we have N fixed Bernoulli trials but with k possible outcomes rather than just two, as with the binomial distribution.

Probabilistic and Statistical Models

Product-multinomial distribution
The probability that random variables $X_{k j}$ are equal to $x_{k j}=n_{k j}$ (for all j and k) is defined as

$$
\operatorname{Pr}\left(X_{k j}=x_{k j}, \forall k, j\right)=\prod_{k=1}^{K} \operatorname{Pr}\left(X_{k j}=x_{k j}, \forall j\right)
$$

The probability that random variables $X_{k j}$ are equal to $x_{k j}=n_{k j}$ (for all j) is defined as

$$
\operatorname{Pr}\left(X_{k j}=x_{k j}, \forall j\right)=\left(N_{k}!/ \prod_{j=1}^{J} x_{k j}!\right) \prod_{j=1}^{J} p_{k j}^{x_{k j}}
$$

Then

$$
\operatorname{Pr}\left(X_{k j}=x_{k j}, \forall k, j\right)=\prod_{k=1}^{K}\left(\left(N_{k}!/ \prod_{j=1}^{J} x_{k j}!\right) \prod_{j=1}^{J} p_{k j}^{x_{k j}}\right)
$$

77/152 Stanislav Katina Statistical Inference I and II

Probabilistic and Statistical Models
Product-multinomial distribution
Reading: Random matrix \mathbf{X} is product-multinomially distributed with parameters $\mathbf{N}=\left(N_{1}, N_{2}, \ldots, N_{K}\right)^{T}$ and \mathbf{p} with the rows \mathbf{p}_{k}, where $\boldsymbol{\theta}_{k}=\mathbf{p}_{k}, k=1,2, \ldots, K$. Notation: $\mathbf{X} \sim \operatorname{ProdMult}{ }_{K}(\mathbf{N}, \mathbf{p})$.
If $K=1$, then $\operatorname{Mult}_{J}(N, \mathbf{p}) \approx \operatorname{ProdMult}_{1}(N, \mathbf{p})$
Realisation of one trial $\mathbf{x}_{k i j}$ could be $(1,0, \ldots, 0)^{\top}$ or $(0,1, \ldots, 0)^{T}$.
Then

- expected frequencies are equal to $N_{k} p_{k j}$,
- within each \mathbf{X}_{k}, variances $\operatorname{Var}\left[X_{k}\right]$, covariances
$\operatorname{Cov}\left[X_{k j}, X_{k i}\right]$ and correlations $\operatorname{Cor}\left[X_{k j}, X_{k i}\right]$ are calculated as for multinomial distribution,
- between \mathbf{X}_{k}, e.g. $\operatorname{Cov}\left[\mathbf{X}_{1}, \mathbf{X}_{2}\right], k=1,2$, are zeroes due to independence of \mathbf{X}_{k}

Example (number of individuals with certain socioeconomic status, political philosophy and political affiliation)
Number of individuals $\mathbf{X}=\left(\mathbf{X}_{1}, \mathbf{X}_{2}\right)^{\top}$ with socioeconomic status, political philosophy and political affiliation is product-multinomially distributed, i.e. $\mathbf{X} \sim \operatorname{ProdMult}_{2}(\mathbf{N}, \mathbf{p})$, where $\mathbf{X}_{1}=\left(X_{11}, X_{12}, X_{13}, X_{14}\right)^{T}$ are number of individuals with high socioeconomic status, $\mathbf{X}_{2}=\left(X_{21}, X_{22}, X_{23}, X_{24}\right)^{T}$ number of individuals with low socioeconomic status,
$\mathbf{p}_{k}=\left(p_{1 \mid k}, p_{2 \mid K}, \ldots, p_{J \mid k}\right)^{T}, p_{k j}=p_{j \mid k}=\frac{n_{k j}}{n_{k}}, k=1,2$,
$\mathbf{N}=\left(N_{1}, N_{2}\right)^{T}, N_{1}=200, N_{2}=300$ (Christensen 1990. modified). Calculate (a) probabilities $p_{j \mid k}$, (b) expected frequencies, (c) $\operatorname{Var}\left[X_{4 \mid 1}\right]$, (d) $\operatorname{Cov}\left[X_{1 \mid 2}, X_{4 \mid 2}\right]$ and (e) $\operatorname{Cov}\left[X_{1 \mid 1}, X_{4 \mid 2}\right]$.

Notation: (1) socioeconomic status (high - H, low - Lo), (2)
political philosophy (democrat - D, republican - R) a (3) political affiliation (conservative - C, liberal - Li). Then X_{1} (H-D-C), X_{2} (H-D-Li), X_{3} (H-R-C), X_{4} (H-R-Li), X_{5} (Lo-D-C), X_{6} (Lo-D-Li), X_{7} (Lo-R-C) and X_{8} (Lo-R-Li).

Solution:

Table: 2×4 contingency table of probabilities $p_{j \mid k}$

	D-C	D-Li	R-C	R-Li	total
H	0.3	0.3	0.3	0.1	1.0
Lo	0.3	0.3	0.3	0.1	1.0

Table: 2×4 contingency table of frequencies $n_{k j}$

	D-C	D-Li	R-C	R-Li	total
H	60	60	60	20	200
Lo	90	90	90	30	300

$\operatorname{Var}\left[X_{4 \mid 1}\right]=200 \times 0.1 \times(1-0.1)=18$.
$\operatorname{Cov}\left[X_{1 \mid 2}, X_{4 \mid 2}\right]=-300 \times 0.3 \times 0.1=-9$,
$\operatorname{Cov}\left[X_{1 \mid 1}, X_{4 \mid 2}\right]=0$, due to the independence of \mathbf{X}_{1} and \mathbf{X}_{2}.
Stanislav Katina Statistical Inference I and II

Probabilistic and Statistical Models
Poisson distribution

Definition (Poisson distribution)

Let X be random variable characterised by Poisson distribution, i.e. $X \sim \operatorname{Poiss}(\lambda)$, where $\theta=\lambda$. Then

$$
\operatorname{Pr}(X=x)=\frac{\lambda^{x} e^{-\lambda}}{x!}, x=0,1, \ldots
$$

where $x=n$ is realisation of X. Then $E[X]=\lambda$ and $\operatorname{Var}[X]=\lambda$.

Binomial distribution can be approximated by Poisson distribution if $N \rightarrow \infty, p \rightarrow 0$ and $\lambda_{N}=N p \rightarrow \lambda$, where $X \sim \operatorname{Poiss}(\lambda)$.

Poisson distribution can be approximated by χ^{2} distribution if
$N \rightarrow \infty, p \rightarrow 0$ and $\lambda_{N}=N p \rightarrow \lambda$ and
$\operatorname{Pr}(X \leq y)=\operatorname{Pr}\left(\chi_{2(1+y)}^{2} \leq 2 \lambda\right)$, where $X \sim \operatorname{Poiss}(\lambda)$.

Stanislav Katina Statistical Inference I and ॥
Probabilistic and Statistical Models Poisson distribution

Probabilistic and Statistical Models

 Poisson distribution
Example (Poisson distribution; number of car accidents per week)

Having 50 million people driving car independently in Italy next week, the probability of car crash deaths (road traffic deaths) is 0.000002 (death rate), where number of deaths X is distributed binomially, i.e. $\operatorname{Bin}(50 \mathrm{mil}, 0.000002)$ or Poiss $(50 \mathrm{mil} \times 0.000002) \approx \operatorname{Poiss}(100)$.

Example (Poisson distribution, three types of accidents)

Let n_{1} be number of car crash deaths, n_{2} be number of airplane crash deaths, n_{3} be number of train crash deaths in Italy next week. Then Poisson model with parameters λ_{1}, λ_{2} a λ_{3} for independent Poisson random variables X_{1}, X_{2} a X_{3} is defined as $\overline{X_{1}+X_{2}+X_{3}} \sim \operatorname{Poiss}\left(\lambda_{1}+\lambda_{2}+\lambda_{3}\right)$.

Generalising this example we get

$$
X_{1}+X_{2}+\ldots+X_{J} \sim \operatorname{Poiss}\left(\lambda_{1}+\lambda_{2}+\ldots+\lambda_{J}\right)
$$

Probabilistic and Statistical Models

Poisson distribution

Probabilistic and Statistical Models

Cumulative distribution function and density

Multinomial distribution can be approximated by Poisson distribution

$$
\left(X_{1}+X_{2}+\ldots+X_{J}\right) \mid N \sim \operatorname{Mult}_{J}\left(N, p_{1}, p_{2}, \ldots, p_{J}\right)
$$

where $N=\sum_{j} X_{j}$ and $p_{j}=\frac{\lambda_{j}}{\sum_{j} \lambda_{j}}, j=1,2, \ldots, J$. If $X_{j}, j=1,2, \ldots, J$ are independent, $X_{j} \sim \operatorname{Poiss}\left(\lambda_{j}\right)$, where $E\left[X_{j}\right]=\lambda_{j}$, then conditional probability, that all $X_{j}=x_{j}$ fixing (conditioning on) $N=\sum_{j} X_{j}$ is equal to

$$
\begin{aligned}
\operatorname{Pr}\left[\mathbf{X}=\mathbf{x} \mid \sum_{j} X_{j}=N\right] & =\frac{\operatorname{Pr}\left(X_{1}=x_{1}, x_{2}=x_{2}, \ldots, x_{J}=x_{J}\right)}{\operatorname{Pr}\left(\sum_{j} x_{j}=N\right)} \\
& =\frac{\prod_{j} \frac{\lambda_{j}^{x_{j}} e^{-\lambda_{j}}}{x_{j}!}}{\frac{\lambda^{N} e^{-\lambda}}{N!}}=\frac{N!e^{-\lambda} \prod_{j} \lambda_{j}^{x_{j}}}{e^{-\lambda} \prod_{j} \lambda^{x} \prod_{j} x_{j}!} \\
& =\frac{N!}{\prod_{j} x_{j}!} \prod_{j}\left(\frac{\lambda_{j}}{\lambda}\right)^{x_{j}}, \text { where } p_{j}=\frac{\lambda_{j}}{\lambda} .
\end{aligned}
$$

Definition (cumulative distribution function)

Let X be random variable. The cumulative distribution function of X is defined as

$$
F_{X}(x)=\operatorname{Pr}(X \leq x)
$$

for all $x \in \mathbb{R}$, where \mathbb{R} is called a domain and with $\langle 0,1\rangle$ as counterdomain.

Properties of cumulative distribution function:
($F_{X}(-\infty)=\lim _{x \rightarrow-\infty} F_{X}(x)=0$, and $F_{X}(\infty)=\lim _{x \rightarrow \infty} F_{X}(x)=1$.
(2) $F_{X}(x)$ is a monotone, nondecreasing function, i.e. $F_{X}(a) \leq F_{X}(b)$ for $a<b$.
(3) $F_{X}(x)$ is right continuous in each argument, i.e. $\lim _{0<h \rightarrow 0} F(x+h)=F(x)$.

Probabilistic and Statistical Models
Joint and marginal cumulative distribution function

Definition (joint cumulative distribution function)

Let $X_{1}, X_{2}, \ldots, X_{k}$ be k random variables. The joint cumulative distribution function of $X_{1}, X_{2}, \ldots, X_{k}$ is defined as

$$
F_{X_{1}, X_{2}, \ldots, x_{k}}\left(x_{1}, x_{2}, \ldots, x_{k}\right)=\operatorname{Pr}\left(X_{1} \leq x_{1}, X_{2} \leq x_{2}, \ldots, X_{k} \leq x_{k}\right)
$$

for all $\left(x_{1}, x_{2}, \ldots, x_{k}\right) \in \mathbb{R}^{k}$, where \mathbb{R}^{k} is called a domain and with $\langle 0,1\rangle$ as counterdomain.

Properties of bivariate cumulative distribution function:
(1) $F_{X Y}(-\infty, y)=\lim _{x \rightarrow-\infty} F_{X Y}(x, y)=0$ for $\forall y$,
$F_{X Y}(x,-\infty)=\lim _{y \rightarrow-\infty} F_{X Y}(x, y)=0$ for $\forall x$, and
$\lim _{x, y \rightarrow \infty} F_{X Y}(x, y)=F_{X Y}(\infty, \infty)=1$.
(2) If $x_{1}<x_{2}$ and $y_{1}<y_{2}$, then $\operatorname{Pr}\left(x_{1}<X \leq x_{2}, y_{1}<Y \leq y_{2}\right)=$ $F_{X Y}\left(x_{2}, y_{2}\right)-F_{X Y}\left(x_{2}, y_{1}\right)-F_{X Y}\left(x_{1}, y_{2}\right)+F_{X Y}\left(x_{1}, y_{1}\right) \geq 0$
(3) $F_{X Y}(x, y)$ is right continuous in each argument, i.e.
$\lim _{0<h \rightarrow 0} F_{X Y}(x+h, y)=\lim _{0<h \rightarrow 0} F_{X Y}(x, y+h)=F_{X Y}(x, y)$.

Definition (marginal cumulative distribution functions)

If $F_{X_{1}, X_{2}, \ldots, x_{k}}\left(x_{1}, x_{2}, \ldots, x_{k}\right)$ is joint cumulative distribution function of $X_{1}, X_{2}, \ldots, X_{k}$, then the cumulative distribution functions $F_{X_{1}}\left(x_{1}\right), F_{X_{2}}\left(x_{2}\right), \ldots, F_{X_{k}}\left(x_{k}\right)$ are called marginal cumulative distribution functions.

Definition (marginal cumulative distribution functions)

If $F_{X, Y}(x, y)$ is joint cumulative distribution function of X, Y, then the cumulative distribution functions $F_{X}(x)$ and $F_{Y}(y)$ are called marginal cumulative distribution functions.

Remark: $F_{X}(x)=F_{X Y}(x, \infty)$ and $F_{Y}(y)=F_{X Y}(\infty, y)$, i.e. knowledge of joint cumulative distribution function of X and Y implies knowledge of the two marginal cumulative distribution functions.

Probabilistic and Statistical Models

Joint and marginal discrete density function

Definition (joint discrete random variable)

The k-dimensional random vector $\mathbf{X}=\left(X_{1}, X_{2}, \ldots, X_{k}\right)^{T}$ is defined to be a k-dimensional discrete random vector if it can assume values only at a countable number of points $\left(x_{1}, x_{2}, \ldots, x_{k}\right)^{T} \in \mathbb{R}^{k}$. We also say that the random variables $X_{1}, X_{2}, \ldots, X_{k}$ are joint(ly) discrete random variables.

Definition (joint discrete density function \approx probability mass function) If $\mathbf{X}=\left(X_{1}, X_{2}, \ldots, X_{k}\right)^{T}$ is k-dimensional discrete random vector, then the joint discrete density function of \mathbf{X} is defined as

$$
f_{X_{1}, X_{2}, \ldots, x_{k}}\left(x_{1}, x_{2}, \ldots, x_{k}\right)=\operatorname{Pr}\left(X_{1}=x_{1}, X_{2}=x_{2}, \ldots, X_{k}=x_{k}\right)
$$

for all $\left(x_{1}, x_{2}, \ldots, x_{k}\right) \in \mathbb{R}^{k}$, and is defined to be 0 otherwise.
Remark: $\sum f_{X_{1}, X_{2}, \ldots, x_{k}}\left(x_{1}, x_{2}, \ldots, x_{k}\right)=1$, where the summation is over all possible values of $X_{1}, X_{2}, \ldots, X_{k}$.

Definition (marginal discrete density functions \approx probability mass

 function)If X and Y are jointly discrete random variables, then $f_{X}(x)$ and $f_{Y}(y)$ are called marginal discrete density functions. More generally, $X_{j_{1}}, \ldots, X_{j_{m}}$ be any subset of jointly discrete random variables $X_{1}, X_{2}, \ldots, X_{k}$, then $f_{X_{j 1}, \ldots, x_{j m}}\left(x_{j_{1}}, \ldots, x_{j_{m}}\right)$ is also called a marginal density of m-dimensional random vector $\left(X_{j_{1}}, \ldots, X_{j_{m}}\right)^{T}$.

Remark: If $X_{1}, X_{2}, \ldots, X_{k}$ are jointly discrete random variables, then any marginal discrete density can be found from joint density, but not conversely. E.g. if X and Y are jointly discrete random variables with values $\left(x_{i}, y_{j}\right), i=1,2, \ldots, k, j=1,2, \ldots, k$, then

$$
f_{X}\left(x_{i}\right)=\sum_{j} f_{X Y}\left(x_{i}, y_{j}\right)
$$

where the summation is over all y_{j} for the fixed x_{i}.

0/152
 Stanislav Katina
 Statistical Inference I and II

Probabilistic and Statistical Models

Marginal continuous density function

Definition (marginal continuous density functions)

If X and Y are jointly continuous random variables, then $f_{X}(x)$ and $f_{Y}(y)$ are called marginal continuous density functions. More generally, $X_{j_{1}}, \ldots, X_{j_{m}}$ be any subset of jointly continuous random variables $X_{1}, X_{2}, \ldots, X_{k}$, then $f_{X_{j}, \ldots, X_{j m}}\left(x_{j_{1}}, \ldots, x_{j_{m}}\right)$ is also called a marginal density of m-dimensional random vector $\left(X_{j_{1}}, \ldots, X_{j_{m}}\right)^{T}$.
Remark: If $X_{1}, X_{2}, \ldots, X_{k}$ are jointly continuous random variables, then any marginal continuous density can be found from joint density, but not conversely. E.g. if X and Y are jointly continuous random variables, then
$f_{X}(x)=\frac{\partial F_{X}(x)}{\partial x}=\frac{\partial}{\partial x}\left[\int_{-\infty}^{x}\left(\int_{-\infty}^{\infty} f_{X Y}(u, y) d y\right) d u\right]=\int_{-\infty}^{\infty} f_{X Y}(x, y) d y$
and
$f_{Y}(y)=\frac{\partial F_{Y}(y)}{\partial y}=\frac{\partial}{\partial y}\left[\int_{-\infty}^{y}\left(\int_{-\infty}^{\infty} f_{X Y}(x, u) d x\right) d u\right]=\int_{-\infty}^{\infty} f_{X Y}(x, y) d x$.

Definition (conditional discrete density function)

Let X and Y be jointly discrete random variables with joint discrete density function $f_{X Y}(x, y)$. The conditional discrete density function of Y given $X=x$ is defined as

$$
f_{Y \mid X}(y \mid x)=\frac{f_{X Y}(x, y)}{f_{X}(x)}
$$

if $f_{X}(x)>0$.

Definition (conditional discrete cumulative distribution function)
Let X and Y be jointly discrete random variables, the discrete cumulative distribution function of Y given $X=x$ is defined to be $F_{Y \mid X}(y \mid x)=\operatorname{Pr}[Y \leq y, X=x]$ for all $f_{X}(x)>0$.

Remark: $F_{Y \mid X}(y \mid x)=\sum_{j: y_{j} \leq y} f_{Y \mid X}(y \mid x)$.

Stanislav Katina Statistical Inference I and II

Probabilistic and Statistical Models
Conditional, joint and marginal distributions

Definition (conditional continuous density function)

Let X and Y be jointly continuous random variables with joint continuous density function $f_{X Y}(x, y)$. The conditional continuous density function of Y given $X=x$ is defined as

$$
f_{Y \mid X}(y \mid x)=\frac{f_{X Y}(x, y)}{f_{X}(x)}
$$

if $f_{X}(x)>0$.

Definition (conditional continuous cumulative distribution function)
Let X and Y be jointly continuous random variables, the conditional continuous cumulative distribution function of Y given $X=x$ is defined as $F_{Y \mid X}(y \mid x)=\operatorname{Pr}[Y \leq y, X=x]$ for all $f_{X}(x)>0$.

Remark: $F_{Y \mid X}(y \mid x)=\int_{-\infty}^{y} f_{Y \mid X}(u \mid x) d u$.

We can also write the following:

$$
\int_{-\infty}^{\infty} f_{Y \mid X}(y \mid x) d y=\int_{-\infty}^{\infty} \frac{f_{X Y}(x, y)}{f_{X}(x)} d y=\frac{1}{f_{X}(x)} \int_{-\infty}^{\infty} f_{X Y}(x, y) d y=\frac{f_{X}(x)}{f_{X}(x)}=1
$$

Example (joint normal density)

Prove that the function

$$
f_{X Y}(x, y)=\frac{1}{A} \exp \left\{-\frac{1}{B}\left(\frac{x-\mu_{X}}{\sigma_{X}}\right)^{2}-2 \rho \frac{x-\mu_{X}}{\sigma_{X}} \frac{y-\mu_{Y}}{\sigma_{Y}}+\left(\frac{y-\mu_{Y}}{\sigma_{Y}}\right)^{2}\right\}
$$

where $A=2 \pi \sigma_{X} \sigma_{Y} \sqrt{1-\rho^{2}}, B=2\left(1-\rho^{2}\right)$, has the following property $\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f_{X Y}(x, y) d x d y=1$. To simplify the integral, you shall substitute $u=\left(x-\mu_{X}\right) / \sigma_{X}$ and $v=\left(y-\mu_{Y}\right) / \sigma_{Y}$, and then $w=\frac{u-\rho v}{\sqrt{1-\rho^{2}}}$ and $d w=\frac{d u}{\sqrt{1-\rho^{2}}}$.

Theorem (marginal normal density)

If (X, Y) has a bivariate normal distribution, then the marginal distributions of X and Y are univariate normal distributions, i.e. X is normally distributed with mean μ_{X} and variance σ_{X}^{2}, and Y is normally distributed with mean μ_{Y} and variance σ_{Y}^{2}.

Example (marginal normal density)

Prove above mentioned theorem, e.g. for $f_{X}(x)=\int_{-\infty}^{\infty} f_{X Y}(x, y) d y$ and substituting $v=\left(y-\mu_{Y}\right) / \sigma_{Y}$.

Theorem (conditional normal density)

If random vector $(X, Y)^{T}$ has a bivariate normal distribution, then the conditional distributions of Y given $X=x$ is normal with mean $\mu_{Y}+\rho \frac{\sigma_{Y}}{\sigma_{X}}\left(x-\mu_{X}\right)$ and variance $\sigma_{Y}^{2}\left(1-\rho^{2}\right)$ and density

$$
\begin{array}{r}
f_{Y \mid X}(y \mid x)=\frac{1}{\sqrt{2 \pi} \sigma_{Y} \sqrt{1-\rho^{2}}} \\
\exp \left\{-\frac{1}{2 \sigma_{Y}^{2}\left(1-\rho^{2}\right)}\left(y-\mu_{Y}-\rho \frac{\sigma_{Y}}{\sigma_{X}}\left(x-\mu_{X}\right)\right)\right\}
\end{array}
$$

Example (conditional normal density)

Prove above mentioned theorem using joint and marginal normal densities, i.e. prove that $f_{Y \mid X}(y \mid x)=\frac{f_{X Y}(x, y)}{f_{X}(x)}$.

Definition (stochastic independence)

Let $\left(X_{1}, X_{2}, \ldots, X_{k}\right)^{T}$ be a k-dimensional random vector.
$X_{1}, X_{2}, \ldots, X_{k}$ are defined to be stochastically independent if and only if

$$
F_{X_{1}, \ldots, x_{k}}\left(x_{1}, \ldots, x_{k}\right)=\prod_{j=1}^{k} F_{X_{j}}\left(x_{j}\right) \text { for all } x_{1}, \ldots, x_{k}
$$

Definition (stochastic independence)

Let $\left(X_{1}, X_{2}, \ldots, X_{k}\right)^{T}$ be a k-dimensional random vector.
$X_{1}, X_{2}, \ldots, X_{k}$ are defined to be stochastically independent if and only if

$$
f_{X_{1}, \ldots, x_{k}}\left(x_{1}, \ldots, x_{k}\right)=\prod_{j=1}^{k} f_{X_{j}}\left(x_{j}\right) \text { for all } x_{1}, \ldots, x_{k} .
$$

Remark: Often the word "stochastically" is omitted.

8/152

Stanislav Katina Statistical Inference I and II

Probabilistic and Statistical Models Assignments in ©

Probabilistic and Statistical Models

 Assignments in \mathbb{R}Assignment number of individuals with certain socioeconomic status, political philosophy and affiliation:
(1) What is the number of all 2×4 contingency table with $N=50$?

$$
\binom{n+k-1}{k}=\binom{57}{8}=\binom{57}{49}=1652411475
$$

choose $(57,49)$
choose $(57,8)$What is the probability of getting the following 2×4 contingency table?

$\operatorname{Pr}\left(X_{1}=x_{1}, X_{2}=x_{2}, \ldots, X_{8}=x_{8}\right)=$
$\frac{50!}{5!77446!8: 7] 3!10!} 0.12^{5} 0.12^{7} 0.04^{4} 0.12^{6} 0.18^{8} 0.18^{7} 0.06^{3} 0.18^{10}=$
2.332506×10^{-6}
n <- c(5,7,6,4,8,7,10,3)
p <- c(.12,.12,.12,.04,.18,.18,.18,.06)
dmultinom(x=n, prob=p) \# 2.332506e-06

Assignment number of individuals with certain socioeconomic status, political philosophy and affiliation:
O What is the most probable 2×4 contingency table and what is the probability of getting it?

$\operatorname{Pr}\left(X_{1}=x_{1}, X_{2}=x_{2}, \ldots, X_{8}=x_{8}\right)=$. 5 50! ${ }^{51612191319!} 0.12^{6} 0.12^{6} 0.12^{6} 0.04^{2} 0.18^{9} 0.18^{9} 0.18^{9} 0.06^{3}=$ 1.020471×10^{-5}
$4.375 \times$ more than in (2)
6|n <- c(6,6,6,2,9,9,9,3)
$7 \mathrm{p}<-\mathrm{c}(.12, .12, .12, .04, .18, .18, .18, .06)$
8 dmultinom($x=n$, prob=p) \# $1.020471 \mathrm{e}-05$
(2) Draw probability mass function of number of possible 2×4 contingency tables with $N=50$.

Example (histogram on a circle, rose diagram)

A wind rose is a graphic tool used by meteorologists to give a succinct view of how wind speed and direction are typically distributed at a particular location. In statistics, it is called bivariate histogram. Visualise in \mathbb{R}^{R} wind rose of wind speed X_{s} in m / s (for a reference $1 \mathrm{~m} / \mathrm{s}=3.6 \mathrm{~km} / \mathrm{h}$) and wind direction X_{d} in dgr of simulated data:
$(A) X_{d} \sim \operatorname{Unif}(a, b)$, where $a=0$ and $b=360, X_{s} \sim \operatorname{Gamma}(\lambda, k)$, where $\lambda=50$ and $k=1(\operatorname{Gamma}(\lambda, 1) \approx \operatorname{Exp}(\lambda)), n=1000$. (B) $X_{d} \sim W N(\mu, \rho)$, where $\mu=0$ and $\rho=\exp \left(-\sigma^{2} / 2\right), \sigma=0.5$, $X_{s} \sim \operatorname{Gamma}(\lambda, k)$, where $\lambda=50$ and $k=1(\operatorname{Gamma}(\lambda, 1)$, $n=1000$.

Use library (circular) and function windrose (). To visualise wind speed use also function topo. colors (k). Be careful with colour scaling of k ordered intervals of wind speed. Visualise also rose diagrams, data and averages of wind direction (the latter when appropriate) and compare it with wind rose (orientation, scaling, etc.)

101/152

Stanislav Katina Statistical Inference I and II
Statistical Graphics
Distributions for circular data - uniform and wrapped normal distribution

s
uniform distribution of wind direction

s
wrapped normal distribution of wind direction

A common phenomenon is the arrival or occurrence of an event at a time t independently of the time of previous occurrence of the events - events on nonoverlapping time intervals are mutually independent. In addition, the average rate of arrivals is constant.
The Poisson probability mass function (pmf) is a good model for the number of arrivals in an interval t and in general we call it a Poisson process. Typical applications include occurrence of earthquakes. As we increase the rate, the pmf would be more and more like a normal distribution.

We are interested in determining:

- the pmf of the number arrivals in a time interval t,
- the probability density function (pdf) of the arrival time of the k th occurrence (e.g. $k=0, k=1, k>1$), and
- the pdf of the time interval between arrivals of successive occurrences (interarrival time).

Probabilistic and Statistical Models
 Poisson process, marked and compound Poisson process

Probabilistic and Statistical Models
Marked Poisson process, generalised gamma family of distributions

As an example, think about modeling rainfall for every day of a month. A rainy or wet day be decided upon a Poisson process, and the mark would be the amount of rain for that day if it is a wet day. The frequency distribution of rainfall in rainy days at a site determines the amount of rain, once a day is selected as wet (Richardson and Nicks, 1990). Daily rainfall distribution is skewed toward low values and it varies month to month according to climatic records.

The most typical distributions for rainfall amount are:

- exponential and Weibull,
- gamma and generalised gamma, and
- skewed normal, log-normal and log-logistic.

Note: In general, most of these distributions are from generalised gamma family or related distributions.

Probabilistic and Statistical Models

Simulation of marked Poisson process - rainfall

Statistical Inference I and II
Probabilistic and Statistical Models
Simulation of marked Poisson process - rainfall

Figure: Amount of rain for a day (cm/day) during 30-day period marked Poisson process simulation

Figure: Amount of rain for a day (cm/day) during 30-day period marked Poisson process simulation

Figure: Daily rainfall amount - simulations, numer of days $n=1000$

[^0]: Figure: Mixture of two normal densities - data faithful

