			d alternative hypothesis
	Statistical Inference Testing of Statistical Hypotheses	1	 a 'hypothesis' is a theory which is assumed to be true unless evidence is obtained which indicates otherwise 'null' means 'nothing' and the term 'null hypothesis' (H₀) means a 'theory of no change' – that is 'no change' from what would be expected from past experience
	Stanislav Katina ¹	('alternative hypothesis' (H₁) means a 'theory of change' – that is 'change' from what would be expected from past experience
	¹ Institute of Mathematics and Statistics, Masaryk University Honorary Research Fellow, The University of Glasgow	¢	the procedure which is used to decide between these two opposite theories is called 'hypothesis test' or sometimes 'significance test'
	December 11, 2018	¢	 one-tail test – test in which the alternative hypothesis proposes a change in parameter in only one direction – increase or decrease
			two-tail test – test in which the alternative hypothesis suggests a difference in parameter in either direction
1/66	Stanislav Katina Statistical Inference	2/66	・ロト・(プト・ミネ・ミネンションのへの) Stanislav Katina Statistical Inference
	of Statistical Hypothagaa		ing of Statistical Uypothagaa

Testing of Statistical Hypotheses

1/66 Stanislav Katina	Statistical Inference	2/66	Stanislav Katina	Statistical Inference
Testing of Statistical Hypot Test statistic, rejection and acceptance reg		Testing of Hypothesis testin	Statistical Hypot	heses

- the test statistic is calculated from the sample its value is used to decide whether the null hypothesis should be rejected
- the rejection (or critical) region gives the values of the test statistic for which the null hypothesis is rejected
- the acceptance region gives the values of the test statistic for which the null hypothesis is not rejected
- the boundary value(s) of the rejection region is (are) called the critical value(s) or quantile(s)
- the **significance level** α of a test gives the probability of the test statistic falling in the rejection region when null hypothesis is true

- a hypothesis is a statement about a population parameter base on a sample from this population
- H_0 and H_1 are two complementary hypotheses in a hypothesis testing problem
- a hypothesis testing procedure or hypothesis test is a rule that specifies - for which sample values the decision is made to accept null hypothesis as true – and for which sample values H_0 is rejected
- the subset of sample space for which H₀ will be rejected is called rejection region (critical region)
- the complement of the rejection region is called the acceptance region

Testing of Statistical Hypotheses	Testing of Statistical Hypotheses Four possibilities
Four choices: A H_0 is true – our decision is to reject H_0 B H_0 is true – our decision is not to reject H_0 C H_1 is true – our decision is not to reject H_0	 Four choices: A) Pr(A) = Pr(Type I error) ≤ α [significance level] B) Pr(B) ≥ 1 - α [coverage probability, confidence coefficient (level)] C) Pr(C) = Pr(Type II error) = β
D H_1 is true – our decision is to reject H_0	D) $Pr(D) = 1 - \beta$ [power]
Decision-reality table:	Four choices (formalised):
decision/reality H_0 is true H_0 is not trueto reject H_0 Type I errortrue decisionnot to reject H_0 true decisionType II error	A) $1 - \alpha \leq \Pr(\text{don't reject } H_0 H_0 \text{ is true})$ B) $\alpha \geq \Pr(\text{CHPD}) = \Pr(\text{reject } H_0 H_0 \text{ is true})$ C) $\beta = \Pr(\text{CHDD}) = \Pr(\text{don't reject } H_0 H_0 \text{ isn't true})$ D) $1 - \beta = \Pr(\text{reject } H_0 H_0 \text{ isn't true})$

	Stanislav Katina Statistical Hypot $(1 - \alpha)\%$ confidence inter			esting of Statistical Hypotheses cceptance region
 Empiric α-level Three types Pr(<i>LB</i>(<i>λ</i>) Pr(θ < 	hypothesis test about θ of intervals: $X) < \theta < UB(X)) = 1 -$	ence interval (CI) for parameter $ heta$ - α (two-tailed CI) -tailed (right-tailed) CI)	÷.	Definition (Acceptance region of H_0) Let <i>X</i> be a random variable with certain distribution (probabilistic model) dependent on parameter $\theta \in \Theta$, $g(\theta)$ is parametric function. We are testing null hypothesis $H_{01}: g(\theta) = g(\theta_0)$ against <u>two-sided alternative</u> $H_{11}: g(\theta) \neq g(\theta_0)$. Let (<i>LB</i> , <i>UB</i>) be interval estimate of parametric function $g(\theta)$ with coverage probability $1 - \alpha$. Then $\mathcal{A}_{Cl,1} = \{LB, UB; g(\theta_0) \in (LB, UB)\}$ is acceptance region of a test H_{01} against H_{11} on significance level α . If we are testing $H_{02}: g(\theta) \leq g(\theta_0)$ against <u>one-sided (right) alternative</u> $H_{12}: g(\theta) > g(\theta_0)$ and if <i>LB</i> _* be lower estimate of $g(\theta)$ with coverage probability $1 - \alpha$, then $\mathcal{A}_{Cl,2} = \{LB_*; LB_* < g(\theta_0)\}$ is acceptance region of a test H_{02} against H_{12} on significance level α . If we are testing $H_{03}: g(\theta) \geq g(\theta_0)$ against <u>one-sided (left) alternative</u> $H_{13}: g(\theta) < g(\theta_0)$ and if <i>UB</i> [*] is upper estimate of $g(\theta)$ with coverage probability $1 - \alpha$, then $\mathcal{A}_{Cl,3} = \{UB^*; UB^* > g(\theta_0)\}$ is acceptance region of a test H_{03} against H_{13} on significance level α .
/66	Stanislav Katina	Statistical Inference	8/66	6 Stanislav Katina Statistical Inference

Testing of Statistical Hypotheses Rejection region

Definition (Rejection (critical) region of H_0)

Let *X* be a random variable with certain distribution (probabilistic model) dependent on parameter $\theta \in \Theta$, $g(\theta)$ is parametric function. We are testing null hypothesis $H_{01} : g(\theta) = g(\theta_0)$ against <u>two-sided alternative</u> $H_{11} : g(\theta) \neq g(\theta_0)$. Let (*LB*, *UB*) be interval estimate of parametric function $g(\theta)$ with coverage probability $1 - \alpha$. Then

$$\mathcal{W}_{Cl,1} = \{LB, UB; g(\theta_0) \notin (LB, UB)\}$$

is critical region of a test H_{01} against H_{11} on significance level α . If we are testing $H_{02}: g(\theta) \leq g(\theta_0)$ against <u>one-sided (right) alternative</u> $H_{12}: g(\theta) > g(\theta_0)$ and if LB_* be lower estimate of $g(\theta)$ with coverage probability $1 - \alpha$, then

$$\mathcal{W}_{Cl,2} = \{LB_*; LB_* \geq g(\theta_0)\}$$

is critical region of a test H_{02} against H_{12} on significance level α . If we are testing $H_{03} : g(\theta) \ge g(\theta_0)$ against <u>one-sided (left) alternative</u> $H_{13} : g(\theta) < g(\theta_0)$ and if UB^* is upper estimate of $g(\theta)$ with coverage probability $1 - \alpha$, then

$$\mathcal{W}_{\mathsf{CI},3} = \{ U\!B^*; U\!B^* \leq g(\theta_0) \}$$

is critical region of a test H_{03} against H_{13} on significance level α .

 9/66
 Stanislav Katina
 Statistical Inference
 10/66
 Stanislav Kati

 Testing of Statistical Hypotheses
 Testing of Statistical Hypotheses
 Testing of Statistical Hypotheses

To carry out a hypothesis test

- Step 1 define the null and alternative hypothesis (H_0 and H_1)
- Step 2 decide on a significance level $\alpha = 0.1, 0.05, 0.01$
- Step 3 calculate the test statistic (test criterion) T_0
- Step 4 determine the critical value(s)
- Step 5 decide on the outcome of the test (reject/don't reject H_0) depending on one of the following ways:
 - base on critical region $W = W_T$ (observed test statistic $t_0 = t_{obs}$ and critical values $t_{\alpha/2}$ and $t_{1-\alpha/2}$, resp. t_{α} and $t_{1-\alpha}$),
 - base on critical region W_{IS}, i.e. empirical confidence interval (and g(θ₀)),
 - base on p-value.

Step 6 state the conclusion in words

Definition (Test criterion)

A **test criterion** is a test statistic $T = T_0 = T_0(X_1, X_2, ..., X_n)$, with known asymptotic distribution if H_0 is true. The set of possible values of T_0 is divided to two subsets, i.e. **acceptance region** H_0 (notation A) and **critical region** H_0 (notation W). These two regions are divided by **critical values** $t_{\alpha/2}$ and $t_{1-\alpha/2}$, resp. t_{α} and $t_{1-\alpha}$ (for particular H_0 and H_1) of the distribution of test statistics T_0 (if H_0 is true).

Definition (Confidence interval)

A **confidence interval** (CI) is a type of interval estimate of a population parameter θ . It is an observed, often called *empirical*, interval (i.e., it is calculated from the observations) that includes the value of an unobservable parameter θ if the experiment is repeated. The frequency that observed interval contains the parameter is determined by the **confidence coefficient** $1 - \alpha$ (i.e. **confidence level**, **coverage probability**).

 Interference
 Statislav Katina
 Statistical Inference

 Testing of Statistical Hypotheses
 To carry out a hypothesis test – based on test statistic and critical value

Definition (Testing based on critical region W)

Rejecting H_0 . If observed test statistic (realisation of test statistic) t_0 of test statistic T_0 is within a critical region \mathcal{W} (equivalently is not from an acceptance region \mathcal{A}), H_0 is rejected at a significance level α , i.e. we do have sufficiently enough evidence to reject H_0 . **Not rejecting** H_0 . If observed test statistic t_0 of test statistic T_0 is within an acceptance region \mathcal{A} (equivalently, it is not from a critical region \mathcal{W}), H_0 is not rejected at a significance level α , i.e. we don't have sufficiently enough evidence to reject H_0 .

Let t_{\min} be the smallest possible value of a test criteria T_0 and t_{\max} be the highest possible value of a test criteria T_0 , then

two-sided alternative – critical region

 $\mathcal{W}_1 = (t_{\min}, t_{1-\alpha/2}) \cup \langle t_{\alpha/2}, t_{\max}),$

2 one-sided (right) alternative – critical region $W_2 = \langle t_{\alpha}, t_{\max} \rangle$,

one-sided (left) alternative – critical region $W_3 = (t_{\min}, t_{1-\alpha})$.

► E <</p>

To carry out a hypothesis test – based on Cl

Testing of Statistical Hypotheses To carry out a hypothesis test – based on p-value (observed significance level)

Definition (Testing based on CI)

Rejecting H_0 : If $g(\theta) = g(\theta_0)$ is within CI (H_0 is valid), H_0 is rejected at the significance level α , i.e. we do have sufficiently enough evidence to reject H_0 .

Not rejecting H_0 : If $g(\theta) = g(\theta_0)$ is not within CI (H_0 is valid), H_0 isn't rejected at a significance level α , i.e. we don't have sufficiently enough evidence to reject H_0 .

Relationship of confidence interval and statistical test

- hypothesis testing \equiv CIs
- α -level hypothesis test \equiv 100(1 α)% Cl
- one-tail test = one-sided CI (left-sided CI = right-sided alternative, right-sided CI = left-sided alternative
- two-tail test = two-sided Cl
- parameter(s) \in CI \equiv not reject H_0
- parameter(s) \notin CI \equiv reject H_0

Definition (Testing based on p-value)

Minimal significance level α (for some test statistic T_0), base on which $H_{02}: g(\theta) \leq g(\theta_0)$ is rejected (tested against $H_{12}: g(\theta) > g(\theta_0)$), is called **observed significance level** or **p-value**, i.e.

$$\mathsf{p-value} = \alpha_{\mathsf{obs}} = \sup_{\theta \in \Theta_0} \mathsf{Pr}\left(T(X_1, X_2, \dots, X_n) \ge T(x_1, x_2, \dots, x_n); \theta\right).$$

This could be written less formally as p-value = $Pr(any \text{ test statistics equal or greater than observed } | H_0 \text{ is true}).$

The closer α_{obs} is to zero, the smaller is the probability that any test statistic $T(X_1, X_2, \ldots, X_n)$ produces a p-value (under H_0) equal to or smaller than that observed, while the probability is higher under H_1 . Therefore, p-value could be understood as an indicator of credibility of H_0 .

13/66 Stanislav Kat	na Statistical Inference	14/66	Stanislav Katina	Statistical Inference
Testing of Statistical Hyper To carry out a hypothesis test – based	on p-value (observed significance level)		f Statistical Hypothe hypothesis test – based on p-v	eses value (observed significance level)

- Usually, if α_{obs} < α = 0.05, there is sufficiently enough evidence to reject H₀ and the result of a test is statistically significant.
- While α_{obs} > α = 0.1, there is sufficiently enough evidence to reject H₀ and the result of a test is not statistically significant.
- The values between 0.05 and 0.1 should be taken as reference points in a broad sense. As α_{obs} gets closer to either boundary point of the interval (0.05, 0.1), so this is taken as increasing evidence for one or other alternative.
- Situation with α_{obs} ∈ (0.05, 0.1) are usually most difficult to handle and the result is here marginally statistically significant.

Wording of the results of a statistical test:

range for p-value	stars of significance	wording of the result
(0,0.001)	***	extremely highly statistically significant
(0.001, 0.01)	**	high statistically significant
(0.01, 0.05)	*	statistically significant
(0.05, 0.1)		marginally statistically significant
(0.1, 1)		non-significant

Interpretation of p-values:

- p-value < 0.001: the *prevalence* of an estimated effect is smaller than one to one thousand (the *odds* of estimated effect is smaller than 1 : 999), if an effect is not present in a population (the presence of such an effect is highly improbable, if an effect is not present in a population and the presence of such an effect is highly probable, if an effect is highly probable, if an effect is present in a population)
- p-value < 0.01: the *prevalence* of an estimated effect is smaller than one to one hundred (the *odds* of estimated effect is smaller than 1 : 99), if an effect is not present in a population (the presence of such an effect is very improbable, if an effect is not present in a population and the presence of such an effect is very probable, if an effect is present in a population)
- p-value < 0.05: the *prevalence* of an estimated effect is smaller than one to one hundred (the *odds* of estimated effect is smaller than 5 : 95 or 1 : 19), if an effect is not present in a population (the presence of such an effect is sufficiently improbable, if an effect is not present in a population and the presence of such an effect is sufficiently probable, if an effect is present in a population)
- p-value ≥ 0.05: the prevalence of an estimated effect is five to one hundred or greater (5 % or more);
- p-value = k, k ∈ (0.05, 1): the prevalence of an estimated effect is 100 × k to one hundred (100 × k % or more).

How is the p-value (mostly) calculated?

two-sided alternative –

p-value = $2 \min(\Pr(T_0 \le t_0|H_0), \Pr(T_0 \ge t_0|H_0))$, e.g. for normal and Student distribution of test statistic (symmetric distributions) and for χ^2_{df} and F_{df_1, df_2} distribution of test statistic (asymmetric distributions) or p-value = $\min(\Pr(T_0 \le t_0|H_0), \Pr(T_0 \ge t_0|H_0))$, e.g. for χ^2_{df} and F_{df_1, df_2} distribution of test statistic (asymmetric distributions)

One-sided (right) alternative - p-value $= Pr(T_0 \ge t_0 | H_0)$

one-sided (left) alternative – p-value = $Pr(T_0 \le t_0 | H_0)$

17/66 Statistical Inference 18/66 Stanislav Katina Statistical Inference Stanislav Katina Testing of Statistical Hypotheses Testing of Statistical Hypotheses On a philosophical level Conservative and liberal test and CI Definition (Conservative and liberal test) A test with **actual/observed significance level** smaller than **nominal significance level** α , is called **conservative** (the test • distinction between 'rejecting H_0 ' and 'accepting H_1 ' should theoretically be "rejecting quickly" H_0 , but, in reality, it is the • 'rejecting H_0 ' – nothing implies about what state the opposite, i.e. the test is "rejecting slowly"). experimenter is accepting, only that the state defined by H_0 is A test with actual/observed significance level greater than being rejected **nominal significance level** α , is called **liberal** (the test should theoretically be "rejecting slowly" H_0 , but, in reality, it is the opposite, • distinction between 'accepting H_0 ' and 'not rejecting H_0 ' i.e. the test "rejecting quickly"). • 'accepting H_0 ' – the experimenter is willing to assert the state of nature specified by H_0 Definition (Conservative and liberal CI) CI with actual/real coverage probability greater than nominal • 'not rejecting H_0 ' – the experimenter really does not believe H_0 coverage probability $1 - \alpha$, is called conservative (i.e. the but does not have the evidence to reject it

Two types of hypotheses:

Simple hypothesis – $H_0: \theta = \theta_0$ against $H_1: \theta \neq \theta_0$, then simple likelihood ratio is equal to

$$\lambda(\mathbf{x}) = \lambda = rac{L(heta_0 | \mathbf{x})}{\sup_{ heta \in \Theta} L(heta | \mathbf{x})} = rac{L(heta_0 | \mathbf{x})}{L(\widehat{ heta} | \mathbf{x})},$$

where $\lambda(\mathbf{x}) = \mathcal{L}(\theta_0 | \mathbf{x})$ is test statistic and $L(\theta | \mathbf{x})$ is continuous for all \mathbf{x} .

(2) composite hypothesis – $H_0: \theta \in \Theta_0$ against $H_1: \theta \in \Theta_1$, then generalised likelihood ratio is equal to

$$\lambda(\mathbf{x}) = \frac{\sup_{\theta \in \Theta_0} L(\theta | \mathbf{x})}{\sup_{\theta \in \Theta} L(\theta | \mathbf{x})}.$$

Subsets of Θ , Θ_0 and Θ_1 , remain the same after monotone transformation of $\lambda(\mathbf{x})$, i.e. the statistical tests before and after transformation are equivalent. Therefore, **likelihood ratio test statistic** is equal to

$$U_{
m LR} = -2 \ln \lambda({f X})$$

Its realisation, **observed likelihood ratio test statistic**, is equal to $u_{LR} = -2 \ln \lambda(\mathbf{x})$, where $u_{LR} \in (0, \infty)$.

21/66	Stanislav Katina	Statistical Inference	22/66	Stanislav Katina	Statistical Inference
Testing of S	Statistical Hypot	heses	Testing of Three test sta	of Statistical Hypot	heses

24/66

After applying Taylor series of $I(\theta_0)$ about $\hat{\theta}$,

$$U_{\mathsf{LR}} = -2(I(\theta_0|\mathbf{X}) - I(\widehat{\theta}|\mathbf{X})) \approx -2\left((\theta_0 - \widehat{\theta})S(\widehat{\theta}) - \frac{1}{2}(\theta_0 - \widehat{\theta})^2\mathcal{I}(\widehat{\theta})\right),$$

where $S(\hat{\theta}) = 0$. Under H_0 , **Wald test statistic** U_W , is defined as follows

$$U_{\mathsf{LR}} \approx n(\theta_0 - \widehat{\theta})^2 \frac{\mathcal{I}(\theta_0)}{n} \approx n(\theta_0 - \widehat{\theta})^2 i(\theta_0) \stackrel{H_0}{\approx} n(\theta_0 - \widehat{\theta})^2 i(\widehat{\theta}) = U_{\mathsf{W}}$$

where $\frac{1}{n}\mathcal{I}(\hat{\theta}) \xrightarrow{\mathcal{P}} i(\theta_0)$; its realisation, **observed Wald test statistic** is u_W . Under H_0 , **Score test statistic** U_S , is defined as follows

$$U_{\mathsf{LR}} pprox n(heta_0 - \widehat{ heta})^2 i(heta_0) \stackrel{\mathcal{H}_0}{pprox} rac{(\mathcal{S}(heta_0))^2}{n \ i(heta_0)} = U_{\mathsf{S}}$$

where $\sqrt{n}(\hat{\theta} - \theta_0) \stackrel{H_0}{\approx} S(\theta_0) / (\sqrt{n}(i(\theta_0)))$; its realisation, **observed** Score test statistic is u_s .

Statistical Inference

Stanislav Katina

Geometrical interpretation:

- U_{LR} is measuring properly standardised difference between log-likelihoods in $\hat{\theta}$ and θ_0 (i.e. in direction of *y* axis)
- 2 U_W is measuring properly standardised absolute value of a difference of $\hat{\theta}$ a θ_0 (in direction of *x* axis)
- **O** $U_{\rm S}$ is measuring properly standardised slope of log-ratio in θ_0

Example (normal distribution)

Let $X \sim N(\mu, \sigma^2)$, where σ^2 is known, $H_0 : \mu = \mu_0$ against $H_1 : \mu \neq \mu_0$, where $\theta_0 = (\mu_0, \sigma^2)^T$. Then $U_{LR} = -2(I(\theta_0 | \mathbf{X}) - I(\widehat{\theta} | \mathbf{X})) = -\sum_{i=1}^n (X_i - \overline{X})^2 / \sigma^2 + \sum_{i=1}^n (X_i - \mu_0)^2 / \sigma^2 = n \frac{(\overline{X} - \mu_0)^2}{\sigma^2}$, $U_W = (\overline{X} - \mu_0)^2 \mathcal{I}(\overline{X}) = n \frac{(\overline{X} - \mu_0)^2}{\sigma^2}$, $U_S = \frac{(S(\mu_0))^2}{\mathcal{I}(\mu_0)} = \frac{(n(\overline{X} - \mu_0)/\sigma^2)^2}{n/\sigma^2} = n \frac{(\overline{X} - \mu_0)^2}{\sigma^2}$. All three test statistics are equal, i.e. $U_{LR} = U_W = U_S$. Let θ be a scalar. Null hypothesis $H_0 : \theta = \theta_0$ and alternative hypothesis $H_1 : \theta \neq \theta_0$, where θ_0 is a scalar from H_0 . Let $\hat{\theta}$ be the maximal likelihood estimate of θ . Let $Var[\hat{\theta}]$ be the variance of $\hat{\theta}$.

Then three test statistics are defined as follows:

25/66	Stanislav Katina	Statistical Inference	26/66	Stanislav Katina	Statistical Inference
	Statistical Hypot		•	f Statistical Hypot tistics – tests of subset of part	

Let θ be a vector of all parameters of length *k*. Null hypothesis $H_0: \theta = \theta_0$ and alternative hypothesis $H_1: \theta \neq \theta_0$, where θ_0 is a vector of parameters from H_0 . Let $\hat{\theta}$ be the maximal likelihood estimate of θ . Let $Var[\hat{\theta}]$ be the covariance matrix.

Then three test statistics are defined as follows:

$$\bigcirc U_{\mathsf{LR}} = -2(I(\theta_0|\mathbf{X}) - I(\widehat{\theta}|\mathbf{X})) \stackrel{\mathcal{D}}{\sim} \chi_k^2,$$

$$\bigcirc U_{\mathsf{W}} = (\widehat{\theta} - \theta_0)^{\mathsf{T}} \mathcal{I}(\widehat{\theta}) (\widehat{\theta} - \theta_0) \stackrel{\mathcal{D}}{\sim} \chi_k^2,$$

$$U_{\mathrm{S}} = (S(\theta_0))^{\mathsf{T}} (\mathcal{I}(\theta_0))^{-1} S(\theta_0) \overset{\mathcal{D}}{\sim} \chi_k^2.$$

Let $\theta = (\theta_1, \theta_2)^T$, where θ is a vector of all parameters of length k. Let θ_1 and θ_2 be subsets of parameters of length k_1 and k_2 , where $k_1 + k_2 = k$. Null hypothesis $H_0: \theta_1 = \theta_0$ and alternative hypothesis $H_1: \theta_1 \neq \theta_0$, where θ_0 is a vector of parameters from H_0 . Let $\hat{\theta}$ be maximal likelihood estimate of θ , $\hat{\theta}_{2|0}$ be maximal likelihood estimate of θ_2 if H_0 is true, i.e. $\theta_1 = \theta_0$. Then $\hat{\theta}_0 = (\theta_0, \hat{\theta}_{2|0})^T$. Let

 $Var_{11}[\hat{\theta}]$ be a submatrix of the covariance matrix $Var[\hat{\theta}]$ corresponding to θ_1 .

Then three test statistics are defined as follows:

$$\begin{array}{l} \bullet \quad U_{\mathsf{LR}} = -2(l(\widehat{\theta}_0|\mathbf{X}) - l(\widehat{\theta}|\mathbf{X})) \stackrel{\mathcal{D}}{\sim} \chi^2_{k_1}, \\ \\ \bullet \quad U_{\mathsf{W}} = (\widehat{\theta}_1 - \theta_0)^T \mathcal{I}_{11}(\widehat{\theta})(\widehat{\theta}_1 - \theta_0) \stackrel{\mathcal{D}}{\sim} \chi^2_{k_1}, \\ \\ \\ \bullet \quad U_{\mathsf{S}} = (S(\theta_0))^T (\mathcal{I}_{11}(\widehat{\theta}_0))^{-1} S(\theta_0) \stackrel{\mathcal{D}}{\sim} \chi^2_{k_1}. \end{array}$$

There is a relationship between likelihood ratio test statistic for subset of parameters and **profile likelihood function**:

$$L_{P}(\theta_{1}|\mathbf{x}) = \max_{\forall \theta_{2}} L(\theta|\mathbf{x}) = L((\theta_{1}, \widehat{\theta}_{2|0})^{T}|\mathbf{x})$$

or logarithm of profile likelihood function

$$I_P(\boldsymbol{\theta}_1|\mathbf{x}) = I((\boldsymbol{\theta}_1, \widehat{\boldsymbol{\theta}}_{2|0})^T|\mathbf{x}).$$

Likelihood ratio test statistic is defined as:

$$u_{\mathsf{LR}} = -2 \ln \mathcal{L}_{\mathsf{P}}(\theta_1 | \mathbf{x}) = -2 \left(I_{\mathsf{P}}(\theta_1 | \mathbf{x}) - I_{\mathsf{P}}(\widehat{\theta}_1 | \mathbf{x}) \right),$$

where $\hat{\theta}_1$ is maximal likelihood estimate of θ_1 with respect to $\mathcal{L}_P(\theta_1 | \mathbf{x})$. U_{LR} is also called **generalised likelihood ratio statistic**.

Additionally

$$L_{P}(\widehat{\theta}_{1}|\mathbf{X}) = \max_{\forall \theta_{1}} \left\{ \max_{\forall \theta_{2}} L(\theta|\mathbf{X}) \right\} = \max_{\forall \theta_{1}, \theta_{2}} L((\theta_{1}, \theta_{2})^{T}|\mathbf{X}).$$

Having $H_0: \theta_1 = \theta_0$ a $H_1: \theta_1 \neq \theta_0$, then

$$L_{P}(\theta_{0}|\mathbf{x}) = \max_{\forall \theta_{2}} L((\theta_{0}, \theta_{2})^{T}|\mathbf{x}) = \max_{H_{0}} L((\theta_{1}, \theta_{2})^{T}|\mathbf{x})$$

and

$$u_{\mathsf{LR}} = -2\ln\frac{\max_{H_0}L((\theta_1, \theta_2)^T | \mathbf{x})}{\max_{\forall \theta_1, \theta_2}L((\theta_1, \theta_2)^T | \mathbf{x})} = -2\ln\frac{L_P(\theta_0 | \mathbf{x})}{L_P(\hat{\theta}_1 | \mathbf{x})}.$$

29/66	Stanislav Katina	Statistical Inference	30/66	Stanislav Katina	Statistical Inference
	Statistical Hypoth cs – tests of subset of par			f Statistical Hypot istics and related confidence	

If θ is a scalar, three confidence intervals are defined as follows:

(a) empirical likelihood ratio $(1 - \alpha) \times 100\%$ Cl for θ is defined as

$$\mathcal{CS}_{1-a} = \left\{ \theta : U_{\mathsf{LR}}(\theta) < \chi_1^2(\alpha) \right\},\,$$

where
$$U_{LR}(heta) = -2 \ln rac{L(heta | \mathbf{x})}{L(\widehat{ heta} | \mathbf{x})}$$
.

- **empirical Wald** $(1 \alpha) \times 100\%$ **CI for** θ is defined based on a pivot (pivotal statistics) $T_{piv} = U_W(\theta)$
- **(a)** empirical Score $(1 \alpha) \times 100\%$ Cl for θ is defined based on a pivot $T_{piv} = U_{S}(\theta)$

If θ is a vector, CIs can be generalized to **confidence set** CS_{1-a} .

- If k = 2, CS_{1-a} is an **confidence ellipse**.
- If k > 2, CS_{1-a} is an **confidence ellipsoid**.

Additionally, if k = 1, CS_{1-a} is an **confidence interval**.

Quadratic approximation of relative profile log-likelihood is defined as:

$$\ln \mathcal{L}_{P}(\boldsymbol{\theta}_{1} | \boldsymbol{x}) \approx -\frac{1}{2} \left(\boldsymbol{\theta}_{1} - \widehat{\boldsymbol{\theta}}_{1} \right)^{T} (\mathcal{I}^{11}(\boldsymbol{\theta}))^{-1} \left(\boldsymbol{\theta}_{1} - \widehat{\boldsymbol{\theta}}_{1} \right),$$

and quadratic approximation of generalised likelihood ratio statistic $-2 \ln \mathcal{L}_{P}(\theta_{1}|\mathbf{x})$ is defined as:

$$u_{LR} \approx u_{W} = \left(\widehat{\theta}_{1} - \theta_{0}\right)^{T} (\mathcal{I}^{11}(\widehat{\theta}))^{-1} \left(\widehat{\theta}_{1} - \theta_{0}\right).$$

Marginal distribution of θ_1 if H_0 is true is defined as $\hat{\theta}_1 \sim N_{k_1}(\theta_0, I^{11}(\theta))$.

Wald empirical $(1 - \alpha) \times 100\%$ Cl for θ is defined as

$$(I, u) = \left(\widehat{\theta}_L, \widehat{\theta}_U\right) = \left(\widehat{\theta} - t_{\alpha/2}\widehat{\mathsf{SD}[\widehat{\theta}]}, \widehat{\theta} + t_{\alpha/2}\widehat{\mathsf{SD}[\widehat{\theta}]}\right)$$

where the critical value $t_{\alpha/2}$ depends on the choice of $\hat{\theta}$.

Likelihood ratio empirical $(1 - \alpha) \times 100\%$ **Cl for** θ is defined by its lower and upper bounds as k% cut-offs of standardized relative log-likelihood as follows

$$\Pr\left(\frac{L(\theta|\mathbf{x})}{L(\widehat{\theta}|\mathbf{x})} > \boldsymbol{c}_{\alpha}\right) = \Pr\left(-2\ln\frac{L(\theta|\mathbf{x})}{L(\widehat{\theta}|\mathbf{x})} < -2\ln\boldsymbol{c}_{\alpha}\right) = 1 - \alpha,$$

where $c_{\alpha} = e^{-\frac{1}{2}\chi_1^2(\alpha)}$. Then

• if
$$1 - \alpha = 0.95$$
, then $c_{\alpha} = 0.1465001 \doteq 0.15$ (15% cut-off),

• if $1 - \alpha = 0.90$, then $c_{\alpha} = 0.2585227 \doteq 0.26$ (26% cut-off),

• if $1 - \alpha = 0.99$, then $c_{\alpha} = 0.0362452 \doteq 0.04$ (4% cut-off).

- 3. calculate the mid-point $\theta^{(i)} = (\theta_{i1} + \theta_{i2})/2$,
- 4. stopping rule (with the threshold ϵ is sufficiently small) based on

relative convergence criteria

$$\frac{\left|\theta^{(i)}-\theta^{(i-1)}\right|}{\left|\theta^{(i-1)}\right|}<\epsilon,$$

absolute convergence criteria

$$\left|\theta^{(i)}-\theta^{(i-1)}\right|<\epsilon,$$

or often also based on

$$\left|f(\theta^{(i)})\right| < \epsilon.$$

Bisection method

Let $\theta_{01}, \theta_{02} \in \langle \theta_L, \theta_U \rangle$ and $f(\theta_{01})f(\theta_{02}) < 0$, $f(\cdot)$ is continuous with at least one root within the interval $\langle \theta_{01}, \theta_{02} \rangle$, where

$$f(\theta) = -2 \ln \mathcal{L}(\theta | \mathbf{x}) - \chi_1^2(\alpha) = 0.$$

If the first derivative of $f(\cdot)$ is having constant sign, then exactly one root $\theta^* \in \langle \theta_{01}, \theta_{02} \rangle$ of $f(\theta) = 0$ exists.

The iterative process is defined as follows:

- initialisation step starting point $\theta^{(0)} = (\theta_{01} + \theta_{02})/2$ and i = 1,
- **2** updating equations substitution of the boundaries θ_{01} and θ_{02} is defined as

$$\langle \theta_{i1}, \theta_{i2} \rangle = \begin{cases} \langle \theta_{i-1,1}, \theta^{(i-1)} \rangle, & \text{if } f(\theta_{i-1,1}) f(\theta^{(i-1)}) < 0\\ \langle \theta^{(i-1)}, \theta_{i-1,2} \rangle, & \text{if } f(\theta_{i-1,1}) f(\theta^{(i-1)}) > 0 \end{cases},$$

if
$$f(\theta^{(i-1)}) = 0$$
, then *end*, if not,

33/66	Stanislav Katina	Statistical Inference	34/66	Stanislav Katina	Statistical Inference
Testing of Statistic			Testing of Statistic		

Modifications are based on bracketing methods, i.e. bounding the root within a sequence of intervals.

Brent method (Brent-Dekker method) - the combination of bisection method with inverse interpolation. If the interpolation is linear, then it is **secant method**, where the updating equations are modified as follows

$$\theta^{(i)} = \begin{cases} \theta^{(i-1)} - \frac{\theta^{(i-1)} - \theta^{(i-2)}}{f(\theta^{(i-1)}) - f(\theta^{(i-2)})} f(\theta^{(i-1)}), & \text{if } f(\theta^{(i-1)}) \neq f(\theta^{(i-2)}) \\ (\theta_{i1} + \theta_{i2})/2, & \text{otherwise} \end{cases},$$

where the approximation of the first derivative $f'(\theta^{(i-1)}) \approx \frac{f(\theta^{(i-1)}) - f(\theta^{(i-2)})}{\theta^{(i-1)} - \theta^{(i-2)}}$. If $f(\theta)$ is twice differentiable, then $f(\theta)$ has single root $(f'(\theta) \neq 0$ for all $\theta \in \langle \theta_L, \theta_U \rangle$).

<u>Geometrical interpretation</u>: $\theta^{(i)}$ is the crossing point of secant through the points $[\theta^{(i-1)}, f(\theta^{(i-1)})]$ and $[\theta^{(i-2)}, f(\theta^{(i-2)})]$, and *x* axis.

<u>In @:</u>

- uniroot(f, interval,tol,...)
- during the search for lower and upper boundary of $100 \times (1 \alpha)\%$ for θ , the \mathbb{R} -function uniroot() should be used twice as follows
 - I for lower bound starting interval is defined as $\langle \theta_L, \hat{\theta} \rangle$,
 - 2 for upper bound starting interval is defined as $\langle \hat{\theta}, \theta_U \rangle$.

Then the solutions are $\hat{\theta}_L$ and $\hat{\theta}_U$ (root).

Example (Brent-Dekker method)

Let $X \sim Bin(N, p)$, where N = 10 and n = x = 8. Estimate the boundaries of empirical $100 \times (1 - \alpha)$ % Cl for (1) p and (2) log odds $\ln \frac{p}{1-p}$. The empirical Cl are of the two types (A) likelihood and (B) Wald. Draw the log-likelihood function and its quadratic approximation with the lower and upper boundary of Cl.

37/66 Stanislav Katina	Statistical Inference	38/6	6 Stanislav Katina	Statistical Inference
Testing of Statistical Hypot Likelihood confidence intervals – Brent-De		Testing of Statistical Hypotheses Likelihood confidence intervals – Brent-Dekker method		
Solution (partial) Empirical Wald 100 × $(1 - \alpha)$ % CI $\hat{p} = \frac{8}{10} = 0.8$; $\widehat{SD[\hat{p}]} = \sqrt{\frac{\hat{p}(1-\hat{p})}{N}} = 0$ $(I, u) = (\hat{p}_I, \hat{p}_u) = (\hat{p} - u_{\alpha/2}\widehat{SD[\hat{p}]})$, Empirical Likelihood 100 × $(1 - \alpha)$ $CS_{1-\alpha} = \left\{ p : -2 \ln \frac{L(p \mathbf{x})}{L(\hat{p} \mathbf{x})} \le 3.84 \right\}$, $(I, u) = (\hat{p}_L, \hat{p}_U) = (0.50, 0.96)$, Wald empirical 100 × $(1 - \alpha)$ % CI $g(\hat{p}) = \ln \frac{\hat{p}}{1-\hat{p}} = \ln \frac{0.8}{0.2} = 1.39$; $\frac{\partial}{\partial p}g(1-\hat{p})$ $\widehat{SD[\hat{p}]} \left(\frac{1}{\hat{p}} + \frac{1}{1-\hat{p}}\right) = \sqrt{\frac{\hat{p}(1-\hat{p})}{N}} \left(\frac{1}{\hat{p}} + \frac{1}{1-\hat{p}}\right)$ Then $(I_g, u_g) = (g(\hat{p}_L), g(\hat{p}_U)) = (-(I, u) = (\hat{p}_L, \hat{p}_U) = (0.46, 0.95)$.	0.13. $\hat{p} + u_{\alpha/2} \widehat{SD[\hat{p}]} = (0.55, 1.05).$ % Cl for p : where for $g(p)$: $p = \frac{1}{p} + \frac{1}{1-p}; \widehat{SD[g(\hat{p})]} = \frac{1}{1-\hat{p}} = \sqrt{\frac{1}{n} + \frac{1}{N-n}} = 0.79.$ -0.16, 2.94) and back-transformed	2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21	<pre>x <- 8; N <- 10 probs <- seq(0.4,.99,length=100 like <- dbinom(8,10,probs) rellike <- like/max(like) relloglike <2*log(rellike cutoff <- exp(-1/2*qchisq(0.95, likeCI.p <- range(probs[rellike cutoff <- qchisq(0.95,df=1) #3. likeCI.p <- range(probs[rellog] p.hat <- x/N i.hat <- N/p.hat/(1-p.hat) loglikeapprox <i.hat #="" (gp.hat+c(-1,1)*qnorm(0.97="" +="" 0.4592920="" 0.552082="" 0.9495872<="" 1.047918="" 2*(gprobs-gp.hat)="" 2*(prob="" <-="" <i.hat="" c(-1,1)*qno="" gp.hat="" gprobs="" lgp="" log(probs)-log(1-prob="" n="" p.hat="" pre="" ra="" range(log(rellike))="" waldci.gp="" waldci.p="" x="" x*(n-x)=""></i.hat></pre>) df=1)) #0.1465001 >cutoff]) #0.5009910 0.9634234 841459 ike <cutoff]) #0.500991="" 0.9634234<br="">s-p.hat)^2 rm(0.975)*sqrt(1/i.hat) s) t) ^2 5)*sqrt(1/i.hat)) #-0.1632 2.9358</cutoff])>
			•	

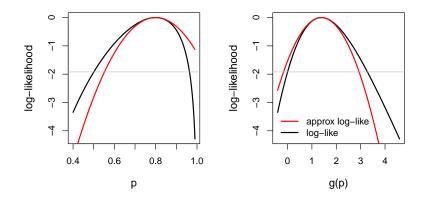


Figure: Log-likelihood of *p* and its quadratic approximation

41/66	Stanislav Katina	Statistical Inference