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a ’'hypothesis’ is a theory which is assumed to be true unless
evidence is obtained which indicates otherwise

'null’ means 'nothing’ and the term 'null hypothesis’ (Ho)
means a 'theory of no change’ — that is 'no change’ from what
would be expected from past experience

'alternative hypothesis’ (H;) means a 'theory of change’ — that
is 'change’ from what would be expected from past experience

the procedure which is used to decide between these two
opposite theories is called 'hypothesis test’ or sometimes
'significance test’

one-tail test — test in which the alternative hypothesis proposes
a change in parameter in only one direction — increase or
decrease

two-tail test — test in which the alternative hypothesis suggests a
difference in parameter in either direction
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Testing of Statistical Hypotheses

Hypothesis testing procedure
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the test statistic is calculated from the sample — its value is
used to decide whether the null hypothesis should be rejected

the rejection (or critical ) region gives the values of the test
statistic for which the null hypothesis is rejected

the acceptance region gives the values of the test statistic for
which the null hypothesis is not rejected

the boundary value(s) of the rejection region is (are) called the
critical value (s) or quantile (s)

the significance level « of a test gives the probability of the test
statistic falling in the rejection region when null hypothesis is true
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a hypothesis is a statement about a population parameter base
on a sample from this population

Hp and H; are two complementary hypotheses in a hypothesis
testing problem

a hypothesis testing procedure  or hypothesis test is a rule
that specifies — for which sample values the decision is made to
accept null hypothesis as true — and for which sample values Hg
is rejected

the subset of sample space for which Hg will be rejected is called
rejection region (critical region )

the complement of the rejection region is called the acceptance
region
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Testing of Statistical Hypotheses

Four possibilities

Four choices:
Ho is true — our decision is to reject Hg
Hp is true — our decision is not to reject Hg
Hj is true — our decision is not to reject Hp
Hj is true — our decision is to reject Hg

Decision-reality table:

decision/reality || Ho is true | Ho is not true

to reject Hg Type | error | true decision

not to reject Hy || true decision | Type Il error
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Testing of Statistical Hypotheses

Empirical 100 x (1 — )% confidence intervals for parameter 6

Four choices:
Pr(A) = Pr(Type | error) < « [significance level]

Pr(B) > 1 — « [coverage probability, confidence coefficient
(level)]

Pr(C) = Pr(Type Il error) =
Pr(D) = 1 — 3 [power]
Four choices (formalised):
1 — o < Pr(don't reject Ho|Ho is true)
a > Pr(CHPD) = Pr(reject Ho|Hy is true)
3 = Pr(CHDD) = Pr(don’t reject Ho|Ho isn't true)
1 — 3 = Pr(reject Ho|Ho isn’t true)
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Acceptance region

Relationship of confidence interval and statistical test

@ Empirical 100(1 — «)% confidence interval (Cl) for parameter 6

@ «-level hypothesis test about ¢
Three types of intervals:
9 Pr(LB(X) < 6 < UB(X)) =1 — « (two-tailed CI)
@ Pr(6 < UB*(X)) =1 — « (one-tailed (right-tailed ) ClI)
9 Pr(LB.(X) < 0) =1 — o (one-tailed (left-tailed ) CI)
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Definition (Acceptance region of Hp)

Let X be a random variable with certain distribution (probabilistic model) dependent on
parameter 6 € ©, g (0) is parametric function. We are testing null hypothesis

Ho1 : 9 (8) = g(6p) against two-sided alternative Hyy : g (6) # g(6p). Let (LB, UB) be
interval estimate of parametric function g (8) with coverage probability 1 — «. Then

Aci,1 = {LB,UB;g(fp) € (LB,UB)}

is acceptance region of atest Hp; against Hjp; on significance level «. If we are
testing Hoz : g (0) < g(fp) against one-sided (right) alternative Hi, : g (6) > g(6p) and
if LB, be lower estimate of g (6) with coverage probability 1 — «, then

Aci2 = {LB+; LB« < g(60)}

is acceptance region of atest Hg, against Hj, on significance level «. If we are
testing Hoz : g (6) > g(6p) against one-sided (left) alternative Hy3 : g (6) < g(fy) and
if UB* is upper estimate of g (6) with coverage probability 1 — «, then

Aciz = {UB*;UB" > g(6p)}

is acceptance region of atest Hgz against Hj;3 on significance level «.
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Rejection region

Testing of Statistical Hypotheses

Test criterion

Definition (Rejection (critical) region of Hp)

9/66

Let X be a random variable with certain distribution (probabilistic model) dependent on
parameter 6 € ©, g (0) is parametric function. We are testing null hypothesis

Hoz1 : 9 (0) = g(6p) against two-sided alternative Hi; : g (6) # g(6p). Let (LB, UB) be
interval estimate of parametric function g (6) with coverage probability 1 — «. Then

Wein = {LB,UB;g(6o) ¢ (LB,UB)}

is critical region of atest Hp; against Hj; on significance level «. If we are testing
Hoz : 9 (0) < g(0y) against one-sided (right) alternative Hy, : g (6) > g(6p) and if LB«
be lower estimate of g () with coverage probability 1 — «, then

Wei2 = {LBx«; LB« > g(6o)}

is critical region of atest Hgp, against Hj, on significance level «. If we are testing
Hos : 9 (0) > g(0y) against one-sided (left) alternative Hy3 : g (6) < g(6p) and if UB*
is upper estimate of g (¢) with coverage probability 1 — «, then

Wei,z = {UB™; UB™ < g(6o)}

is critical region of atest Hpz against Hiz on significance level «a.
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To carry out a hypothesis test

| A\
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Definition (Test criterion)

A test criterion is a test statistic T = To = To(X1, Xz, ..., Xn), with
known asymptotic distribution if Hp is true. The set of possible values
of Ty is divided to two subsets, i.e. acceptance region Hy (notation
A) and critical region Hp (notation W). These two regions are
divided by critical values t,/,, and t;_, », resp. t, and t;_, (for
particular Hy and H;) of the distribution of test statistics Tg (if Hg is
true).

Definition (Confidence interval)

A confidence interval (Cl) is a type of interval estimate of a
population parameter 6. It is an observed, often called empirical ,
interval (i.e., it is calculated from the observations) that includes the
value of an unobservable parameter 6 if the experiment is repeated.
The frequency that observed interval contains the parameter is
determined by the confidence coefficient 1 — « (i.e. confidence
level, coverage probability ).
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Testing of Statistical Hypotheses

To carry out a hypothesis test — based on test statistic and critical value
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define the null and alternative hypothesis (Ho and H;)
decide on a significance level o« = 0.1,0.05,0.01
calculate the test statistic (test criterion) To
determine the critical value(s)

decide on the outcome of the test (reject/don’t reject Hp)
depending on one of the following ways:

o base on critical region W = Wr (observed test statistic
to = tobs and critical values t, ,, and t;_,, /2, resp. t, and
tl—a)1

o base on critical region Ws, i.e. empirical confidence
interval (and g(fo)),

@ base on p-value.

state the conclusion in words
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Definition (Testing based on critical region W)
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Rejecting Hy. If observed test statistic (realisation of test statistic) ty
of test statistic Ty is within a critical region W (equivalently is not from
an acceptance region A), Hy is rejected at a significance level o, i.e.
we do have sufficiently enough evidence to reject Hy.

Not rejecting Hg. If observed test statistic to of test statistic Tg is
within an acceptance region A (equivalently, it is not from a critical
region W), Hy is not rejected at a significance level «, i.e. we don’t
have sufficiently enough evidence to reject Hp.

Let tin be the smallest possible value of a test criteria To and t,,,,, be
the highest possible value of a test criteriaTg, then

Q two-sided alternative — critical region
Wi = (tmil’htlfoz/2> U <ta/27tmax)1

©Q one-sided (right) alternative  — critical region W, = (to, tmax)s

O one-sided (left) alternative - critical region Wz = (tmin, t1_a)-
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To carry out a hypothesis test — based on Cl

Testing of Statistical Hypotheses

To carry out a hypothesis test — based on p-value (observed significance level)
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Definition (Testing based on ClI)

Rejecting Ho: If g(0) = g(6o) is within CI (Ho is valid), Ho is rejected
at the significance level «, i.e. we do have sufficiently enough
evidence to reject Ho.

Not rejecting Ho: If g(8) = g(fo) is not within CI (Ho is valid), Hg isn’t
rejected at a significance level «, i.e. we don’t have sufficiently
enough evidence to reject Hy.

Relationship of confidence interval and statistical test
@ hypothesis testing = Cls
9 a-level hypothesis test = 100(1 — )% Cl

O one-tail test = one-sided CI (left-sided CI = right-sided
alternative, right-sided CI = left-sided alternative

@ two-tail test = two-sided CI
O parameter(s) € Cl = not reject Ho
@ parameter(s) ¢ Cl = reject Hy
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To carry out a hypothesis test — based on p-value (observed significance level)

14/66

Definition (Testing based on p-value)

Minimal significance level o (for some test statistic Tp), base on which
Hoz : 9(8) < g(fo) is rejected (tested against Hiz : g(8) > g(6o)), is
called observed significance level or p-value, i.e.

p-value = aops = sup Pr(T(Xg, Xz, ...
0€©

,Xn) > T (Xg,X2,...,%n); 0) .

This could be written less formally as p-value =
Pr(any test statistics equal or greater than observed |Hy is true).

The closer agyps is to zero, the smaller is the probability that any test
statistic T (X1, Xz, . .., Xn) produces a p-value (under Ho) equal to or
smaller than that observed, while the probability is higher under Hj.
Therefore, p-value could be understood as an indicator of credibility
of Ho.
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To carry out a hypothesis test — based on p-value (observed significance level)
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@ Usually, if agps < o = 0.05, there is sufficiently enough evidence
to reject Hg and the result of a test is statistically significant

9 While aqps > o = 0.1, there is sufficiently enough evidence to
reject Hp and the result of a test is not statistically significant

@ The values between 0.05 and 0.1 should be taken as reference
points in a broad sense. As agps gets closer to either boundary
point of the interval (0.05,0.1), so this is taken as increasing
evidence for one or other alternative.

9@ Situation with agps € (0.05,0.1) are usually most difficult to
handle and the result is here marginally statistically
significant .
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Wording of the results of a statistical test:

range for p-value  stars of significance wording of the result

(0,0.001) i extremely highly statistically significant
(0.001,0.01) * high statistically significant
(0.01,0.05) * statistically significant
(0.05,0.1) . marginally statistically significant
(0.1,1) non-significant
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To carry out a hypothesis test — based on p-value (observed significance level)
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To carry out a hypothesis test — based on p-value (observed significance level)

Interpretation of p-values:

@ p-value < 0.001: the prevalence of an estimated effect is smaller than one to
one thousand (the odds of estimated effect is smaller than 1 : 999), if an effect is
not present in a population (the presence of such an effect is highly
improbable , if an effect is not present in a population — and — the presence of
such an effect is highly probable , if an effect is present in a population)

@ p-value < 0.01: the prevalence of an estimated effect is smaller than one to one
hundred (the odds of estimated effect is smaller than 1 : 99), if an effect is not
present in a population (the presence of such an effect is very improbable , if an
effect is not present in a population — and — the presence of such an effect is
very probable , if an effect is present in a population)

Q p-value < 0.05: the prevalence of an estimated effect is smaller than one to one
hundred (the odds of estimated effect is smaller than 5 : 95 or 1 : 19), if an effect
is not present in a population (the presence of such an effect is sufficiently
improbable , if an effect is not present in a population — and — the presence of
such an effect is sufficiently probable , if an effect is present in a population)

@ p-value > 0.05: the prevalence of an estimated effect is five to one hundred or
greater (5 % or more);

9 p-value = k, k € (0.05, 1): the prevalence of an estimated effect is 100 x k to
one hundred (100 x k % or more).
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On a philosophical level

How is the p-value (mostly) calculated?

O two-sided alternative —
p-value = 2 min(Pr(To < tg|Ho), Pr(To > tg|Ho)), e.g. for normal
and Student distribution of test statistic (Symmetric distributions)
and for ng and Fg, a1, distribution of test statistic (asymmetric
distributions) or p-value = min(Pr(To < to|Ho), Pr(To > to|Ho)),
e.g. for Xﬁf and Fg;, g7, distribution of test statistic (asymmetric
distributions)

@ one-sided (right) alternative  — p-value = Pr(To > to|Ho)

O one-sided (left) alternative — p-value = Pr(To < to|Ho)
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Testing of Statistical Hypotheses

Conservative and liberal test and ClI

@ distinction between 'rejecting Hy' and 'accepting Hy’

@ ’rejecting Hy’ — nothing implies about what state the
experimenter is accepting, only that the state defined by Hg is
being rejected

@ distinction between 'accepting Hy’ and 'not rejecting Ho’

@ ’accepting Hy’ — the experimenter is willing to assert the state of

nature specified by Hg

@ ’'not rejecting Hy' — the experimenter really does not believe Hg
but does not have the evidence to reject it
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Definition (Conservative and liberal test)

A test with actual/observed significance level  smaller than
nominal significance level «, is called conservative (the test
should theoretically be "rejecting quickly” Hg, but, in reality, it is the
opposite, i.e. the test is "rejecting slowly”).

A test with actual/observed significance level  greater than
nominal significance level «, is called liberal (the test should
theoretically be "rejecting slowly” Hy, but, in reality, it is the opposite,
i.e. the test "rejecting quickly”).

| A\

Definition (Conservative and liberal CI)

Cl with actual/real coverage probability  greater than nominal
coverage probability 1 — «, is called conservative (i.e. the
probability that 6, is within ClI is greater that expected).

Cl with actual/real coverage probability  smaller than nominal
coverage probability 1 — «, is called liberal (i.e. the probability that
Ao is within Cl is smaller that expected).
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Likelihood ratio — generalised relative likelihood

Testing of Statistical Hypotheses

Likelihood ratio test statistic

Two types of hypotheses:
© simple hypothesis —Hg : § = 6y against Hy : 6 # 6, then
simple likelihood ratio is equal to
L(folx)  _ L(6lx)
supgeo L(OIX)  L(G]x)

AX) ==

where A\(x) = L(60o|x) is test statistic and L(¢|x) is continuous for
all x.

Q composite hypothesis —Hg : 8 € ©g against Hy : 8 € ©4, then
generalised likelihood ratio is equal to

)\(X) — SUpeeeo L(9|X)
suppee L(01X) -
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Testing of Statistical Hypotheses

Three test statistics

Subsets of ©, ©g and ©4, remain the same after monotone
transformation of A(x), i.e. the statistical tests before and after
transformation are equivalent. Therefore, likelihood ratio test
statistic is equal to

ULR =—-2In /\(X)

Its realisation, observed likelihood ratio test statistic ~ , is equal to
Ur = —2In A(X), where u g € (0, 0).
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Testing of Statistical Hypotheses

Three test statistics

After applying Taylor series of 1(6y) about 9,
A Y 1 PO
Ui = ~201(80X) = 1010) = 2 (80 ~ DS@) - 500~ 5777))

where S(6) = 0. Under Ho, Wald test statistic Uy, is defined as
follows

Z(6o)
n

~

~ (0o — 0)2i(60) = n(6o — 0)2i(9) = Uw,

URr ~ n(@o — 5)2

where %I(@) z i(6o); its realisation, observed Wald test statistic  is
uw . Under Hg, Score test statistic Ug, is defined as follows

~o. H
ULr ~ n(fo — 0)%i(60) = = Us,
where ﬁ(@\— 6o) A S(6o)/(v/n(i(6o))); its realisation, observed
Score test statistic is us.
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Geometrical interpretation:

Q Ug-is measuring properly standardised difference between
log-likelihoods in 6 and 6 (i.e. in direction of y axis)

Q Uy —is measuring properly standardised absolute value of a
difference of 6 a 0 (in direction of x axis)

@ Us —is measuring properly standardised slope of log-ratio in 6
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Three test statistics

Testing of Statistical Hypotheses

Three test statistics — tests about one parameter

Example (normal distribution)
Let X ~ N(u,o?), where o2 is known, Ho : 1 = uo against
Hi:p # o, where 8 = (uo,02)T. Then
Q Uik = —2(1(6/X) — 1(9IX)) = .
= YLa(Xi = X)?/0? + Sy (Xi — po)?/0? = niSgek,
Q Uu = (X — o)’Z(X) = n&tel,

Y _ L 0_2 2 Y N 2
© Us = Gloll _ (oo} _ n&Kopol,

All three test statistics are equal, i.e. U g = Uy = Us.
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Testing of Statistical Hypotheses

Three test statistics — tests of all parameters

Let 6 be a scalar. Null hypothesis Hp : 6 = 6y and alternative
hypothesis Hj : 6 £ 6y, where 6, is a scalar from Hg. Let 6 be the

o —

maximal likelihood estimate of 6. Let Var [5] be the variance of .

Then three test statistics are defined as follows:
Q Ur = —2(1(6o|X) — |(9|X)) X3,
Q Uw = (0 — 6)?Z(8) R \2 and equivalently Ul/2 = Zw R N(0, 1),
1

O Us ))) % X2 and equivalently UY/? = Zg £ N (0, 1).
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Testing of Statistical Hypotheses

Three test statistics — tests of subset of parameters

Let 6 be a vector of all parameters of length k. Null hypothesis
Ho : 8 = 6o and alternative hypothesis  Hj : 8 # 6o, where 6, is a
vector of parameters from Hy. Let 8 be the maximal likelihood

estimate of 6. Let Var [5] be the covariance matrix.

Then three test statistics are defined as follows:
Q Uik = —2(1(80]X) — 1(8]X)) = X2,
Q Uw = (60— 60)TZ(8)(0 — 60) R X2,

Q Us = (S(60))T(Z(60)) *S(80) 2 \2.
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Let @ = (61,0,)", where 6 is a vector of all parameters of length k.
Let 8, and 6, be subsets of parameters of length k; and k,, where

ki + ko = k. Null hypothesis Hg : 8; = 8¢ and alternative

hypothesis Hj : 01 # 8o, where 6, is a vector of parameters from Ho.
Let & be maximal likelihood estimate of 8, 02|0 be maximal likelihood

estimate of 0, if Hp is true, i.e. 81 = 0. Then 00 = (6o, 02|0) . Let

Vary; [6] be a submatrix of the covariance matrix Var [6]
corresponding to 6;.

Then three test statistics are defined as follows:
Q Ur=-2 (OO\X) - |(9|X)) Xk1
Q Uw = (61— 00)T711(8) (81 — 6o) ~ Xﬁl,

Q Us = (S(60))" (Z11(80)) *S(80) = 2.
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Three test statistics — tests of subset of parameters

Testing of Statistical Hypotheses

Three test statistics — tests of subset of parameters

There is a relationship between likelihood ratio test statistic for subset
of parameters and profile likelihood function

Lp(01]x) = max L(8]x) = L((B1, 020" x)
VO,

or logarithm of profile likelihood function
lp(01]x) = |((‘91,4/9\2|0)T [X).
Likelihood ratio test statistic  is defined as:

Ug = —2In Lp(B1|x) = —2 (Ip(6’1l><) - 'P(§1|X)) ,

where 51 is maximal likelihood estimate of 8, with respect to
Lp(01|x). Urr is also called generalised likelihood ratio statistic
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Testing of Statistical Hypotheses

Three test statistics — tests of subset of parameters

Additionally

Lp(61]X) = max{ maxL(8]x) } = max L 01,05)"|x).
(011%) el{vez (|)} B2, 0202109

Having Ho:01=0paH;:04 75 0o, then

Lp (6o[x) = max L((B0.62)" x) = max L((61, 02)" )
0

VU,
and
L((01,02)" Lp (60
URr=-2In maxe, L((01, 62) |:) :—2In7P(AO|X).
max,g, g, L((61,62)"[x) Lp(81|x)
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Testing of Statistical Hypotheses

Three test statistics and related confidence intervals

Quadratic approximation of relative profile log-likelihood is
defined as:

In £p(81]X) ~ —% (01 - 51)T (T2(0)) (01 - 51) ,

and quadratic approximation of generalised likelihood ratio
statistic —2In Lp(64|x) is defined as:

ULr ~ Uy — (51 - eo)T (7%(8))* (51 - 00) .

Marginal distribution of 8, if Hg is true is defined as
01 ~ Ny, (6o, 111(0)).
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If 6 is a scalar, three confidence intervals are defined as follows:

Q empirical likelihood ratio (1 — ) x 100% Cl for 4 is defined as

CS1-a = {0:Ur(0) < x3(a)},

_ L(9]x)
where ULR(Q) =-2In L@

@ empirical Wald (1 — ) x 100% Cl for ¢ is defined based on a
pivot (pivotal statistics) Ty = Uw(0)

@ empirical Score (1 — a) x 100% Cl for ¢ is defined based on a
pivot Tpiy = Us(0)

If 8 is a vector, Cls can be generalized to confidence set CS1_a,.
9 Ifk = 2,CS;_4 is an confidence ellipse .

9 Ifk > 2,CS1_4 is an confidence ellipsoid

Additionally, if k = 1, CS1_4 is an confidence interval

32/66 Stanislav Katina Statistical Inference



Testing of Statistical Hypotheses

Confidence intervals

Testing of Statistical Hypotheses

Likelihood confidence intervals — bisection method

Wald empirical (1 — «) x 100% ClI for @ is defined as
(Ia U) = (é\Laé\U) = <§ t(X/ZSD[é\]aé\+ta/ZSD[é\]> )

where the critical value t,, ,» depends on the choice of 0.

Likelihood ratio empirical (1 — «) x 100% Cl for 6 is defined by its
lower and upper bounds as k% cut-offs of standardized relative
log-likelihood as follows

Pr (L@'X) > ca> e <—2|n LOk) —2Inca> —1-a,
L(8]x) L(6]x)

where ¢, = e~ 3Xi(®)_ Then
9 if 1 — a = 0.95, then c, = 0.1465001 = 0.15 (15% cut-off ),
Q if1 — a=0.90, then c, = 0.2585227 = 0.26 (26% cut-off),
Q if1 — a=0.99, then c, = 0.0362452 = 0.04 (4% cut-off).
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Testing of Statistical Hypotheses

Likelihood confidence intervals — bisection method

Bisection method
Let Oo1, 602 € (6L,0u) and f(0o1)f (6o2) < O, f(+) is continuous with at
least one root within the interval (6o1, 602), where

f(0) = —2In L(A]x) — x3(a) = 0.

If the first derivative of f(-) is having constant sign, then exactly one
root 6* € (o1, bo2) of f(9) = 0 exists.

The iterative process is defined as follows:

Q initialisation step — starting point (%) = (o1 + 602)/2 and i = 1,

@ updating equations — substitution of the boundaries o1 and 6p;
is defined as

(611, 612) = (6i-1,1,0071) iff(6_10)f(00"V) <0
DI (00D 6 5), ifF(6_10)f(00"D) >0

if f(9(-1)) = 0, then end, if not,
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Testing of Statistical Hypotheses

Likelihood confidence intervals — other numerical method

calculate the mid-point 00) = (61 + 6)/2,

stopping rule (with the threshold ¢ is sufficiently small) based on

@ relative convergence criteria

o absolute convergence criteria
|9<‘> - e(i—”] <e
o or often also based on

‘f(e(i))‘ <e
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Modifications are based on bracketing methods , i.e. bounding the
root within a sequence of intervals.

Brent method (Brent-Dekker method ) — the combination of
bisection method with inverse interpolation. If the interpolation is
linear, then it is secant method , where the updating equations are
modified as follows

. (i—1)__p(i—2) . X . -
40 _ pli-1) _ Wf(e(l 1)), |ff(9(| 1)) + f(9(| 2))
(011 + 6i2)/2, otherwise

)

where the approximation of the first derivative

. i—1 i—2
f/(00-1) ~ % If f(0) is twice differentiable, then f(0) has
single root (f'(8) # 0 for all 8 € (6., 6y)).
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Likelihood confidence intervals — other numerical method

Testing of Statistical Hypotheses

Likelihood confidence intervals — Brent-Dekker method
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Geometrical interpretation: () is the crossing point of secant through

the points [#(—1) f(#0-Y)] and [#(-2),f(60-2))], and x axis.

In ®

@ uniroot(f, interval,tol,...)

@ during the search for lower and upper boundary of
100 x (1 — a)% for 6§, the @-function uniroot()
used twice as follows

should be

Q for lower bound — starting interval is defined as <9L, §>,

Q for upper bound — starting interval is defined as <§, Oy >

Then the solutions are 5._ and é\u (root ).
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Testing of Statistical Hypotheses

Likelihood confidence intervals — Brent-Dekker method
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Example (Brent-Dekker method)

Let X ~ Bin(N,p), where N = 10 and n = x = 8. Estimate the
boundaries of empirical 100x (1 — a)% ClI for (1) p and (2) log odds
In 1 . The empirical ClI are of the two types (A) likelihood and (B)
WaId Draw the log-likelihood function and its quadratic
approximation with the lower and upper boundary of CI.
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Solution (partial)
Empirical Wald 100 x (1 — )% Cl for p:

p=2 =08 SD[p] = /24P — 013,

( ,U) = (pla pu) = (ﬁ - ua/ZSD[p]v/p\+ ua/ZSD[ﬁ]>
Empirical Likelihood 100 x (1 — «)% ClI for p:

= (0.55,1.05).

CS1 =A{p —2In 8 < 384}, where
(I,u) = (pL, Pu) = (0.50,0.96),

Wald empirical 100 x (1 — «)% ClI for g(p):
g(p) =In 15 = Ing§ = 1.39; Fg(p) = ; + 175 SDlg(p)] =

SDIp) (3 + 525) = VB (3 + %5) = /3 + ks = 070,
Then (lg, ug) = (9(PL), 9(Pu)) = (—0.16,2.94) and back-transformed
(I,u) = (pL, Pu) = (0.46,0.95)
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X <- 8 N <- 10

probs <- seq (0.4,.99, length =1000)

like <- dbinom (8,10,probs)

rellike <- like /max (like)

relloglike <- -2=xlog (rellike)

cutoff  <- exp (-1 /2xqchisq (0.95, df=1)) #0.1465001

likeCl.p <- range (probs[rellike>cutoff]) #0.5009910 0.9634234
cutoff <- gqchisq (0.95, df=1) #3.841459

likeCl.p <- range (probs[relloglike<cutoff]) #0.500991 0.9634234
p. hat < x/N

i. hat << N p. hat (1-p. hat)

loglikeapprox <- -i. hat/ 2x(probs-p. hat )2

ra <- range (log (rellike))

waldCl.p <- p.hat + c(-1,1) =*qgnorm(0.975) =sqrt (1/i. hat)
waldCl.p # 0.552082 1.047918

gprobs <- log (probs)- log (1-probs)

gp. hat <- log (p. hat)- log (1-p. hat)

i. hat <= x*(N-x) /N

lgp <- -i. hat/ 2x(gprobs-gp. hat )2

X <- (gp. hat +c(-1,1) =*gnorm(0.975) =sqrt (1/i. hat)) #-0.1632 2.9358

waldCl.gp
waldCl.gp

<- exp () /(1+ exp (x)
# 0.4592920 0.9495872
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